Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.54.2.9
      1  1.54.2.9   nathanw /*	$NetBSD: kern_time.c,v 1.54.2.9 2002/02/04 23:51:00 nathanw Exp $	*/
      2      1.42       cgd 
      3      1.42       cgd /*-
      4      1.42       cgd  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5      1.42       cgd  * All rights reserved.
      6      1.42       cgd  *
      7      1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8      1.42       cgd  * by Christopher G. Demetriou.
      9      1.42       cgd  *
     10      1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11      1.42       cgd  * modification, are permitted provided that the following conditions
     12      1.42       cgd  * are met:
     13      1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14      1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15      1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17      1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18      1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19      1.42       cgd  *    must display the following acknowledgement:
     20      1.42       cgd  *	This product includes software developed by the NetBSD
     21      1.42       cgd  *	Foundation, Inc. and its contributors.
     22      1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23      1.42       cgd  *    contributors may be used to endorse or promote products derived
     24      1.42       cgd  *    from this software without specific prior written permission.
     25      1.42       cgd  *
     26      1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27      1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28      1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29      1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30      1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31      1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32      1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33      1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34      1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35      1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36      1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37      1.42       cgd  */
     38       1.9       cgd 
     39       1.1       cgd /*
     40       1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41       1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42       1.1       cgd  *
     43       1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44       1.1       cgd  * modification, are permitted provided that the following conditions
     45       1.1       cgd  * are met:
     46       1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47       1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48       1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50       1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51       1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     52       1.1       cgd  *    must display the following acknowledgement:
     53       1.1       cgd  *	This product includes software developed by the University of
     54       1.1       cgd  *	California, Berkeley and its contributors.
     55       1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     56       1.1       cgd  *    may be used to endorse or promote products derived from this software
     57       1.1       cgd  *    without specific prior written permission.
     58       1.1       cgd  *
     59       1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60       1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61       1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62       1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63       1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64       1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65       1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66       1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67       1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68       1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69       1.1       cgd  * SUCH DAMAGE.
     70       1.1       cgd  *
     71      1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     72       1.1       cgd  */
     73      1.31   thorpej 
     74  1.54.2.4   nathanw #include <sys/cdefs.h>
     75  1.54.2.9   nathanw __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.54.2.9 2002/02/04 23:51:00 nathanw Exp $");
     76  1.54.2.4   nathanw 
     77      1.31   thorpej #include "fs_nfs.h"
     78      1.54     bjh21 #include "opt_nfs.h"
     79      1.34   thorpej #include "opt_nfsserver.h"
     80       1.1       cgd 
     81       1.5   mycroft #include <sys/param.h>
     82       1.5   mycroft #include <sys/resourcevar.h>
     83       1.5   mycroft #include <sys/kernel.h>
     84       1.8       cgd #include <sys/systm.h>
     85  1.54.2.1   nathanw #include <sys/lwp.h>
     86  1.54.2.5   nathanw #include <sys/malloc.h>
     87       1.5   mycroft #include <sys/proc.h>
     88  1.54.2.5   nathanw #include <sys/sa.h>
     89  1.54.2.5   nathanw #include <sys/savar.h>
     90       1.8       cgd #include <sys/vnode.h>
     91      1.17  christos #include <sys/signalvar.h>
     92      1.25     perry #include <sys/syslog.h>
     93       1.1       cgd 
     94      1.11       cgd #include <sys/mount.h>
     95      1.11       cgd #include <sys/syscallargs.h>
     96      1.19  christos 
     97      1.37   thorpej #include <uvm/uvm_extern.h>
     98      1.37   thorpej 
     99      1.26   thorpej #if defined(NFS) || defined(NFSSERVER)
    100      1.20      fvdl #include <nfs/rpcv2.h>
    101      1.20      fvdl #include <nfs/nfsproto.h>
    102      1.19  christos #include <nfs/nfs_var.h>
    103      1.19  christos #endif
    104      1.17  christos 
    105       1.5   mycroft #include <machine/cpu.h>
    106      1.23       cgd 
    107  1.54.2.5   nathanw static void realtimerupcall(struct lwp *, void *);
    108  1.54.2.5   nathanw 
    109  1.54.2.5   nathanw 
    110  1.54.2.5   nathanw /* Time of day and interval timer support.
    111       1.1       cgd  *
    112       1.1       cgd  * These routines provide the kernel entry points to get and set
    113       1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    114       1.1       cgd  * here provide support for adding and subtracting timeval structures
    115       1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    116       1.1       cgd  * timers when they expire.
    117       1.1       cgd  */
    118       1.1       cgd 
    119      1.22       jtc /* This function is used by clock_settime and settimeofday */
    120      1.39      tron int
    121  1.54.2.5   nathanw settime(struct timeval *tv)
    122      1.22       jtc {
    123      1.22       jtc 	struct timeval delta;
    124      1.47   thorpej 	struct cpu_info *ci;
    125      1.22       jtc 	int s;
    126      1.22       jtc 
    127      1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    128      1.22       jtc 	s = splclock();
    129      1.22       jtc 	timersub(tv, &time, &delta);
    130  1.54.2.2   nathanw 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    131  1.54.2.2   nathanw 		splx(s);
    132      1.29       tls 		return (EPERM);
    133  1.54.2.2   nathanw 	}
    134      1.29       tls #ifdef notyet
    135  1.54.2.2   nathanw 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    136  1.54.2.2   nathanw 		splx(s);
    137      1.29       tls 		return (EPERM);
    138  1.54.2.2   nathanw 	}
    139      1.29       tls #endif
    140      1.22       jtc 	time = *tv;
    141      1.38   thorpej 	(void) spllowersoftclock();
    142      1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    143      1.47   thorpej 	/*
    144      1.47   thorpej 	 * XXXSMP
    145      1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    146      1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    147      1.47   thorpej 	 * CPUs which have a process on them.
