kern_time.c revision 1.54.2.9 1 1.54.2.9 nathanw /* $NetBSD: kern_time.c,v 1.54.2.9 2002/02/04 23:51:00 nathanw Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.54.2.4 nathanw #include <sys/cdefs.h>
75 1.54.2.9 nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.9 2002/02/04 23:51:00 nathanw Exp $");
76 1.54.2.4 nathanw
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.54.2.1 nathanw #include <sys/lwp.h>
86 1.54.2.5 nathanw #include <sys/malloc.h>
87 1.5 mycroft #include <sys/proc.h>
88 1.54.2.5 nathanw #include <sys/sa.h>
89 1.54.2.5 nathanw #include <sys/savar.h>
90 1.8 cgd #include <sys/vnode.h>
91 1.17 christos #include <sys/signalvar.h>
92 1.25 perry #include <sys/syslog.h>
93 1.1 cgd
94 1.11 cgd #include <sys/mount.h>
95 1.11 cgd #include <sys/syscallargs.h>
96 1.19 christos
97 1.37 thorpej #include <uvm/uvm_extern.h>
98 1.37 thorpej
99 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
100 1.20 fvdl #include <nfs/rpcv2.h>
101 1.20 fvdl #include <nfs/nfsproto.h>
102 1.19 christos #include <nfs/nfs_var.h>
103 1.19 christos #endif
104 1.17 christos
105 1.5 mycroft #include <machine/cpu.h>
106 1.23 cgd
107 1.54.2.5 nathanw static void realtimerupcall(struct lwp *, void *);
108 1.54.2.5 nathanw
109 1.54.2.5 nathanw
110 1.54.2.5 nathanw /* Time of day and interval timer support.
111 1.1 cgd *
112 1.1 cgd * These routines provide the kernel entry points to get and set
113 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
114 1.1 cgd * here provide support for adding and subtracting timeval structures
115 1.1 cgd * and decrementing interval timers, optionally reloading the interval
116 1.1 cgd * timers when they expire.
117 1.1 cgd */
118 1.1 cgd
119 1.22 jtc /* This function is used by clock_settime and settimeofday */
120 1.39 tron int
121 1.54.2.5 nathanw settime(struct timeval *tv)
122 1.22 jtc {
123 1.22 jtc struct timeval delta;
124 1.47 thorpej struct cpu_info *ci;
125 1.22 jtc int s;
126 1.22 jtc
127 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
128 1.22 jtc s = splclock();
129 1.22 jtc timersub(tv, &time, &delta);
130 1.54.2.2 nathanw if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
131 1.54.2.2 nathanw splx(s);
132 1.29 tls return (EPERM);
133 1.54.2.2 nathanw }
134 1.29 tls #ifdef notyet
135 1.54.2.2 nathanw if ((delta.tv_sec < 86400) && securelevel > 0) {
136 1.54.2.2 nathanw splx(s);
137 1.29 tls return (EPERM);
138 1.54.2.2 nathanw }
139 1.29 tls #endif
140 1.22 jtc time = *tv;
141 1.38 thorpej (void) spllowersoftclock();
142 1.22 jtc timeradd(&boottime, &delta, &boottime);
143 1.47 thorpej /*
144 1.47 thorpej * XXXSMP
145 1.47 thorpej * This is wrong. We should traverse a list of all
146 1.47 thorpej * CPUs and add the delta to the runtime of those
147 1.47 thorpej * CPUs which have a process on them.
148 1.47 thorpej */
149 1.47 thorpej ci = curcpu();
150 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
151 1.47 thorpej &ci->ci_schedstate.spc_runtime);
152 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
153 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
154 1.22 jtc # endif
155 1.22 jtc splx(s);
156 1.22 jtc resettodr();
157 1.29 tls return (0);
158 1.22 jtc }
159 1.22 jtc
160 1.22 jtc /* ARGSUSED */
161 1.22 jtc int
162 1.54.2.5 nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
163 1.22 jtc {
164 1.45 augustss struct sys_clock_gettime_args /* {
165 1.22 jtc syscallarg(clockid_t) clock_id;
166 1.23 cgd syscallarg(struct timespec *) tp;
167 1.23 cgd } */ *uap = v;
168 1.22 jtc clockid_t clock_id;
169 1.22 jtc struct timeval atv;
170 1.22 jtc struct timespec ats;
171 1.22 jtc
172 1.22 jtc clock_id = SCARG(uap, clock_id);
173 1.22 jtc if (clock_id != CLOCK_REALTIME)
174 1.22 jtc return (EINVAL);
175 1.22 jtc
176 1.22 jtc microtime(&atv);
177 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
178 1.22 jtc
179 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
180 1.22 jtc }
181 1.22 jtc
182 1.22 jtc /* ARGSUSED */
183 1.22 jtc int
184 1.54.2.1 nathanw sys_clock_settime(l, v, retval)
185 1.54.2.1 nathanw struct lwp *l;
186 1.22 jtc void *v;
187 1.22 jtc register_t *retval;
188 1.22 jtc {
189 1.45 augustss struct sys_clock_settime_args /* {
190 1.22 jtc syscallarg(clockid_t) clock_id;
191 1.23 cgd syscallarg(const struct timespec *) tp;
192 1.23 cgd } */ *uap = v;
193 1.54.2.1 nathanw struct proc *p = l->l_proc;
194 1.22 jtc int error;
195 1.22 jtc
196 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
197 1.22 jtc return (error);
198 1.22 jtc
199 1.54.2.6 nathanw return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
200 1.54.2.3 nathanw }
201 1.54.2.3 nathanw
202 1.54.2.3 nathanw
203 1.54.2.3 nathanw int
204 1.54.2.6 nathanw clock_settime1(clock_id, tp)
205 1.54.2.6 nathanw clockid_t clock_id;
206 1.54.2.6 nathanw const struct timespec *tp;
207 1.54.2.3 nathanw {
208 1.54.2.6 nathanw struct timespec ats;
209 1.54.2.3 nathanw struct timeval atv;
210 1.54.2.3 nathanw int error;
211 1.54.2.3 nathanw
212 1.54.2.6 nathanw if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
213 1.54.2.6 nathanw return (error);
214 1.54.2.6 nathanw
215 1.54.2.3 nathanw if (clock_id != CLOCK_REALTIME)
216 1.54.2.3 nathanw return (EINVAL);
217 1.54.2.3 nathanw
218 1.54.2.6 nathanw TIMESPEC_TO_TIMEVAL(&atv, &ats);
219 1.54.2.3 nathanw if ((error = settime(&atv)) != 0)
220 1.29 tls return (error);
221 1.22 jtc
222 1.22 jtc return 0;
223 1.22 jtc }
224 1.22 jtc
225 1.22 jtc int
226 1.54.2.5 nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