    148      1.47   thorpej 	 */
    149      1.47   thorpej 	ci = curcpu();
    150      1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    151      1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    152      1.54     bjh21 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    153      1.22       jtc 		nqnfs_lease_updatetime(delta.tv_sec);
    154      1.22       jtc #	endif
    155      1.22       jtc 	splx(s);
    156      1.22       jtc 	resettodr();
    157      1.29       tls 	return (0);
    158      1.22       jtc }
    159      1.22       jtc 
    160      1.22       jtc /* ARGSUSED */
    161      1.22       jtc int
    162  1.54.2.5   nathanw sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    163      1.22       jtc {
    164      1.45  augustss 	struct sys_clock_gettime_args /* {
    165      1.22       jtc 		syscallarg(clockid_t) clock_id;
    166      1.23       cgd 		syscallarg(struct timespec *) tp;
    167      1.23       cgd 	} */ *uap = v;
    168      1.22       jtc 	clockid_t clock_id;
    169      1.22       jtc 	struct timeval atv;
    170      1.22       jtc 	struct timespec ats;
    171      1.22       jtc 
    172      1.22       jtc 	clock_id = SCARG(uap, clock_id);
    173      1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    174      1.22       jtc 		return (EINVAL);
    175      1.22       jtc 
    176      1.22       jtc 	microtime(&atv);
    177      1.22       jtc 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    178      1.22       jtc 
    179      1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    180      1.22       jtc }
    181      1.22       jtc 
    182      1.22       jtc /* ARGSUSED */
    183      1.22       jtc int
    184  1.54.2.1   nathanw sys_clock_settime(l, v, retval)
    185  1.54.2.1   nathanw 	struct lwp *l;
    186      1.22       jtc 	void *v;
    187      1.22       jtc 	register_t *retval;
    188      1.22       jtc {
    189      1.45  augustss 	struct sys_clock_settime_args /* {
    190      1.22       jtc 		syscallarg(clockid_t) clock_id;
    191      1.23       cgd 		syscallarg(const struct timespec *) tp;
    192      1.23       cgd 	} */ *uap = v;
    193  1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    194      1.22       jtc 	int error;
    195      1.22       jtc 
    196      1.22       jtc 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    197      1.22       jtc 		return (error);
    198      1.22       jtc 
    199  1.54.2.6   nathanw 	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
    200  1.54.2.3   nathanw }
    201  1.54.2.3   nathanw 
    202  1.54.2.3   nathanw 
    203  1.54.2.3   nathanw int
    204  1.54.2.6   nathanw clock_settime1(clock_id, tp)
    205  1.54.2.6   nathanw 	clockid_t clock_id;
    206  1.54.2.6   nathanw 	const struct timespec *tp;
    207  1.54.2.3   nathanw {
    208  1.54.2.6   nathanw 	struct timespec ats;
    209  1.54.2.3   nathanw 	struct timeval atv;
    210  1.54.2.3   nathanw 	int error;
    211  1.54.2.3   nathanw 
    212  1.54.2.6   nathanw 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    213  1.54.2.6   nathanw 		return (error);
    214  1.54.2.6   nathanw 
    215  1.54.2.3   nathanw 	if (clock_id != CLOCK_REALTIME)
    216  1.54.2.3   nathanw 		return (EINVAL);
    217  1.54.2.3   nathanw 
    218  1.54.2.6   nathanw 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
    219  1.54.2.3   nathanw 	if ((error = settime(&atv)) != 0)
    220      1.29       tls 		return (error);
    221      1.22       jtc 
    222      1.22       jtc 	return 0;
    223      1.22       jtc }
    224      1.22       jtc 
    225      1.22       jtc int
    226  1.54.2.5   nathanw sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    227      1.22       jtc {
    228      1.45  augustss 	struct sys_clock_getres_args /* {
    229      1.22       jtc 		syscallarg(clockid_t) clock_id;
    230      1.23       cgd 		syscallarg(struct timespec *) tp;
    231      1.23       cgd 	} */ *uap = v;
    232      1.22       jtc 	clockid_t clock_id;
    233      1.22       jtc 	struct timespec ts;
    234      1.22       jtc 	int error = 0;
    235      1.22       jtc 
    236      1.22       jtc 	clock_id = SCARG(uap, clock_id);
    237      1.22       jtc 	if (clock_id != CLOCK_REALTIME)
    238      1.22       jtc 		return (EINVAL);
    239      1.22       jtc 
    240      1.22       jtc 	if (SCARG(uap, tp)) {
    241      1.22       jtc 		ts.tv_sec = 0;
    242      1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    243      1.22       jtc 
    244      1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    245      1.22       jtc 	}
    246      1.22       jtc 
    247      1.22       jtc 	return error;
    248      1.22       jtc }
    249      1.22       jtc 
    250      1.27       jtc /* ARGSUSED */
    251      1.27       jtc int
    252  1.54.2.5   nathanw sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    253      1.27       jtc {
    254      1.27       jtc 	static int nanowait;
    255      1.45  augustss 	struct sys_nanosleep_args/* {
    256      1.27       jtc 		syscallarg(struct timespec *) rqtp;
    257      1.27       jtc 		syscallarg(struct timespec *) rmtp;
    258      1.27       jtc 	} */ *uap = v;
    259      1.27       jtc 	struct timespec rqt;
    260      1.27       jtc 	struct timespec rmt;
    261      1.27       jtc 	struct timeval atv, utv;
    262      1.27       jtc 	int error, s, timo;
    263      1.27       jtc 
    264      1.27       jtc 	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
    265      1.27       jtc 		       sizeof(struct timespec));
    266      1.27       jtc 	if (error)
    267      1.27       jtc 		return (error);
    268      1.27       jtc 
    269      1.27       jtc 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
    270  1.54.2.4   nathanw 	if (itimerfix(&atv) || atv.tv_sec > 1000000000)
    271      1.27       jtc 		return (EINVAL);
    272      1.27       jtc 
    273      1.27       jtc 	s = splclock();
    274      1.27       jtc 	timeradd(&atv,&time,&atv);
    275      1.27       jtc 	timo = hzto(&atv);
    276      1.27       jtc 	/*
    277      1.27       jtc 	 * Avoid inadvertantly sleeping forever
    278      1.27       jtc 	 */
    279      1.27       jtc 	if (timo == 0)
    280      1.27       jtc 		timo = 1;
    281      1.27       jtc 	splx(s);
    282      1.27       jtc 
    283      1.27       jtc 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    284      1.27       jtc 	if (error == ERESTART)
    285      1.27       jtc 		error = EINTR;
    286      1.27       jtc 	if (error == EWOULDBLOCK)
    287      1.27       jtc 		error = 0;
    288      1.27       jtc 
    289      1.27       jtc 	if (SCARG(uap, rmtp)) {
    290      1.28       jtc 		int error;
    291      1.28       jtc 
    292      1.27       jtc 		s = splclock();
    293      1.27       jtc 		utv = time;
    294      1.27       jtc 		splx(s);
    295      1.27       jtc 
    296      1.27       jtc 		timersub(&atv, &utv, &utv);
    297      1.27       jtc 		if (utv.tv_sec < 0)
    298      1.27       jtc 			timerclear(&utv);
    299      1.27       jtc 
    300      1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    301      1.27       jtc 		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    302      1.28       jtc 			sizeof(rmt));
    303      1.28       jtc 		if (error)
    304      1.28       jtc 			return (error);
    305      1.27       jtc 	}
    306      1.27       jtc 
    307      1.27       jtc 	return error;
    308      1.27       jtc }
    309      1.22       jtc 
    310       1.1       cgd /* ARGSUSED */
    311       1.3    andrew int
    312  1.54.2.5   nathanw sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    313      1.15   thorpej {
    314      1.45  augustss 	struct sys_gettimeofday_args /* {
    315      1.11       cgd 		syscallarg(struct timeval *) tp;
    316      1.11       cgd 		syscallarg(struct timezone *) tzp;
    317      1.15   thorpej 	} */ *uap = v;
    318       1.1       cgd 	struct timeval atv;
    319       1.1       cgd 	int error = 0;
    320      1.25     perry 	struct timezone tzfake;
    321       1.1       cgd 
    322      1.11       cgd 	if (SCARG(uap, tp)) {
    323       1.1       cgd 		microtime(&atv);
    324      1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    325      1.17  christos 		if (error)
    326       1.1       cgd 			return (error);
    327       1.1       cgd 	}
    328      1.25     perry 	if (SCARG(uap, tzp)) {
    329      1.25     perry 		/*
    330      1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    331      1.25     perry 		 * fake up a timezone struct and return it if demanded.