227 1.22 jtc {
228 1.45 augustss struct sys_clock_getres_args /* {
229 1.22 jtc syscallarg(clockid_t) clock_id;
230 1.23 cgd syscallarg(struct timespec *) tp;
231 1.23 cgd } */ *uap = v;
232 1.22 jtc clockid_t clock_id;
233 1.22 jtc struct timespec ts;
234 1.22 jtc int error = 0;
235 1.22 jtc
236 1.22 jtc clock_id = SCARG(uap, clock_id);
237 1.22 jtc if (clock_id != CLOCK_REALTIME)
238 1.22 jtc return (EINVAL);
239 1.22 jtc
240 1.22 jtc if (SCARG(uap, tp)) {
241 1.22 jtc ts.tv_sec = 0;
242 1.22 jtc ts.tv_nsec = 1000000000 / hz;
243 1.22 jtc
244 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
245 1.22 jtc }
246 1.22 jtc
247 1.22 jtc return error;
248 1.22 jtc }
249 1.22 jtc
250 1.27 jtc /* ARGSUSED */
251 1.27 jtc int
252 1.54.2.5 nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
253 1.27 jtc {
254 1.27 jtc static int nanowait;
255 1.45 augustss struct sys_nanosleep_args/* {
256 1.27 jtc syscallarg(struct timespec *) rqtp;
257 1.27 jtc syscallarg(struct timespec *) rmtp;
258 1.27 jtc } */ *uap = v;
259 1.27 jtc struct timespec rqt;
260 1.27 jtc struct timespec rmt;
261 1.27 jtc struct timeval atv, utv;
262 1.27 jtc int error, s, timo;
263 1.27 jtc
264 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
265 1.27 jtc sizeof(struct timespec));
266 1.27 jtc if (error)
267 1.27 jtc return (error);
268 1.27 jtc
269 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
270 1.54.2.4 nathanw if (itimerfix(&atv) || atv.tv_sec > 1000000000)
271 1.27 jtc return (EINVAL);
272 1.27 jtc
273 1.27 jtc s = splclock();
274 1.27 jtc timeradd(&atv,&time,&atv);
275 1.27 jtc timo = hzto(&atv);
276 1.27 jtc /*
277 1.27 jtc * Avoid inadvertantly sleeping forever
278 1.27 jtc */
279 1.27 jtc if (timo == 0)
280 1.27 jtc timo = 1;
281 1.27 jtc splx(s);
282 1.27 jtc
283 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
284 1.27 jtc if (error == ERESTART)
285 1.27 jtc error = EINTR;
286 1.27 jtc if (error == EWOULDBLOCK)
287 1.27 jtc error = 0;
288 1.27 jtc
289 1.27 jtc if (SCARG(uap, rmtp)) {
290 1.28 jtc int error;
291 1.28 jtc
292 1.27 jtc s = splclock();
293 1.27 jtc utv = time;
294 1.27 jtc splx(s);
295 1.27 jtc
296 1.27 jtc timersub(&atv, &utv, &utv);
297 1.27 jtc if (utv.tv_sec < 0)
298 1.27 jtc timerclear(&utv);
299 1.27 jtc
300 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
301 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
302 1.28 jtc sizeof(rmt));
303 1.28 jtc if (error)
304 1.28 jtc return (error);
305 1.27 jtc }
306 1.27 jtc
307 1.27 jtc return error;
308 1.27 jtc }
309 1.22 jtc
310 1.1 cgd /* ARGSUSED */
311 1.3 andrew int
312 1.54.2.5 nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
313 1.15 thorpej {
314 1.45 augustss struct sys_gettimeofday_args /* {
315 1.11 cgd syscallarg(struct timeval *) tp;
316 1.11 cgd syscallarg(struct timezone *) tzp;
317 1.15 thorpej } */ *uap = v;
318 1.1 cgd struct timeval atv;
319 1.1 cgd int error = 0;
320 1.25 perry struct timezone tzfake;
321 1.1 cgd
322 1.11 cgd if (SCARG(uap, tp)) {
323 1.1 cgd microtime(&atv);
324 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
325 1.17 christos if (error)
326 1.1 cgd return (error);
327 1.1 cgd }
328 1.25 perry if (SCARG(uap, tzp)) {
329 1.25 perry /*
330 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
331 1.25 perry * fake up a timezone struct and return it if demanded.
332 1.25 perry */
333 1.25 perry tzfake.tz_minuteswest = 0;
334 1.25 perry tzfake.tz_dsttime = 0;
335 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
336 1.25 perry }
337 1.1 cgd return (error);
338 1.1 cgd }
339 1.1 cgd
340 1.1 cgd /* ARGSUSED */
341 1.3 andrew int
342 1.54.2.5 nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
343 1.15 thorpej {
344 1.16 mycroft struct sys_settimeofday_args /* {
345 1.24 cgd syscallarg(const struct timeval *) tv;
346 1.24 cgd syscallarg(const struct timezone *) tzp;
347 1.15 thorpej } */ *uap = v;
348 1.54.2.1 nathanw struct proc *p = l->l_proc;
349 1.54.2.6 nathanw int error;
350 1.54.2.6 nathanw
351 1.54.2.6 nathanw if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
352 1.54.2.6 nathanw return (error);
353 1.54.2.6 nathanw
354 1.54.2.6 nathanw return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
355 1.54.2.6 nathanw }
356 1.54.2.6 nathanw
357 1.54.2.6 nathanw int
358 1.54.2.6 nathanw settimeofday1(utv, utzp, p)
359 1.54.2.6 nathanw const struct timeval *utv;
360 1.54.2.6 nathanw const struct timezone *utzp;
361 1.54.2.6 nathanw struct proc *p;
362 1.54.2.6 nathanw {
363 1.22 jtc struct timeval atv;
364 1.1 cgd struct timezone atz;
365 1.54.2.3 nathanw struct timeval *tv = NULL;
366 1.54.2.3 nathanw struct timezone *tzp = NULL;
367 1.22 jtc int error;
368 1.1 cgd
369 1.8 cgd /* Verify all parameters before changing time. */
370 1.54.2.6 nathanw if (utv) {
371 1.54.2.6 nathanw if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
372 1.54.2.3 nathanw return (error);
373 1.54.2.3 nathanw tv = &atv;
374 1.54.2.3 nathanw }
375 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
376 1.54.2.6 nathanw if (utzp) {
377 1.54.2.6 nathanw if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
378 1.54.2.3 nathanw return (error);
379 1.54.2.3 nathanw tzp = &atz;
380 1.54.2.3 nathanw }
381 1.54.2.3 nathanw
382 1.54.2.3 nathanw if (tv)
383 1.54.2.3 nathanw if ((error = settime(tv)) != 0)
384 1.29 tls return (error);
385 1.25 perry /*
386 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
387 1.25 perry * obsolete program would try to set it, so we log a warning.
388 1.25 perry */
389 1.54.2.3 nathanw if (tzp)
390 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
391 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
392 1.8 cgd return (0);
393 1.1 cgd }
394 1.1 cgd
395 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
396 1.1 cgd long timedelta; /* unapplied time correction, us. */
397 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
398 1.1 cgd
399 1.1 cgd /* ARGSUSED */
400 1.3 andrew int
401 1.54.2.5 nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
402 1.15 thorpej {
403 1.45 augustss struct sys_adjtime_args /* {
404 1.24 cgd syscallarg(const struct timeval *) delta;
405 1.11 cgd syscallarg(struct timeval *) olddelta;
406 1.15 thorpej } */ *uap = v;
407 1.54.2.1 nathanw struct proc *p = l->l_proc;
408 1.54.2.3 nathanw int error;
409 1.1 cgd
410 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
411 1.1 cgd return (error);
412 1.17 christos
413 1.54.2.6 nathanw return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
414 1.54.2.3 nathanw }
415 1.54.2.3 nathanw
416 1.54.2.3 nathanw int
417 1.54.2.6 nathanw adjtime1(delta, olddelta, p)
418 1.54.2.6 nathanw const struct timeval *delta;
419 1.54.2.6 nathanw struct timeval *olddelta;
420 1.54.2.6 nathanw struct proc *p;
421 1.54.2.3 nathanw {
422 1.54.2.6 nathanw struct timeval atv;
423 1.54.2.6 nathanw struct timeval *oatv = NULL;
424 1.54.2.3 nathanw long ndelta, ntickdelta, odelta;
425 1.54.2.6 nathanw int error;
426 1.54.2.3 nathanw int s;
427 1.8 cgd
428 1.54.2.6 nathanw error = copyin(delta, &atv, sizeof(struct timeval));
429 1.54.2.6 nathanw if (error)
430 1.54.2.6 nathanw return (error);
431 1.54.2.6 nathanw
432 1.54.2.6 nathanw if (olddelta != NULL) {
433 1.54.2.6 nathanw if (uvm_useracc((caddr_t)olddelta,
434 1.54.2.6 nathanw sizeof(struct timeval), B_WRITE) == FALSE)
435 1.54.2.6 nathanw return (EFAULT);
436 1.54.2.6 nathanw oatv = olddelta;
437 1.54.2.6 nathanw }
438 1.54.2.6 nathanw
439 1.8 cgd /*
440 1.8 cgd * Compute the total correction and the rate at which to apply it.
441 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
442 1.8 cgd * delta, so that after some number of incremental changes in
443 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
444 1.8 cgd * overshoot and start taking us away from the desired final time.
445 1.8 cgd */
446 1.54.2.6 nathanw ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
447 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
448 1.8 cgd ntickdelta = 10 * tickadj;
449 1.8 cgd else
450 1.8 cgd ntickdelta = tickadj;
451 1.8 cgd if (ndelta % ntickdelta)
452 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
453 1.8 cgd
454 1.8 cgd /*
455 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
456 1.8 cgd * if we want time to run slower; then hardclock can simply compute
457 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
458 1.8 cgd */
459 1.8 cgd if (ndelta < 0)
460 1.8 cgd ntickdelta = -ntickdelta;
461 1.1 cgd s = splclock();
462 1.8 cgd odelta = timedelta;
463 1.1 cgd timedelta = ndelta;
464 1.8 cgd tickdelta = ntickdelta;
465 1.1 cgd splx(s);
466 1.1 cgd
467 1.54.2.3 nathanw if (olddelta) {
468 1.54.2.6 nathanw atv.tv_sec = odelta / 1000000;
469 1.54.2.6 nathanw atv.tv_usec = odelta % 1000000;
470 1.54.2.6 nathanw (void) copyout(&atv, olddelta, sizeof(struct timeval));
471 1.8 cgd }
472 1.1 cgd return (0);
473 1.1 cgd }
474 1.1 cgd
475 1.1 cgd /*
476 1.54.2.5 nathanw * Interval timer support. Both the BSD getitimer() family and the POSIX
477 1.54.2.5 nathanw * timer_*() family of routines are supported.
478 1.54.2.5 nathanw *
479 1.54.2.5 nathanw * All timers are kept in an array pointed to by p_timers, which is
480 1.54.2.5 nathanw * allocated on demand - many processes don't use timers at all. The
481 1.54.2.5 nathanw * first three elements in this array are reserved for the BSD timers:
482 1.54.2.5 nathanw * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
483 1.54.2.5 nathanw * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
484 1.54.2.5 nathanw * syscall.
485 1.1 cgd *
486 1.54.2.5 nathanw * Realtime timers are kept in the ptimer structure as an absolute
487 1.54.2.5 nathanw * time; virtual time timers are kept as deltas. Virtual time timers
488 1.54.2.5 nathanw * are processed in the hardclock() routine of kern_clock.c. The real
489 1.54.2.5 nathanw * time timer is processed by a callout routine, called from the
490 1.54.2.5 nathanw * softclock() routine. Since a callout may be delayed in real time
491 1.54.2.5 nathanw * due to interrupt processing in the system, it is possible for the
492 1.54.2.5 nathanw * real time timeout routine (realtimeexpire, given below), to be
493 1.54.2.5 nathanw * delayed in real time past when it is supposed to occur. It does
494 1.54.2.5 nathanw * not suffice, therefore, to reload the real timer .it_value from the
495 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
496 1.54.2.5 nathanw * absolute time the timer should go off.