    332      1.25     perry 		 */
    333      1.25     perry 		tzfake.tz_minuteswest = 0;
    334      1.25     perry 		tzfake.tz_dsttime = 0;
    335      1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    336      1.25     perry 	}
    337       1.1       cgd 	return (error);
    338       1.1       cgd }
    339       1.1       cgd 
    340       1.1       cgd /* ARGSUSED */
    341       1.3    andrew int
    342  1.54.2.5   nathanw sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    343      1.15   thorpej {
    344      1.16   mycroft 	struct sys_settimeofday_args /* {
    345      1.24       cgd 		syscallarg(const struct timeval *) tv;
    346      1.24       cgd 		syscallarg(const struct timezone *) tzp;
    347      1.15   thorpej 	} */ *uap = v;
    348  1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    349  1.54.2.6   nathanw 	int error;
    350  1.54.2.6   nathanw 
    351  1.54.2.6   nathanw 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    352  1.54.2.6   nathanw 		return (error);
    353  1.54.2.6   nathanw 
    354  1.54.2.6   nathanw 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    355  1.54.2.6   nathanw }
    356  1.54.2.6   nathanw 
    357  1.54.2.6   nathanw int
    358  1.54.2.6   nathanw settimeofday1(utv, utzp, p)
    359  1.54.2.6   nathanw 	const struct timeval *utv;
    360  1.54.2.6   nathanw 	const struct timezone *utzp;
    361  1.54.2.6   nathanw 	struct proc *p;
    362  1.54.2.6   nathanw {
    363      1.22       jtc 	struct timeval atv;
    364       1.1       cgd 	struct timezone atz;
    365  1.54.2.3   nathanw 	struct timeval *tv = NULL;
    366  1.54.2.3   nathanw 	struct timezone *tzp = NULL;
    367      1.22       jtc 	int error;
    368       1.1       cgd 
    369       1.8       cgd 	/* Verify all parameters before changing time. */
    370  1.54.2.6   nathanw 	if (utv) {
    371  1.54.2.6   nathanw 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    372  1.54.2.3   nathanw 			return (error);
    373  1.54.2.3   nathanw 		tv = &atv;
    374  1.54.2.3   nathanw 	}
    375      1.25     perry 	/* XXX since we don't use tz, probably no point in doing copyin. */
    376  1.54.2.6   nathanw 	if (utzp) {
    377  1.54.2.6   nathanw 		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
    378  1.54.2.3   nathanw 			return (error);
    379  1.54.2.3   nathanw 		tzp = &atz;
    380  1.54.2.3   nathanw 	}
    381  1.54.2.3   nathanw 
    382  1.54.2.3   nathanw 	if (tv)
    383  1.54.2.3   nathanw 		if ((error = settime(tv)) != 0)
    384      1.29       tls 			return (error);
    385      1.25     perry 	/*
    386      1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    387      1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    388      1.25     perry 	 */
    389  1.54.2.3   nathanw 	if (tzp)
    390      1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    391      1.32   mycroft 		    "(obsolete) kernel time zone\n", p->p_pid);
    392       1.8       cgd 	return (0);
    393       1.1       cgd }
    394       1.1       cgd 
    395       1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    396       1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    397       1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    398       1.1       cgd 
    399       1.1       cgd /* ARGSUSED */
    400       1.3    andrew int
    401  1.54.2.5   nathanw sys_adjtime(struct lwp *l, void *v, register_t *retval)
    402      1.15   thorpej {
    403      1.45  augustss 	struct sys_adjtime_args /* {
    404      1.24       cgd 		syscallarg(const struct timeval *) delta;
    405      1.11       cgd 		syscallarg(struct timeval *) olddelta;
    406      1.15   thorpej 	} */ *uap = v;
    407  1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    408  1.54.2.3   nathanw 	int error;
    409       1.1       cgd 
    410      1.17  christos 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    411       1.1       cgd 		return (error);
    412      1.17  christos 
    413  1.54.2.6   nathanw 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    414  1.54.2.3   nathanw }
    415  1.54.2.3   nathanw 
    416  1.54.2.3   nathanw int
    417  1.54.2.6   nathanw adjtime1(delta, olddelta, p)
    418  1.54.2.6   nathanw 	const struct timeval *delta;
    419  1.54.2.6   nathanw 	struct timeval *olddelta;
    420  1.54.2.6   nathanw 	struct proc *p;
    421  1.54.2.3   nathanw {
    422  1.54.2.6   nathanw 	struct timeval atv;
    423  1.54.2.6   nathanw 	struct timeval *oatv = NULL;
    424  1.54.2.3   nathanw 	long ndelta, ntickdelta, odelta;
    425  1.54.2.6   nathanw 	int error;
    426  1.54.2.3   nathanw 	int s;
    427       1.8       cgd 
    428  1.54.2.6   nathanw 	error = copyin(delta, &atv, sizeof(struct timeval));
    429  1.54.2.6   nathanw 	if (error)
    430  1.54.2.6   nathanw 		return (error);
    431  1.54.2.6   nathanw 
    432  1.54.2.6   nathanw 	if (olddelta != NULL) {
    433  1.54.2.6   nathanw 		if (uvm_useracc((caddr_t)olddelta,
    434  1.54.2.6   nathanw 		    sizeof(struct timeval), B_WRITE) == FALSE)
    435  1.54.2.6   nathanw 			return (EFAULT);
    436  1.54.2.6   nathanw 		oatv = olddelta;
    437  1.54.2.6   nathanw 	}
    438  1.54.2.6   nathanw 
    439       1.8       cgd 	/*
    440       1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    441       1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    442       1.8       cgd 	 * delta, so that after some number of incremental changes in
    443       1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    444       1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    445       1.8       cgd 	 */
    446  1.54.2.6   nathanw 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    447      1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    448       1.8       cgd 		ntickdelta = 10 * tickadj;
    449       1.8       cgd 	else
    450       1.8       cgd 		ntickdelta = tickadj;
    451       1.8       cgd 	if (ndelta % ntickdelta)
    452       1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    453       1.8       cgd 
    454       1.8       cgd 	/*
    455       1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    456       1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    457       1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    458       1.8       cgd 	 */
    459       1.8       cgd 	if (ndelta < 0)
    460       1.8       cgd 		ntickdelta = -ntickdelta;
    461       1.1       cgd 	s = splclock();
    462       1.8       cgd 	odelta = timedelta;
    463       1.1       cgd 	timedelta = ndelta;
    464       1.8       cgd 	tickdelta = ntickdelta;
    465       1.1       cgd 	splx(s);
    466       1.1       cgd 
    467  1.54.2.3   nathanw 	if (olddelta) {
    468  1.54.2.6   nathanw 		atv.tv_sec = odelta / 1000000;
    469  1.54.2.6   nathanw 		atv.tv_usec = odelta % 1000000;
    470  1.54.2.6   nathanw 		(void) copyout(&atv, olddelta, sizeof(struct timeval));
    471       1.8       cgd 	}
    472       1.1       cgd 	return (0);
    473       1.1       cgd }
    474       1.1       cgd 
    475       1.1       cgd /*
    476  1.54.2.5   nathanw  * Interval timer support. Both the BSD getitimer() family and the POSIX
    477  1.54.2.5   nathanw  * timer_*() family of routines are supported.
    478  1.54.2.5   nathanw  *
    479  1.54.2.5   nathanw  * All timers are kept in an array pointed to by p_timers, which is
    480  1.54.2.5   nathanw  * allocated on demand - many processes don't use timers at all. The
    481  1.54.2.5   nathanw  * first three elements in this array are reserved for the BSD timers:
    482  1.54.2.5   nathanw  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    483  1.54.2.5   nathanw  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    484  1.54.2.5   nathanw  * syscall.
    485       1.1       cgd  *
    486  1.54.2.5   nathanw  * Realtime timers are kept in the ptimer structure as an absolute
    487  1.54.2.5   nathanw  * time; virtual time timers are kept as deltas.  Virtual time timers
    488  1.54.2.5   nathanw  * are processed in the hardclock() routine of kern_clock.c.  The real
    489  1.54.2.5   nathanw  * time timer is processed by a callout routine, called from the
    490  1.54.2.5   nathanw  * softclock() routine.  Since a callout may be delayed in real time
    491  1.54.2.5   nathanw  * due to interrupt processing in the system, it is possible for the
    492  1.54.2.5   nathanw  * real time timeout routine (realtimeexpire, given below), to be
    493  1.54.2.5   nathanw  * delayed in real time past when it is supposed to occur.  It does
    494  1.54.2.5   nathanw  * not suffice, therefore, to reload the real timer .it_value from the
    495       1.1       cgd  * real time timers .it_interval.  Rather, we compute the next time in
    496  1.54.2.5   nathanw  * absolute time the timer should go off.
    497  1.54.2.5   nathanw  */
    498  1.54.2.5   nathanw 
    499  1.54.2.5   nathanw /* Allocate a POSIX realtime timer. */
    500  1.54.2.5   nathanw int
    501  1.54.2.5   nathanw sys_timer_create(struct lwp *l, void *v, register_t *retval)
    502  1.54.2.5   nathanw {
    503  1.54.2.5   nathanw 	struct sys_timer_create_args /* {
    504  1.54.2.5   nathanw 		syscallarg(clockid_t) clock_id;
    505  1.54.2.5   nathanw 		syscallarg(struct sigevent *) evp;
    506  1.54.2.5   nathanw 		syscallarg(timer_t *) timerid;
    507  1.54.2.5   nathanw 	} */ *uap = v;
    508  1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    509  1.54.2.5   nathanw 	clockid_t id;
    510  1.54.2.5   nathanw 	struct sigevent *evp;
    511  1.54.2.5   nathanw 	struct ptimer *pt;
    512  1.54.2.5   nathanw 	int timerid, error;
    513  1.54.2.5   nathanw 
    514  1.54.2.5   nathanw 	id = SCARG(uap, clock_id);
    515  1.54.2.5   nathanw 	if (id != CLOCK_REALTIME)
    516  1.54.2.5   nathanw 		return (EINVAL);
    517  1.54.2.5   nathanw 
    518  1.54.2.5   nathanw 	if (p->p_timers == NULL)
    519  1.54.2.5   nathanw 		timers_alloc(p);
    520  1.54.2.5   nathanw 
    521  1.54.2.5   nathanw 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    522  1.54.2.5   nathanw 		if (p->p_timers[timerid] == NULL)
    523  1.54.2.5   nathanw 			break;
    524  1.54.2.5   nathanw 
    525  1.54.2.5   nathanw 	if (timerid == TIMER_MAX)
    526  1.54.2.5   nathanw 		return EAGAIN;
    527  1.54.2.5   nathanw 
    528  1.54.2.5   nathanw 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    529  1.54.2.5   nathanw 	evp = SCARG(uap, evp);
    530  1.54.2.5   nathanw 	if (evp) {
    531  1.54.2.5   nathanw 		if (((error =
    532  1.54.2.5   nathanw 		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
    533  1.54.2.5   nathanw 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    534  1.54.2.7   nathanw 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    535  1.54.2.5   nathanw 			pool_put(&ptimer_pool, pt);
    536  1.54.2.5   nathanw 			return (error ? error : EINVAL);
    537  1.54.2.5   nathanw 		}
    538  1.54.2.5   nathanw 	} else {
    539  1.54.2.5   nathanw 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    540  1.54.2.5   nathanw 		pt->pt_ev.sigev_signo = SIGALRM;
    541  1.54.2.5   nathanw 		pt->pt_ev.sigev_value.sival_int = timerid;
    542  1.54.2.5   nathanw 	}
    543  1.54.2.5   nathanw 
    544  1.54.2.5   nathanw 	callout_init(&pt->pt_ch);
    545  1.54.2.5   nathanw 	pt->pt_type = CLOCK_REALTIME;
    546  1.54.2.5   nathanw 	pt->pt_proc = p;
    547  1.54.2.5   nathanw 	pt->pt_overruns = 0;
    548  1.54.2.5   nathanw 
    549  1.54.2.5   nathanw 	p->p_timers[timerid] = pt;
    550  1.54.2.5   nathanw 
    551  1.54.2.5   nathanw 	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
    552  1.54.2.5   nathanw }
    553  1.54.2.5   nathanw 
    554  1.54.2.5   nathanw 
    555  1.54.2.5   nathanw /* Delete a POSIX realtime timer */
    556  1.54.2.5   nathanw int
    557  1.54.2.5   nathanw sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    558  1.54.2.5   nathanw {
    559  1.54.2.5   nathanw 	struct sys_timer_delete_args /*  {
    560  1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    561  1.54.2.5   nathanw 	} */ *uap = v;
    562  1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    563  1.54.2.5   nathanw 	int timerid;
    564  1.54.2.5   nathanw 	struct ptimer *pt;
    565  1.54.2.5   nathanw 
    566  1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    567  1.54.2.5   nathanw 
    568  1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    569  1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    570  1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    571  1.54.2.5   nathanw 		return (EINVAL);
    572  1.54.2.5   nathanw 
    573  1.54.2.5   nathanw 	callout_stop(&pt->pt_ch);
    574  1.54.2.5   nathanw 	p->p_timers[timerid] = NULL;
    575  1.54.2.5   nathanw 	pool_put(&ptimer_pool, pt);
    576  1.54.2.5   nathanw 
    577  1.54.2.5   nathanw 	return (0);
    578  1.54.2.5   nathanw }
    579  1.54.2.5   nathanw 
    580  1.54.2.5   nathanw /* Set and arm a POSIX realtime timer */
    581  1.54.2.5   nathanw int
    582  1.54.2.5   nathanw sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    583  1.54.2.5   nathanw {
    584  1.54.2.5   nathanw 	struct sys_timer_settime_args /* {
    585  1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    586  1.54.2.5   nathanw 		syscallarg(int) flags;
    587  1.54.2.5   nathanw 		syscallarg(const struct itimerspec *) value;
    588  1.54.2.5   nathanw 		syscallarg(struct itimerspec *) ovalue;
    589  1.54.2.5   nathanw 	} */ *uap = v;
    590  1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    591  1.54.2.5   nathanw 	int error, s, timerid;
    592  1.54.2.5   nathanw 	struct itimerval val, oval;
    593  1.54.2.5   nathanw 	struct itimerspec value, ovalue;
    594  1.54.2.5   nathanw 	struct ptimer *pt;
    595  1.54.2.5   nathanw 
    596  1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    597  1.54.2.5   nathanw 
    598  1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    599  1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    600  1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    601  1.54.2.5   nathanw 		return (EINVAL);
    602  1.54.2.5   nathanw 
    603  1.54.2.5   nathanw 	if ((error = copyin(SCARG(uap, value), &value,
    604  1.54.2.5   nathanw 	    sizeof(struct itimerspec))) != 0)
    605  1.54.2.5   nathanw 		return (error);
    606  1.54.2.5   nathanw 
    607  1.54.2.5   nathanw 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
    608  1.54.2.5   nathanw 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
    609  1.54.2.5   nathanw 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    610  1.54.2.5   nathanw 		return (EINVAL);
    611  1.54.2.5   nathanw 
    612  1.54.2.5   nathanw 	oval = pt->pt_time;
    613  1.54.2.5   nathanw 	pt->pt_time = val;
    614  1.54.2.5   nathanw 
    615  1.54.2.5   nathanw 	s = splclock();
    616  1.54.2.5   nathanw 	callout_stop(&pt->pt_ch);
    617  1.54.2.5   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    618  1.54.2.5   nathanw 		if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
    619  1.54.2.5   nathanw 			timeradd(&pt->pt_time.it_value, &time,
    620  1.54.2.5   nathanw 			    &pt->pt_time.it_value);
    621  1.54.2.5   nathanw 		/*
    622  1.54.2.5   nathanw 		 * Don't need to check hzto() return value, here.