497 1.54.2.5 nathanw */
498 1.54.2.5 nathanw
499 1.54.2.5 nathanw /* Allocate a POSIX realtime timer. */
500 1.54.2.5 nathanw int
501 1.54.2.5 nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
502 1.54.2.5 nathanw {
503 1.54.2.5 nathanw struct sys_timer_create_args /* {
504 1.54.2.5 nathanw syscallarg(clockid_t) clock_id;
505 1.54.2.5 nathanw syscallarg(struct sigevent *) evp;
506 1.54.2.5 nathanw syscallarg(timer_t *) timerid;
507 1.54.2.5 nathanw } */ *uap = v;
508 1.54.2.5 nathanw struct proc *p = l->l_proc;
509 1.54.2.5 nathanw clockid_t id;
510 1.54.2.5 nathanw struct sigevent *evp;
511 1.54.2.5 nathanw struct ptimer *pt;
512 1.54.2.5 nathanw int timerid, error;
513 1.54.2.5 nathanw
514 1.54.2.5 nathanw id = SCARG(uap, clock_id);
515 1.54.2.5 nathanw if (id != CLOCK_REALTIME)
516 1.54.2.5 nathanw return (EINVAL);
517 1.54.2.5 nathanw
518 1.54.2.5 nathanw if (p->p_timers == NULL)
519 1.54.2.5 nathanw timers_alloc(p);
520 1.54.2.5 nathanw
521 1.54.2.5 nathanw for (timerid = 3; timerid < TIMER_MAX; timerid++)
522 1.54.2.5 nathanw if (p->p_timers[timerid] == NULL)
523 1.54.2.5 nathanw break;
524 1.54.2.5 nathanw
525 1.54.2.5 nathanw if (timerid == TIMER_MAX)
526 1.54.2.5 nathanw return EAGAIN;
527 1.54.2.5 nathanw
528 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
529 1.54.2.5 nathanw evp = SCARG(uap, evp);
530 1.54.2.5 nathanw if (evp) {
531 1.54.2.5 nathanw if (((error =
532 1.54.2.5 nathanw copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
533 1.54.2.5 nathanw ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
534 1.54.2.7 nathanw (pt->pt_ev.sigev_notify > SIGEV_SA))) {
535 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
536 1.54.2.5 nathanw return (error ? error : EINVAL);
537 1.54.2.5 nathanw }
538 1.54.2.5 nathanw } else {
539 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
540 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
541 1.54.2.5 nathanw pt->pt_ev.sigev_value.sival_int = timerid;
542 1.54.2.5 nathanw }
543 1.54.2.5 nathanw
544 1.54.2.5 nathanw callout_init(&pt->pt_ch);
545 1.54.2.5 nathanw pt->pt_type = CLOCK_REALTIME;
546 1.54.2.5 nathanw pt->pt_proc = p;
547 1.54.2.5 nathanw pt->pt_overruns = 0;
548 1.54.2.5 nathanw
549 1.54.2.5 nathanw p->p_timers[timerid] = pt;
550 1.54.2.5 nathanw
551 1.54.2.5 nathanw return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
552 1.54.2.5 nathanw }
553 1.54.2.5 nathanw
554 1.54.2.5 nathanw
555 1.54.2.5 nathanw /* Delete a POSIX realtime timer */
556 1.54.2.5 nathanw int
557 1.54.2.5 nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
558 1.54.2.5 nathanw {
559 1.54.2.5 nathanw struct sys_timer_delete_args /* {
560 1.54.2.5 nathanw syscallarg(timer_t) timerid;
561 1.54.2.5 nathanw } */ *uap = v;
562 1.54.2.5 nathanw struct proc *p = l->l_proc;
563 1.54.2.5 nathanw int timerid;
564 1.54.2.5 nathanw struct ptimer *pt;
565 1.54.2.5 nathanw
566 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
567 1.54.2.5 nathanw
568 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
569 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
570 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
571 1.54.2.5 nathanw return (EINVAL);
572 1.54.2.5 nathanw
573 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
574 1.54.2.5 nathanw p->p_timers[timerid] = NULL;
575 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
576 1.54.2.5 nathanw
577 1.54.2.5 nathanw return (0);
578 1.54.2.5 nathanw }
579 1.54.2.5 nathanw
580 1.54.2.5 nathanw /* Set and arm a POSIX realtime timer */
581 1.54.2.5 nathanw int
582 1.54.2.5 nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
583 1.54.2.5 nathanw {
584 1.54.2.5 nathanw struct sys_timer_settime_args /* {
585 1.54.2.5 nathanw syscallarg(timer_t) timerid;
586 1.54.2.5 nathanw syscallarg(int) flags;
587 1.54.2.5 nathanw syscallarg(const struct itimerspec *) value;
588 1.54.2.5 nathanw syscallarg(struct itimerspec *) ovalue;
589 1.54.2.5 nathanw } */ *uap = v;
590 1.54.2.5 nathanw struct proc *p = l->l_proc;
591 1.54.2.5 nathanw int error, s, timerid;
592 1.54.2.5 nathanw struct itimerval val, oval;
593 1.54.2.5 nathanw struct itimerspec value, ovalue;
594 1.54.2.5 nathanw struct ptimer *pt;
595 1.54.2.5 nathanw
596 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
597 1.54.2.5 nathanw
598 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
599 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
600 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
601 1.54.2.5 nathanw return (EINVAL);
602 1.54.2.5 nathanw
603 1.54.2.5 nathanw if ((error = copyin(SCARG(uap, value), &value,
604 1.54.2.5 nathanw sizeof(struct itimerspec))) != 0)
605 1.54.2.5 nathanw return (error);
606 1.54.2.5 nathanw
607 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
608 1.54.2.5 nathanw TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
609 1.54.2.5 nathanw if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
610 1.54.2.5 nathanw return (EINVAL);
611 1.54.2.5 nathanw
612 1.54.2.5 nathanw oval = pt->pt_time;
613 1.54.2.5 nathanw pt->pt_time = val;
614 1.54.2.5 nathanw
615 1.54.2.5 nathanw s = splclock();
616 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
617 1.54.2.5 nathanw if (timerisset(&pt->pt_time.it_value)) {
618 1.54.2.5 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
619 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value, &time,
620 1.54.2.5 nathanw &pt->pt_time.it_value);
621 1.54.2.5 nathanw /*
622 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
623 1.54.2.5 nathanw * callout_reset() does it for us.