    623  1.54.2.5   nathanw 		 * callout_reset() does it for us.
    624  1.54.2.5   nathanw 		 */
    625  1.54.2.5   nathanw 		callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    626  1.54.2.5   nathanw 		    realtimerexpire, pt);
    627  1.54.2.5   nathanw 	}
    628  1.54.2.5   nathanw 	splx(s);
    629  1.54.2.5   nathanw 
    630  1.54.2.5   nathanw 	if (SCARG(uap, ovalue)) {
    631  1.54.2.5   nathanw 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
    632  1.54.2.5   nathanw 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
    633  1.54.2.5   nathanw 		return copyout(&ovalue, SCARG(uap, ovalue),
    634  1.54.2.5   nathanw 		    sizeof(struct itimerspec));
    635  1.54.2.5   nathanw 	}
    636  1.54.2.5   nathanw 
    637  1.54.2.5   nathanw 	return (0);
    638  1.54.2.5   nathanw }
    639  1.54.2.5   nathanw 
    640  1.54.2.5   nathanw /* Return the time remaining until a POSIX timer fires. */
    641  1.54.2.5   nathanw int
    642  1.54.2.5   nathanw sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    643  1.54.2.5   nathanw {
    644  1.54.2.5   nathanw 	struct sys_timer_gettime_args /* {
    645  1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    646  1.54.2.5   nathanw 		syscallarg(struct itimerspec *) value;
    647  1.54.2.5   nathanw 	} */ *uap = v;
    648  1.54.2.5   nathanw 	struct itimerval aitv;
    649  1.54.2.5   nathanw 	struct itimerspec its;
    650  1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    651  1.54.2.5   nathanw 	int timerid;
    652  1.54.2.5   nathanw 	struct ptimer *pt;
    653  1.54.2.5   nathanw 
    654  1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    655  1.54.2.5   nathanw 
    656  1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    657  1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    658  1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    659  1.54.2.5   nathanw 		return (EINVAL);
    660  1.54.2.5   nathanw 
    661  1.54.2.5   nathanw 	aitv = pt->pt_time;
    662  1.54.2.5   nathanw 
    663  1.54.2.5   nathanw 	/*
    664  1.54.2.5   nathanw 	 * Real-time timers are kept in absolute time, but this interface
    665  1.54.2.5   nathanw 	 * is supposed to return a relative time.
    666  1.54.2.5   nathanw 	 */
    667  1.54.2.5   nathanw 	if (timerisset(&aitv.it_value)) {
    668  1.54.2.5   nathanw 		if (timercmp(&aitv.it_value, &time, <))
    669  1.54.2.5   nathanw 			timerclear(&aitv.it_value);
    670  1.54.2.5   nathanw 		else
    671  1.54.2.5   nathanw 			timersub(&aitv.it_value, &time, &aitv.it_value);
    672  1.54.2.5   nathanw 	}
    673  1.54.2.5   nathanw 
    674  1.54.2.5   nathanw 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
    675  1.54.2.5   nathanw 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
    676  1.54.2.5   nathanw 
    677  1.54.2.5   nathanw 	return copyout(&its, SCARG(uap, value), sizeof(its));
    678  1.54.2.5   nathanw }
    679  1.54.2.5   nathanw 
    680  1.54.2.5   nathanw /*
    681  1.54.2.5   nathanw  * Return the count of the number of times a periodic timer expired
    682  1.54.2.5   nathanw  * while a notification was already pending. The counter is reset when
    683  1.54.2.5   nathanw  * a timer expires and a notification can be posted.
    684       1.1       cgd  */
    685  1.54.2.5   nathanw int
    686  1.54.2.5   nathanw sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    687  1.54.2.5   nathanw {
    688  1.54.2.5   nathanw 	struct sys_timer_getoverrun_args /* {
    689  1.54.2.5   nathanw 		syscallarg(timer_t) timerid;
    690  1.54.2.5   nathanw 	} */ *uap = v;
    691  1.54.2.5   nathanw 	struct proc *p = l->l_proc;
    692  1.54.2.5   nathanw 	int timerid;
    693  1.54.2.5   nathanw 	struct ptimer *pt;
    694  1.54.2.5   nathanw 
    695  1.54.2.5   nathanw 	timerid = SCARG(uap, timerid);
    696  1.54.2.5   nathanw 
    697  1.54.2.5   nathanw 	if ((p->p_timers == NULL) ||
    698  1.54.2.5   nathanw 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    699  1.54.2.5   nathanw 	    ((pt = p->p_timers[timerid]) == NULL))
    700  1.54.2.5   nathanw 		return (EINVAL);
    701  1.54.2.5   nathanw 
    702  1.54.2.5   nathanw 	*retval = pt->pt_overruns;
    703  1.54.2.5   nathanw 
    704  1.54.2.5   nathanw 	return (0);
    705  1.54.2.5   nathanw }
    706  1.54.2.5   nathanw 
    707  1.54.2.5   nathanw /* Glue function that triggers an upcall; called from userret(). */
    708  1.54.2.5   nathanw static void
    709  1.54.2.5   nathanw realtimerupcall(struct lwp *l, void *arg)
    710  1.54.2.5   nathanw {
    711  1.54.2.5   nathanw 	struct ptimer *pt;
    712  1.54.2.5   nathanw 
    713  1.54.2.5   nathanw 	pt = (struct ptimer *)arg;
    714  1.54.2.5   nathanw 	sa_upcall(l, SA_UPCALL_SIGEV, NULL, l, sizeof(struct sigevent),
    715  1.54.2.5   nathanw 	    &pt->pt_ev);
    716  1.54.2.5   nathanw 
    717  1.54.2.5   nathanw 	/* The upcall should only be generated once. */
    718  1.54.2.5   nathanw 	l->l_proc->p_userret = NULL;
    719  1.54.2.5   nathanw }
    720  1.54.2.5   nathanw 
    721  1.54.2.5   nathanw 
    722  1.54.2.5   nathanw /*
    723  1.54.2.5   nathanw  * Real interval timer expired:
    724  1.54.2.5   nathanw  * send process whose timer expired an alarm signal.