624 1.54.2.5 nathanw */
625 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
626 1.54.2.5 nathanw realtimerexpire, pt);
627 1.54.2.5 nathanw }
628 1.54.2.5 nathanw splx(s);
629 1.54.2.5 nathanw
630 1.54.2.5 nathanw if (SCARG(uap, ovalue)) {
631 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
632 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
633 1.54.2.5 nathanw return copyout(&ovalue, SCARG(uap, ovalue),
634 1.54.2.5 nathanw sizeof(struct itimerspec));
635 1.54.2.5 nathanw }
636 1.54.2.5 nathanw
637 1.54.2.5 nathanw return (0);
638 1.54.2.5 nathanw }
639 1.54.2.5 nathanw
640 1.54.2.5 nathanw /* Return the time remaining until a POSIX timer fires. */
641 1.54.2.5 nathanw int
642 1.54.2.5 nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
643 1.54.2.5 nathanw {
644 1.54.2.5 nathanw struct sys_timer_gettime_args /* {
645 1.54.2.5 nathanw syscallarg(timer_t) timerid;
646 1.54.2.5 nathanw syscallarg(struct itimerspec *) value;
647 1.54.2.5 nathanw } */ *uap = v;
648 1.54.2.5 nathanw struct itimerval aitv;
649 1.54.2.5 nathanw struct itimerspec its;
650 1.54.2.5 nathanw struct proc *p = l->l_proc;
651 1.54.2.5 nathanw int timerid;
652 1.54.2.5 nathanw struct ptimer *pt;
653 1.54.2.5 nathanw
654 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
655 1.54.2.5 nathanw
656 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
657 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
658 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
659 1.54.2.5 nathanw return (EINVAL);
660 1.54.2.5 nathanw
661 1.54.2.5 nathanw aitv = pt->pt_time;
662 1.54.2.5 nathanw
663 1.54.2.5 nathanw /*
664 1.54.2.5 nathanw * Real-time timers are kept in absolute time, but this interface
665 1.54.2.5 nathanw * is supposed to return a relative time.
666 1.54.2.5 nathanw */
667 1.54.2.5 nathanw if (timerisset(&aitv.it_value)) {
668 1.54.2.5 nathanw if (timercmp(&aitv.it_value, &time, <))
669 1.54.2.5 nathanw timerclear(&aitv.it_value);
670 1.54.2.5 nathanw else
671 1.54.2.5 nathanw timersub(&aitv.it_value, &time, &aitv.it_value);
672 1.54.2.5 nathanw }
673 1.54.2.5 nathanw
674 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
675 1.54.2.5 nathanw TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
676 1.54.2.5 nathanw
677 1.54.2.5 nathanw return copyout(&its, SCARG(uap, value), sizeof(its));
678 1.54.2.5 nathanw }
679 1.54.2.5 nathanw
680 1.54.2.5 nathanw /*
681 1.54.2.5 nathanw * Return the count of the number of times a periodic timer expired
682 1.54.2.5 nathanw * while a notification was already pending. The counter is reset when
683 1.54.2.5 nathanw * a timer expires and a notification can be posted.
684 1.1 cgd */
685 1.54.2.5 nathanw int
686 1.54.2.5 nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
687 1.54.2.5 nathanw {
688 1.54.2.5 nathanw struct sys_timer_getoverrun_args /* {
689 1.54.2.5 nathanw syscallarg(timer_t) timerid;
690 1.54.2.5 nathanw } */ *uap = v;
691 1.54.2.5 nathanw struct proc *p = l->l_proc;
692 1.54.2.5 nathanw int timerid;
693 1.54.2.5 nathanw struct ptimer *pt;
694 1.54.2.5 nathanw
695 1.54.2.5 nathanw timerid = SCARG(uap, timerid);
696 1.54.2.5 nathanw
697 1.54.2.5 nathanw if ((p->p_timers == NULL) ||
698 1.54.2.5 nathanw (timerid < 2) || (timerid >= TIMER_MAX) ||
699 1.54.2.5 nathanw ((pt = p->p_timers[timerid]) == NULL))
700 1.54.2.5 nathanw return (EINVAL);
701 1.54.2.5 nathanw
702 1.54.2.5 nathanw *retval = pt->pt_overruns;
703 1.54.2.5 nathanw
704 1.54.2.5 nathanw return (0);
705 1.54.2.5 nathanw }
706 1.54.2.5 nathanw
707 1.54.2.5 nathanw /* Glue function that triggers an upcall; called from userret(). */
708 1.54.2.5 nathanw static void
709 1.54.2.5 nathanw realtimerupcall(struct lwp *l, void *arg)
710 1.54.2.5 nathanw {
711 1.54.2.5 nathanw struct ptimer *pt;
712 1.54.2.5 nathanw
713 1.54.2.5 nathanw pt = (struct ptimer *)arg;
714 1.54.2.5 nathanw sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(struct sigevent),
715 1.54.2.5 nathanw &pt->pt_ev);
716 1.54.2.5 nathanw
717 1.54.2.5 nathanw /* The upcall should only be generated once. */
718 1.54.2.5 nathanw l->l_proc->p_userret = NULL;
719 1.54.2.5 nathanw }
720 1.54.2.5 nathanw
721 1.54.2.5 nathanw
722 1.54.2.5 nathanw /*
723 1.54.2.5 nathanw * Real interval timer expired:
724 1.54.2.5 nathanw * send process whose timer expired an alarm signal.
725 1.54.2.5 nathanw * If time is not set up to reload, then just return.
726 1.54.2.5 nathanw * Else compute next time timer should go off which is > current time.
727 1.54.2.5 nathanw * This is where delay in processing this timeout causes multiple
728 1.54.2.5 nathanw * SIGALRM calls to be compressed into one.
729 1.54.2.5 nathanw */
730 1.54.2.5 nathanw void
731 1.54.2.5 nathanw realtimerexpire(void *arg)
732 1.54.2.5 nathanw {
733 1.54.2.5 nathanw struct ptimer *pt;
734 1.54.2.5 nathanw struct proc *p;
735 1.54.2.5 nathanw int s;
736 1.54.2.5 nathanw
737 1.54.2.5 nathanw pt = (struct ptimer *)arg;
738 1.54.2.5 nathanw p = pt->pt_proc;
739 1.54.2.5 nathanw if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
740 1.54.2.5 nathanw /*
741 1.54.2.5 nathanw * No RT signal infrastructure exists at this time;
742 1.54.2.5 nathanw * just post the signal number and throw away the
743 1.54.2.5 nathanw * value.
744 1.54.2.5 nathanw */
745 1.54.2.5 nathanw if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
746 1.54.2.5 nathanw pt->pt_overruns++;
747 1.54.2.5 nathanw else {
748 1.54.2.5 nathanw pt->pt_overruns = 0;
749 1.54.2.5 nathanw psignal(p, pt->pt_ev.sigev_signo);
750 1.54.2.5 nathanw }
751 1.54.2.7 nathanw } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
752 1.54.2.8 nathanw int notified = 0;
753 1.54.2.5 nathanw /* Cause the process to generate an upcall when it returns. */
754 1.54.2.8 nathanw
755 1.54.2.8 nathanw if (p->p_nrlwps == 0) {
756 1.54.2.8 nathanw struct sadata_upcall *sd;
757 1.54.2.8 nathanw struct lwp *l2;
758 1.54.2.9 nathanw int s, ret;
759 1.54.2.8 nathanw
760 1.54.2.9 nathanw SCHED_LOCK(s);
761 1.54.2.8 nathanw l2 = sa_getcachelwp(p);
762 1.54.2.8 nathanw if (l2 != NULL) {
763 1.54.2.8 nathanw sd = sadata_upcall_alloc(0);
764 1.54.2.8 nathanw cpu_setfunc(l2, sa_switchcall, NULL);
765 1.54.2.8 nathanw ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
766 1.54.2.8 nathanw NULL, NULL, sizeof(struct sigevent),
767 1.54.2.8 nathanw &pt->pt_ev, sd);
768 1.54.2.8 nathanw if (ret == 0) {
769 1.54.2.8 nathanw p->p_nrlwps++;
770 1.54.2.8 nathanw l2->l_priority = l2->l_usrpri;
771 1.54.2.8 nathanw PRELE(l2);
772 1.54.2.8 nathanw setrunnable(l2);
773 1.54.2.8 nathanw notified = 1;
774 1.54.2.8 nathanw } else
775 1.54.2.8 nathanw sa_putcachelwp(p, l2);
776 1.54.2.8 nathanw }
777 1.54.2.9 nathanw SCHED_UNLOCK(s);
778 1.54.2.8 nathanw } else if (p->p_userret == NULL) {
779 1.54.2.5 nathanw pt->pt_overruns = 0;
780 1.54.2.5 nathanw p->p_userret = realtimerupcall;
781 1.54.2.5 nathanw p->p_userret_arg = pt;
782 1.54.2.8 nathanw notified = 1;
783 1.54.2.8 nathanw }
784 1.54.2.8 nathanw if (notified == 0)
785 1.54.2.5 nathanw pt->pt_overruns++;
786 1.54.2.5 nathanw }
787 1.54.2.5 nathanw if (!timerisset(&pt->pt_time.it_interval)) {
788 1.54.2.5 nathanw timerclear(&pt->pt_time.it_value);
789 1.54.2.5 nathanw return;
790 1.54.2.5 nathanw }
791 1.54.2.5 nathanw for (;;) {
792 1.54.2.5 nathanw s = splclock();
793 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value,
794 1.54.2.5 nathanw &pt->pt_time.it_interval, &pt->pt_time.it_value);
795 1.54.2.5 nathanw if (timercmp(&pt->pt_time.it_value, &time, >)) {
796 1.54.2.5 nathanw /*
797 1.54.2.5 nathanw * Don't need to check hzto() return value, here.
798 1.54.2.5 nathanw * callout_reset() does it for us.
799 1.54.2.5 nathanw */
800 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
801 1.54.2.5 nathanw realtimerexpire, pt);
802 1.54.2.5 nathanw splx(s);
803 1.54.2.5 nathanw return;
804 1.54.2.5 nathanw }
805 1.54.2.5 nathanw splx(s);
806 1.54.2.5 nathanw pt->pt_overruns++;
807 1.54.2.5 nathanw }
808 1.54.2.5 nathanw }
809 1.54.2.5 nathanw
810 1.54.2.5 nathanw /* BSD routine to get the value of an interval timer. */
811 1.1 cgd /* ARGSUSED */
812 1.3 andrew int
813 1.54.2.5 nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
814 1.15 thorpej {
815 1.45 augustss struct sys_getitimer_args /* {
816 1.30 mycroft syscallarg(int) which;
817 1.11 cgd syscallarg(struct itimerval *) itv;
818 1.15 thorpej } */ *uap = v;
819 1.54.2.1 nathanw struct proc *p = l->l_proc;
820 1.1 cgd struct itimerval aitv;
821 1.54.2.5 nathanw int s, which;
822 1.54.2.5 nathanw
823 1.54.2.5 nathanw which = SCARG(uap, which);
824 1.1 cgd
825 1.30 mycroft if ((u_int)which > ITIMER_PROF)
826 1.1 cgd return (EINVAL);
827 1.54.2.5 nathanw
828 1.54.2.5 nathanw if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
829 1.54.2.5 nathanw timerclear(&aitv.it_value);
830 1.54.2.5 nathanw timerclear(&aitv.it_interval);
831 1.54.2.5 nathanw } else {
832 1.54.2.5 nathanw s = splclock();
833 1.54.2.5 nathanw if (which == ITIMER_REAL) {
834 1.54.2.5 nathanw /*
835 1.54.2.5 nathanw * Convert from absolute to relative time in
836 1.54.2.5 nathanw * .it_value part of real time timer. If time
837 1.54.2.5 nathanw * for real time timer has passed return 0,
838 1.54.2.5 nathanw * else return difference between current time
839 1.54.2.5 nathanw * and time for the timer to go off.