    725  1.54.2.5   nathanw  * If time is not set up to reload, then just return.
    726  1.54.2.5   nathanw  * Else compute next time timer should go off which is > current time.
    727  1.54.2.5   nathanw  * This is where delay in processing this timeout causes multiple
    728  1.54.2.5   nathanw  * SIGALRM calls to be compressed into one.
    729  1.54.2.5   nathanw  */
    730  1.54.2.5   nathanw void
    731  1.54.2.5   nathanw realtimerexpire(void *arg)
    732  1.54.2.5   nathanw {
    733  1.54.2.5   nathanw 	struct ptimer *pt;
    734  1.54.2.5   nathanw 	struct proc *p;
    735  1.54.2.5   nathanw 	int s;
    736  1.54.2.5   nathanw 
    737  1.54.2.5   nathanw 	pt = (struct ptimer *)arg;
    738  1.54.2.5   nathanw 	p = pt->pt_proc;
    739  1.54.2.5   nathanw 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
    740  1.54.2.5   nathanw 		/*
    741  1.54.2.5   nathanw 		 * No RT signal infrastructure exists at this time;
    742  1.54.2.5   nathanw 		 * just post the signal number and throw away the
    743  1.54.2.5   nathanw 		 * value.
    744  1.54.2.5   nathanw 		 */
    745  1.54.2.5   nathanw 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
    746  1.54.2.5   nathanw 			pt->pt_overruns++;
    747  1.54.2.5   nathanw 		else {
    748  1.54.2.5   nathanw 			pt->pt_overruns = 0;
    749  1.54.2.5   nathanw 			psignal(p, pt->pt_ev.sigev_signo);
    750  1.54.2.5   nathanw 		}
    751  1.54.2.7   nathanw 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
    752  1.54.2.8   nathanw 		int notified = 0;
    753  1.54.2.5   nathanw 		/* Cause the process to generate an upcall when it returns. */
    754  1.54.2.8   nathanw 
    755  1.54.2.8   nathanw 		if (p->p_nrlwps == 0) {
    756  1.54.2.8   nathanw 			struct sadata_upcall *sd;
    757  1.54.2.8   nathanw 			struct lwp *l2;
    758  1.54.2.9   nathanw 			int s, ret;
    759  1.54.2.8   nathanw 
    760  1.54.2.9   nathanw 			SCHED_LOCK(s);
    761  1.54.2.8   nathanw 			l2 = sa_getcachelwp(p);
    762  1.54.2.8   nathanw 			if (l2 != NULL) {
    763  1.54.2.8   nathanw 				sd = sadata_upcall_alloc(0);
    764  1.54.2.8   nathanw 				cpu_setfunc(l2, sa_switchcall, NULL);
    765  1.54.2.8   nathanw 				ret = sa_upcall0(l2, SA_UPCALL_SIGEV,
    766  1.54.2.8   nathanw 				    NULL, NULL, sizeof(struct sigevent),
    767  1.54.2.8   nathanw 				    &pt->pt_ev, sd);
    768  1.54.2.8   nathanw 				if (ret == 0) {
    769  1.54.2.8   nathanw 					p->p_nrlwps++;
    770  1.54.2.8   nathanw 					l2->l_priority = l2->l_usrpri;
    771  1.54.2.8   nathanw 					PRELE(l2);
    772  1.54.2.8   nathanw 					setrunnable(l2);
    773  1.54.2.8   nathanw 					notified = 1;
    774  1.54.2.8   nathanw 				} else
    775  1.54.2.8   nathanw 					sa_putcachelwp(p, l2);
    776  1.54.2.8   nathanw 			}
    777  1.54.2.9   nathanw 			SCHED_UNLOCK(s);
    778  1.54.2.8   nathanw 		} else if (p->p_userret == NULL) {
    779  1.54.2.5   nathanw 			pt->pt_overruns = 0;
    780  1.54.2.5   nathanw 			p->p_userret = realtimerupcall;
    781  1.54.2.5   nathanw 			p->p_userret_arg = pt;
    782  1.54.2.8   nathanw 			notified = 1;
    783  1.54.2.8   nathanw 		}
    784  1.54.2.8   nathanw 		if (notified == 0)
    785  1.54.2.5   nathanw 			pt->pt_overruns++;
    786  1.54.2.5   nathanw 	}
    787  1.54.2.5   nathanw 	if (!timerisset(&pt->pt_time.it_interval)) {
    788  1.54.2.5   nathanw 		timerclear(&pt->pt_time.it_value);
    789  1.54.2.5   nathanw 		return;
    790  1.54.2.5   nathanw 	}
    791  1.54.2.5   nathanw 	for (;;) {
    792  1.54.2.5   nathanw 		s = splclock();
    793  1.54.2.5   nathanw 		timeradd(&pt->pt_time.it_value,
    794  1.54.2.5   nathanw 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    795  1.54.2.5   nathanw 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    796  1.54.2.5   nathanw 			/*
    797  1.54.2.5   nathanw 			 * Don't need to check hzto() return value, here.
    798  1.54.2.5   nathanw 			 * callout_reset() does it for us.
    799  1.54.2.5   nathanw 			 */
    800  1.54.2.5   nathanw 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    801  1.54.2.5   nathanw 			    realtimerexpire, pt);
    802  1.54.2.5   nathanw 			splx(s);
    803  1.54.2.5   nathanw 			return;
    804  1.54.2.5   nathanw 		}
    805  1.54.2.5   nathanw 		splx(s);
    806  1.54.2.5   nathanw 		pt->pt_overruns++;
    807  1.54.2.5   nathanw 	}
    808  1.54.2.5   nathanw }
    809  1.54.2.5   nathanw 
    810  1.54.2.5   nathanw /* BSD routine to get the value of an interval timer. */
    811       1.1       cgd /* ARGSUSED */
    812       1.3    andrew int
    813  1.54.2.5   nathanw sys_getitimer(struct lwp *l, void *v, register_t *retval)
    814      1.15   thorpej {
    815      1.45  augustss 	struct sys_getitimer_args /* {
    816      1.30   mycroft 		syscallarg(int) which;
    817      1.11       cgd 		syscallarg(struct itimerval *) itv;
    818      1.15   thorpej 	} */ *uap = v;
    819  1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    820       1.1       cgd 	struct itimerval aitv;
    821  1.54.2.5   nathanw 	int s, which;
    822  1.54.2.5   nathanw 
    823  1.54.2.5   nathanw 	which = SCARG(uap, which);
    824       1.1       cgd 
    825      1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    826       1.1       cgd 		return (EINVAL);
    827  1.54.2.5   nathanw 
    828  1.54.2.5   nathanw 	if ((p->p_timers == NULL) || (p->p_timers[which] == NULL)) {
    829  1.54.2.5   nathanw 		timerclear(&aitv.it_value);
    830  1.54.2.5   nathanw 		timerclear(&aitv.it_interval);
    831  1.54.2.5   nathanw 	} else {
    832  1.54.2.5   nathanw 		s = splclock();
    833  1.54.2.5   nathanw 		if (which == ITIMER_REAL) {
    834  1.54.2.5   nathanw 			/*
    835  1.54.2.5   nathanw 			 * Convert from absolute to relative time in
    836  1.54.2.5   nathanw 			 * .it_value part of real time timer.  If time
    837  1.54.2.5   nathanw 			 * for real time timer has passed return 0,
    838  1.54.2.5   nathanw 			 * else return difference between current time
    839  1.54.2.5   nathanw 			 * and time for the timer to go off.
    840  1.54.2.5   nathanw 			 */
    841  1.54.2.5   nathanw 			aitv = p->p_timers[ITIMER_REAL]->pt_time;
    842  1.54.2.5   nathanw 			if (timerisset(&aitv.it_value)) {
    843  1.54.2.5   nathanw 				if (timercmp(&aitv.it_value, &time, <))
    844  1.54.2.5   nathanw 					timerclear(&aitv.it_value);
    845  1.54.2.5   nathanw 				else
    846  1.54.2.5   nathanw 					timersub(&aitv.it_value, &time, &aitv.it_value);
    847  1.54.2.5   nathanw 			}
    848  1.54.2.5   nathanw 		} else
    849  1.54.2.5   nathanw 			aitv = p->p_timers[which]->pt_time;
    850  1.54.2.5   nathanw 		splx(s);
    851  1.54.2.5   nathanw 	}
    852  1.54.2.5   nathanw 
    853      1.35     perry 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    854  1.54.2.5   nathanw 
    855       1.1       cgd }
    856       1.1       cgd 
    857  1.54.2.5   nathanw /* BSD routine to set/arm an interval timer. */
    858       1.1       cgd /* ARGSUSED */
    859       1.3    andrew int
    860  1.54.2.5   nathanw sys_setitimer(struct lwp *l, void *v, register_t *retval)
    861      1.15   thorpej {
    862      1.45  augustss 	struct sys_setitimer_args /* {
    863      1.30   mycroft 		syscallarg(int) which;
    864      1.24       cgd 		syscallarg(const struct itimerval *) itv;
    865      1.11       cgd 		syscallarg(struct itimerval *) oitv;
    866      1.15   thorpej 	} */ *uap = v;
    867  1.54.2.1   nathanw 	struct proc *p = l->l_proc;
    868      1.30   mycroft 	int which = SCARG(uap, which);
    869      1.21       cgd 	struct sys_getitimer_args getargs;
    870       1.1       cgd 	struct itimerval aitv;
    871      1.45  augustss 	const struct itimerval *itvp;
    872  1.54.2.5   nathanw 	struct ptimer *pt;
    873       1.1       cgd 	int s, error;
    874       1.1       cgd 
    875      1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    876       1.1       cgd 		return (EINVAL);
    877      1.11       cgd 	itvp = SCARG(uap, itv);
    878  1.54.2.3   nathanw 	if (itvp &&
    879  1.54.2.3   nathanw 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    880       1.1       cgd 		return (error);
    881      1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
    882      1.30   mycroft 		SCARG(&getargs, which) = which;
    883      1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    884  1.54.2.1   nathanw 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    885      1.21       cgd 			return (error);
    886      1.21       cgd 	}
    887       1.1       cgd 	if (itvp == 0)
    888       1.1       cgd 		return (0);
    889       1.1       cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    890       1.1       cgd 		return (EINVAL);
    891  1.54.2.5   nathanw 
    892  1.54.2.5   nathanw 	/*
    893  1.54.2.5   nathanw 	 * Don't bother allocating data structures if the process just
    894  1.54.2.5   nathanw 	 * wants to clear the timer.
    895  1.54.2.5   nathanw 	 */
    896  1.54.2.5   nathanw 	if (!timerisset(&aitv.it_value) &&
    897  1.54.2.5   nathanw 	    ((p->p_timers == NULL) || (p->p_timers[which] == NULL)))
    898  1.54.2.5   nathanw 		return (0);
    899  1.54.2.5   nathanw 
    900  1.54.2.5   nathanw 	if (p->p_timers == NULL)
    901  1.54.2.5   nathanw 		timers_alloc(p);
    902  1.54.2.5   nathanw 	if (p->p_timers[which] == NULL) {
    903  1.54.2.5   nathanw 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    904  1.54.2.5   nathanw 		callout_init(&pt->pt_ch);
    905  1.54.2.5   nathanw 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    906  1.54.2.5   nathanw 		pt->pt_overruns = 0;
    907  1.54.2.5   nathanw 		pt->pt_proc = p;
    908  1.54.2.5   nathanw 		pt->pt_type = which;
    909  1.54.2.5   nathanw 		switch (which) {
    910  1.54.2.5   nathanw 		case ITIMER_REAL:
    911  1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGALRM;
    912  1.54.2.5   nathanw 			break;
    913  1.54.2.5   nathanw 		case ITIMER_VIRTUAL:
    914  1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGVTALRM;
    915  1.54.2.5   nathanw 			break;
    916  1.54.2.5   nathanw 		case ITIMER_PROF:
    917  1.54.2.5   nathanw 			pt->pt_ev.sigev_signo = SIGPROF;
    918  1.54.2.5   nathanw 			break;
    919  1.54.2.5   nathanw 		}
    920  1.54.2.5   nathanw 	} else
    921  1.54.2.5   nathanw 		pt = p->p_timers[which];
    922  1.54.2.5   nathanw 
    923  1.54.2.5   nathanw 	pt->pt_time = aitv;
    924  1.54.2.5   nathanw 	p->p_timers[which] = pt;
    925      1.30   mycroft 	if (which == ITIMER_REAL) {
    926  1.54.2.5   nathanw 		s = splclock();
    927  1.54.2.5   nathanw 		callout_stop(&pt->pt_ch);
    928  1.54.2.5   nathanw 		if (timerisset(&pt->pt_time.it_value)) {
    929  1.54.2.5   nathanw 			timeradd(&pt->pt_time.it_value, &time,
    930  1.54.2.5   nathanw 			    &pt->pt_time.it_value);
    931      1.52   thorpej 			/*
    932      1.52   thorpej 			 * Don't need to check hzto() return value, here.
    933      1.52   thorpej 			 * callout_reset() does it for us.