840 1.54.2.5 nathanw */
841 1.54.2.5 nathanw aitv = p->p_timers[ITIMER_REAL]->pt_time;
842 1.54.2.5 nathanw if (timerisset(&aitv.it_value)) {
843 1.54.2.5 nathanw if (timercmp(&aitv.it_value, &time, <))
844 1.54.2.5 nathanw timerclear(&aitv.it_value);
845 1.54.2.5 nathanw else
846 1.54.2.5 nathanw timersub(&aitv.it_value, &time, &aitv.it_value);
847 1.54.2.5 nathanw }
848 1.54.2.5 nathanw } else
849 1.54.2.5 nathanw aitv = p->p_timers[which]->pt_time;
850 1.54.2.5 nathanw splx(s);
851 1.54.2.5 nathanw }
852 1.54.2.5 nathanw
853 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
854 1.54.2.5 nathanw
855 1.1 cgd }
856 1.1 cgd
857 1.54.2.5 nathanw /* BSD routine to set/arm an interval timer. */
858 1.1 cgd /* ARGSUSED */
859 1.3 andrew int
860 1.54.2.5 nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
861 1.15 thorpej {
862 1.45 augustss struct sys_setitimer_args /* {
863 1.30 mycroft syscallarg(int) which;
864 1.24 cgd syscallarg(const struct itimerval *) itv;
865 1.11 cgd syscallarg(struct itimerval *) oitv;
866 1.15 thorpej } */ *uap = v;
867 1.54.2.1 nathanw struct proc *p = l->l_proc;
868 1.30 mycroft int which = SCARG(uap, which);
869 1.21 cgd struct sys_getitimer_args getargs;
870 1.1 cgd struct itimerval aitv;
871 1.45 augustss const struct itimerval *itvp;
872 1.54.2.5 nathanw struct ptimer *pt;
873 1.1 cgd int s, error;
874 1.1 cgd
875 1.30 mycroft if ((u_int)which > ITIMER_PROF)
876 1.1 cgd return (EINVAL);
877 1.11 cgd itvp = SCARG(uap, itv);
878 1.54.2.3 nathanw if (itvp &&
879 1.54.2.3 nathanw (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
880 1.1 cgd return (error);
881 1.21 cgd if (SCARG(uap, oitv) != NULL) {
882 1.30 mycroft SCARG(&getargs, which) = which;
883 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
884 1.54.2.1 nathanw if ((error = sys_getitimer(l, &getargs, retval)) != 0)
885 1.21 cgd return (error);
886 1.21 cgd }
887 1.1 cgd if (itvp == 0)
888 1.1 cgd return (0);
889 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
890 1.1 cgd return (EINVAL);
891 1.54.2.5 nathanw
892 1.54.2.5 nathanw /*
893 1.54.2.5 nathanw * Don't bother allocating data structures if the process just
894 1.54.2.5 nathanw * wants to clear the timer.
895 1.54.2.5 nathanw */
896 1.54.2.5 nathanw if (!timerisset(&aitv.it_value) &&
897 1.54.2.5 nathanw ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
898 1.54.2.5 nathanw return (0);
899 1.54.2.5 nathanw
900 1.54.2.5 nathanw if (p->p_timers == NULL)
901 1.54.2.5 nathanw timers_alloc(p);
902 1.54.2.5 nathanw if (p->p_timers[which] == NULL) {
903 1.54.2.5 nathanw pt = pool_get(&ptimer_pool, PR_WAITOK);
904 1.54.2.5 nathanw callout_init(&pt->pt_ch);
905 1.54.2.5 nathanw pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
906 1.54.2.5 nathanw pt->pt_overruns = 0;
907 1.54.2.5 nathanw pt->pt_proc = p;
908 1.54.2.5 nathanw pt->pt_type = which;
909 1.54.2.5 nathanw switch (which) {
910 1.54.2.5 nathanw case ITIMER_REAL:
911 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGALRM;
912 1.54.2.5 nathanw break;
913 1.54.2.5 nathanw case ITIMER_VIRTUAL:
914 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGVTALRM;
915 1.54.2.5 nathanw break;
916 1.54.2.5 nathanw case ITIMER_PROF:
917 1.54.2.5 nathanw pt->pt_ev.sigev_signo = SIGPROF;
918 1.54.2.5 nathanw break;
919 1.54.2.5 nathanw }
920 1.54.2.5 nathanw } else
921 1.54.2.5 nathanw pt = p->p_timers[which];
922 1.54.2.5 nathanw
923 1.54.2.5 nathanw pt->pt_time = aitv;
924 1.54.2.5 nathanw p->p_timers[which] = pt;
925 1.30 mycroft if (which == ITIMER_REAL) {
926 1.54.2.5 nathanw s = splclock();
927 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
928 1.54.2.5 nathanw if (timerisset(&pt->pt_time.it_value)) {
929 1.54.2.5 nathanw timeradd(&pt->pt_time.it_value, &time,
930 1.54.2.5 nathanw &pt->pt_time.it_value);
931 1.52 thorpej /*
932 1.52 thorpej * Don't need to check hzto() return value, here.
933 1.52 thorpej * callout_reset() does it for us.
934 1.52 thorpej */
935 1.54.2.5 nathanw callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
936 1.54.2.5 nathanw realtimerexpire, pt);
937 1.1 cgd }
938 1.54.2.5 nathanw splx(s);
939 1.54.2.5 nathanw }
940 1.54.2.5 nathanw
941 1.1 cgd return (0);
942 1.1 cgd }
943 1.1 cgd
944 1.54.2.5 nathanw /* Utility routines to manage the array of pointers to timers. */
945 1.3 andrew void
946 1.54.2.5 nathanw timers_alloc(struct proc *p)
947 1.6 cgd {
948 1.54.2.5 nathanw int i;
949 1.54.2.5 nathanw struct ptimer **pts;
950 1.1 cgd
951 1.54.2.5 nathanw pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
952 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
953 1.54.2.5 nathanw pts[i] = NULL;
954 1.54.2.5 nathanw p->p_timers = pts;
955 1.54.2.5 nathanw }
956 1.54.2.5 nathanw
957 1.54.2.5 nathanw void
958 1.54.2.5 nathanw timers_free(struct proc *p)
959 1.54.2.5 nathanw {
960 1.54.2.5 nathanw int i;
961 1.54.2.5 nathanw struct ptimer *pt, **pts;
962 1.54.2.5 nathanw
963 1.54.2.5 nathanw if (p->p_timers) {
964 1.54.2.5 nathanw pts = p->p_timers;
965 1.54.2.5 nathanw p->p_timers = NULL;
966 1.54.2.5 nathanw for (i = 0; i < TIMER_MAX; i++)
967 1.54.2.5 nathanw if ((pt = pts[i]) != NULL) {
968 1.54.2.5 nathanw if (pt->pt_type == CLOCK_REALTIME)
969 1.54.2.5 nathanw callout_stop(&pt->pt_ch);
970 1.54.2.5 nathanw pool_put(&ptimer_pool, pt);
971 1.54.2.5 nathanw }
972 1.54.2.5 nathanw free(pts, M_SUBPROC);
973 1.1 cgd }
974 1.1 cgd }
975 1.1 cgd
976 1.1 cgd /*
977 1.1 cgd * Check that a proposed value to load into the .it_value or
978 1.1 cgd * .it_interval part of an interval timer is acceptable, and
979 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
980 1.1 cgd * than the resolution of the clock, round it up.)
981 1.1 cgd */
982 1.3 andrew int
983 1.54.2.5 nathanw itimerfix(struct timeval *tv)
984 1.1 cgd {
985 1.1 cgd
986 1.54.2.4 nathanw if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
987 1.1 cgd return (EINVAL);
988 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
989 1.1 cgd tv->tv_usec = tick;
990 1.1 cgd return (0);
991 1.1 cgd }
992 1.1 cgd
993 1.1 cgd /*
994 1.1 cgd * Decrement an interval timer by a specified number
995 1.1 cgd * of microseconds, which must be less than a second,
996 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
997 1.1 cgd * it. In this case, carry over (usec - old value) to
998 1.8 cgd * reduce the value reloaded into the timer so that
999 1.1 cgd * the timer does not drift. This routine assumes
1000 1.1 cgd * that it is called in a context where the timers
1001 1.1 cgd * on which it is operating cannot change in value.
1002 1.1 cgd */
1003 1.3 andrew int
1004 1.54.2.5 nathanw itimerdecr(struct itimerval *itp, int usec)
1005 1.1 cgd {
1006 1.1 cgd
1007 1.1 cgd if (itp->it_value.tv_usec < usec) {
1008 1.1 cgd if (itp->it_value.tv_sec == 0) {
1009 1.1 cgd /* expired, and already in next interval */
1010 1.1 cgd usec -= itp->it_value.tv_usec;
1011 1.1 cgd goto expire;
1012 1.1 cgd }
1013 1.1 cgd itp->it_value.tv_usec += 1000000;
1014 1.1 cgd itp->it_value.tv_sec--;
1015 1.1 cgd }
1016 1.1 cgd itp->it_value.tv_usec -= usec;
1017 1.1 cgd usec = 0;
1018 1.1 cgd if (timerisset(&itp->it_value))
1019 1.1 cgd return (1);
1020 1.1 cgd /* expired, exactly at end of interval */
1021 1.1 cgd expire:
1022 1.1 cgd if (timerisset(&itp->it_interval)) {
1023 1.1 cgd itp->it_value = itp->it_interval;
1024 1.1 cgd itp->it_value.tv_usec -= usec;
1025 1.1 cgd if (itp->it_value.tv_usec < 0) {
1026 1.1 cgd itp->it_value.tv_usec += 1000000;
1027 1.1 cgd itp->it_value.tv_sec--;
1028 1.1 cgd }
1029 1.1 cgd } else
1030 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1031 1.1 cgd return (0);
1032 1.42 cgd }
1033 1.42 cgd
1034 1.42 cgd /*
1035 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1036 1.42 cgd * for usage and rationale.
1037 1.42 cgd */
1038 1.42 cgd int
1039 1.54.2.5 nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1040 1.42 cgd {
1041 1.49 itojun struct timeval tv, delta;
1042 1.42 cgd int s, rv = 0;
1043 1.42 cgd
1044 1.42 cgd s = splclock();
1045 1.49 itojun tv = mono_time;
1046 1.49 itojun splx(s);
1047 1.49 itojun
1048 1.49 itojun timersub(&tv, lasttime, &delta);
1049 1.42 cgd
1050 1.42 cgd /*
1051 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1052 1.42 cgd * even if interval is huge.
1053 1.42 cgd */
1054 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1055 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1056 1.49 itojun *lasttime = tv;
1057 1.42 cgd rv = 1;
1058 1.42 cgd }
1059 1.50 itojun
1060 1.50 itojun return (rv);
1061 1.50 itojun }
1062 1.50 itojun
1063 1.50 itojun /*
1064 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1065 1.50 itojun */
1066 1.50 itojun int
1067 1.54.2.5 nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1068 1.50 itojun {
1069 1.50 itojun struct timeval tv, delta;
1070 1.50 itojun int s, rv;
1071 1.50 itojun
1072 1.50 itojun s = splclock();
1073 1.50 itojun tv = mono_time;
1074 1.50 itojun splx(s);
1075 1.50 itojun
1076 1.50 itojun timersub(&tv, lasttime, &delta);
1077 1.50 itojun
1078 1.50 itojun /*
1079 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1080 1.50 itojun * if more than one second have passed since the last update of
1081 1.50 itojun * lasttime, reset the counter.
1082 1.50 itojun *
1083 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1084 1.50 itojun * try to use *curpps for stat purposes as well.
1085 1.50 itojun */
1086 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1087 1.50 itojun delta.tv_sec >= 1) {
1088 1.50 itojun *lasttime = tv;
1089 1.50 itojun *curpps = 0;
1090 1.50 itojun rv = 1;
1091 1.53 itojun } else if (maxpps < 0)
1092 1.53 itojun rv = 1;
1093 1.53 itojun else if (*curpps < maxpps)
1094 1.50 itojun rv = 1;
1095 1.50 itojun else
1096 1.50 itojun rv = 0;
1097 1.50 itojun
1098 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1099 1.50 itojun /* be careful about wrap-around */
1100 1.50 itojun if (*curpps + 1 > *curpps)
1101 1.50 itojun *curpps = *curpps + 1;
1102 1.50 itojun #else
1103 1.50 itojun /*
1104 1.50 itojun * assume that there's not too many calls to this function.
1105 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1106 1.50 itojun * behavior, not the behavior of this function.
1107 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1108 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1109 1.50 itojun */
1110 1.50 itojun *curpps = *curpps + 1;
1111 1.50 itojun #endif
1112 1.42 cgd
1113 1.42 cgd return (rv);
1114 1.1 cgd }
1115