    934      1.52   thorpej 			 */
    935  1.54.2.5   nathanw 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    936  1.54.2.5   nathanw 			    realtimerexpire, pt);
    937       1.1       cgd 		}
    938  1.54.2.5   nathanw 		splx(s);
    939  1.54.2.5   nathanw 	}
    940  1.54.2.5   nathanw 
    941       1.1       cgd 	return (0);
    942       1.1       cgd }
    943       1.1       cgd 
    944  1.54.2.5   nathanw /* Utility routines to manage the array of pointers to timers. */
    945       1.3    andrew void
    946  1.54.2.5   nathanw timers_alloc(struct proc *p)
    947       1.6       cgd {
    948  1.54.2.5   nathanw 	int i;
    949  1.54.2.5   nathanw 	struct ptimer **pts;
    950       1.1       cgd 
    951  1.54.2.5   nathanw 	pts = malloc(TIMER_MAX * sizeof(struct timer *), M_SUBPROC, 0);
    952  1.54.2.5   nathanw 	for (i = 0; i < TIMER_MAX; i++)
    953  1.54.2.5   nathanw 		pts[i] = NULL;
    954  1.54.2.5   nathanw 	p->p_timers = pts;
    955  1.54.2.5   nathanw }
    956  1.54.2.5   nathanw 
    957  1.54.2.5   nathanw void
    958  1.54.2.5   nathanw timers_free(struct proc *p)
    959  1.54.2.5   nathanw {
    960  1.54.2.5   nathanw 	int i;
    961  1.54.2.5   nathanw 	struct ptimer *pt, **pts;
    962  1.54.2.5   nathanw 
    963  1.54.2.5   nathanw 	if (p->p_timers) {
    964  1.54.2.5   nathanw 		pts = p->p_timers;
    965  1.54.2.5   nathanw 		p->p_timers = NULL;
    966  1.54.2.5   nathanw 		for (i = 0; i < TIMER_MAX; i++)
    967  1.54.2.5   nathanw 			if ((pt = pts[i]) != NULL) {
    968  1.54.2.5   nathanw 				if (pt->pt_type == CLOCK_REALTIME)
    969  1.54.2.5   nathanw 					callout_stop(&pt->pt_ch);
    970  1.54.2.5   nathanw 				pool_put(&ptimer_pool, pt);
    971  1.54.2.5   nathanw 			}
    972  1.54.2.5   nathanw 		free(pts, M_SUBPROC);
    973       1.1       cgd 	}
    974       1.1       cgd }
    975       1.1       cgd 
    976       1.1       cgd /*
    977       1.1       cgd  * Check that a proposed value to load into the .it_value or
    978       1.1       cgd  * .it_interval part of an interval timer is acceptable, and
    979       1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
    980       1.1       cgd  * than the resolution of the clock, round it up.)
    981       1.1       cgd  */
    982       1.3    andrew int
    983  1.54.2.5   nathanw itimerfix(struct timeval *tv)
    984       1.1       cgd {
    985       1.1       cgd 
    986  1.54.2.4   nathanw 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    987       1.1       cgd 		return (EINVAL);
    988       1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    989       1.1       cgd 		tv->tv_usec = tick;
    990       1.1       cgd 	return (0);
    991       1.1       cgd }
    992       1.1       cgd 
    993       1.1       cgd /*
    994       1.1       cgd  * Decrement an interval timer by a specified number
    995       1.1       cgd  * of microseconds, which must be less than a second,
    996       1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
    997       1.1       cgd  * it.  In this case, carry over (usec - old value) to
    998       1.8       cgd  * reduce the value reloaded into the timer so that
    999       1.1       cgd  * the timer does not drift.  This routine assumes
   1000       1.1       cgd  * that it is called in a context where the timers
   1001       1.1       cgd  * on which it is operating cannot change in value.
   1002       1.1       cgd  */
   1003       1.3    andrew int
   1004  1.54.2.5   nathanw itimerdecr(struct itimerval *itp, int usec)
   1005       1.1       cgd {
   1006       1.1       cgd 
   1007       1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1008       1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1009       1.1       cgd 			/* expired, and already in next interval */
   1010       1.1       cgd 			usec -= itp->it_value.tv_usec;
   1011       1.1       cgd 			goto expire;
   1012       1.1       cgd 		}
   1013       1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1014       1.1       cgd 		itp->it_value.tv_sec--;
   1015       1.1       cgd 	}
   1016       1.1       cgd 	itp->it_value.tv_usec -= usec;
   1017       1.1       cgd 	usec = 0;
   1018       1.1       cgd 	if (timerisset(&itp->it_value))
   1019       1.1       cgd 		return (1);
   1020       1.1       cgd 	/* expired, exactly at end of interval */
   1021       1.1       cgd expire:
   1022       1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1023       1.1       cgd 		itp->it_value = itp->it_interval;
   1024       1.1       cgd 		itp->it_value.tv_usec -= usec;
   1025       1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1026       1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1027       1.1       cgd 			itp->it_value.tv_sec--;
   1028       1.1       cgd 		}
   1029       1.1       cgd 	} else
   1030       1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1031       1.1       cgd 	return (0);
   1032      1.42       cgd }
   1033      1.42       cgd 
   1034      1.42       cgd /*
   1035      1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1036      1.42       cgd  * for usage and rationale.
   1037      1.42       cgd  */
   1038      1.42       cgd int
   1039  1.54.2.5   nathanw ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1040      1.42       cgd {
   1041      1.49    itojun 	struct timeval tv, delta;
   1042      1.42       cgd 	int s, rv = 0;
   1043      1.42       cgd 
   1044      1.42       cgd 	s = splclock();
   1045      1.49    itojun 	tv = mono_time;
   1046      1.49    itojun 	splx(s);
   1047      1.49    itojun 
   1048      1.49    itojun 	timersub(&tv, lasttime, &delta);
   1049      1.42       cgd 
   1050      1.42       cgd 	/*
   1051      1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1052      1.42       cgd 	 * even if interval is huge.
   1053      1.42       cgd 	 */
   1054      1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1055      1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1056      1.49    itojun 		*lasttime = tv;
   1057      1.42       cgd 		rv = 1;
   1058      1.42       cgd 	}
   1059      1.50    itojun 
   1060      1.50    itojun 	return (rv);
   1061      1.50    itojun }
   1062      1.50    itojun 
   1063      1.50    itojun /*
   1064      1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1065      1.50    itojun  */
   1066      1.50    itojun int
   1067  1.54.2.5   nathanw ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1068      1.50    itojun {
   1069      1.50    itojun 	struct timeval tv, delta;
   1070      1.50    itojun 	int s, rv;
   1071      1.50    itojun 
   1072      1.50    itojun 	s = splclock();
   1073      1.50    itojun 	tv = mono_time;
   1074      1.50    itojun 	splx(s);
   1075      1.50    itojun 
   1076      1.50    itojun 	timersub(&tv, lasttime, &delta);
   1077      1.50    itojun 
   1078      1.50    itojun 	/*
   1079      1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1080      1.50    itojun 	 * if more than one second have passed since the last update of
   1081      1.50    itojun 	 * lasttime, reset the counter.
   1082      1.50    itojun 	 *
   1083      1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1084      1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1085      1.50    itojun 	 */
   1086      1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1087      1.50    itojun 	    delta.tv_sec >= 1) {
   1088      1.50    itojun 		*lasttime = tv;
   1089      1.50    itojun 		*curpps = 0;
   1090      1.50    itojun 		rv = 1;
   1091      1.53    itojun 	} else if (maxpps < 0)
   1092      1.53    itojun 		rv = 1;
   1093      1.53    itojun 	else if (*curpps < maxpps)
   1094      1.50    itojun 		rv = 1;
   1095      1.50    itojun 	else
   1096      1.50    itojun 		rv = 0;
   1097      1.50    itojun 
   1098      1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1099      1.50    itojun 	/* be careful about wrap-around */
   1100      1.50    itojun 	if (*curpps + 1 > *curpps)
   1101      1.50    itojun 		*curpps = *curpps + 1;
   1102      1.50    itojun #else
   1103      1.50    itojun 	/*
   1104      1.50    itojun 	 * assume that there's not too many calls to this function.
   1105      1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1106      1.50    itojun 	 * behavior, not the behavior of this function.
   1107      1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1108      1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1109      1.50    itojun 	 */
   1110      1.50    itojun 	*curpps = *curpps + 1;
   1111      1.50    itojun #endif
   1112      1.42       cgd 
   1113      1.42       cgd 	return (rv);
   1114       1.1       cgd }
   1115