kern_time.c revision 1.55 1 1.55 tron /* $NetBSD: kern_time.c,v 1.55 2001/06/11 07:07:12 tron Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.31 thorpej #include "fs_nfs.h"
75 1.54 bjh21 #include "opt_nfs.h"
76 1.34 thorpej #include "opt_nfsserver.h"
77 1.1 cgd
78 1.5 mycroft #include <sys/param.h>
79 1.5 mycroft #include <sys/resourcevar.h>
80 1.5 mycroft #include <sys/kernel.h>
81 1.8 cgd #include <sys/systm.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.8 cgd #include <sys/vnode.h>
84 1.17 christos #include <sys/signalvar.h>
85 1.25 perry #include <sys/syslog.h>
86 1.1 cgd
87 1.11 cgd #include <sys/mount.h>
88 1.11 cgd #include <sys/syscallargs.h>
89 1.19 christos
90 1.37 thorpej #include <uvm/uvm_extern.h>
91 1.37 thorpej
92 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
93 1.20 fvdl #include <nfs/rpcv2.h>
94 1.20 fvdl #include <nfs/nfsproto.h>
95 1.19 christos #include <nfs/nfs_var.h>
96 1.19 christos #endif
97 1.17 christos
98 1.5 mycroft #include <machine/cpu.h>
99 1.23 cgd
100 1.23 cgd /*
101 1.1 cgd * Time of day and interval timer support.
102 1.1 cgd *
103 1.1 cgd * These routines provide the kernel entry points to get and set
104 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
105 1.1 cgd * here provide support for adding and subtracting timeval structures
106 1.1 cgd * and decrementing interval timers, optionally reloading the interval
107 1.1 cgd * timers when they expire.
108 1.1 cgd */
109 1.1 cgd
110 1.22 jtc /* This function is used by clock_settime and settimeofday */
111 1.39 tron int
112 1.22 jtc settime(tv)
113 1.22 jtc struct timeval *tv;
114 1.22 jtc {
115 1.22 jtc struct timeval delta;
116 1.47 thorpej struct cpu_info *ci;
117 1.22 jtc int s;
118 1.22 jtc
119 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 1.22 jtc s = splclock();
121 1.22 jtc timersub(tv, &time, &delta);
122 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
123 1.55 tron splx(s);
124 1.29 tls return (EPERM);
125 1.55 tron }
126 1.29 tls #ifdef notyet
127 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
128 1.55 tron splx(s);
129 1.29 tls return (EPERM);
130 1.55 tron }
131 1.29 tls #endif
132 1.22 jtc time = *tv;
133 1.38 thorpej (void) spllowersoftclock();
134 1.22 jtc timeradd(&boottime, &delta, &boottime);
135 1.47 thorpej /*
136 1.47 thorpej * XXXSMP
137 1.47 thorpej * This is wrong. We should traverse a list of all
138 1.47 thorpej * CPUs and add the delta to the runtime of those
139 1.47 thorpej * CPUs which have a process on them.
140 1.47 thorpej */
141 1.47 thorpej ci = curcpu();
142 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
143 1.47 thorpej &ci->ci_schedstate.spc_runtime);
144 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
145 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
146 1.22 jtc # endif
147 1.22 jtc splx(s);
148 1.22 jtc resettodr();
149 1.29 tls return (0);
150 1.22 jtc }
151 1.22 jtc
152 1.22 jtc /* ARGSUSED */
153 1.22 jtc int
154 1.22 jtc sys_clock_gettime(p, v, retval)
155 1.22 jtc struct proc *p;
156 1.22 jtc void *v;
157 1.22 jtc register_t *retval;
158 1.22 jtc {
159 1.45 augustss struct sys_clock_gettime_args /* {
160 1.22 jtc syscallarg(clockid_t) clock_id;
161 1.23 cgd syscallarg(struct timespec *) tp;
162 1.23 cgd } */ *uap = v;
163 1.22 jtc clockid_t clock_id;
164 1.22 jtc struct timeval atv;
165 1.22 jtc struct timespec ats;
166 1.22 jtc
167 1.22 jtc clock_id = SCARG(uap, clock_id);
168 1.22 jtc if (clock_id != CLOCK_REALTIME)
169 1.22 jtc return (EINVAL);
170 1.22 jtc
171 1.22 jtc microtime(&atv);
172 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 1.22 jtc
174 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
175 1.22 jtc }
176 1.22 jtc
177 1.22 jtc /* ARGSUSED */
178 1.22 jtc int
179 1.22 jtc sys_clock_settime(p, v, retval)
180 1.22 jtc struct proc *p;
181 1.22 jtc void *v;
182 1.22 jtc register_t *retval;
183 1.22 jtc {
184 1.45 augustss struct sys_clock_settime_args /* {
185 1.22 jtc syscallarg(clockid_t) clock_id;
186 1.23 cgd syscallarg(const struct timespec *) tp;
187 1.23 cgd } */ *uap = v;
188 1.22 jtc clockid_t clock_id;
189 1.22 jtc struct timeval atv;
190 1.22 jtc struct timespec ats;
191 1.22 jtc int error;
192 1.22 jtc
193 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
194 1.22 jtc return (error);
195 1.22 jtc
196 1.22 jtc clock_id = SCARG(uap, clock_id);
197 1.22 jtc if (clock_id != CLOCK_REALTIME)
198 1.22 jtc return (EINVAL);
199 1.22 jtc
200 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 1.23 cgd return (error);
202 1.22 jtc
203 1.22 jtc TIMESPEC_TO_TIMEVAL(&atv,&ats);
204 1.29 tls if ((error = settime(&atv)))
205 1.29 tls return (error);
206 1.22 jtc
207 1.22 jtc return 0;
208 1.22 jtc }
209 1.22 jtc
210 1.22 jtc int
211 1.22 jtc sys_clock_getres(p, v, retval)
212 1.22 jtc struct proc *p;
213 1.22 jtc void *v;
214 1.22 jtc register_t *retval;
215 1.22 jtc {
216 1.45 augustss struct sys_clock_getres_args /* {
217 1.22 jtc syscallarg(clockid_t) clock_id;
218 1.23 cgd syscallarg(struct timespec *) tp;
219 1.23 cgd } */ *uap = v;
220 1.22 jtc clockid_t clock_id;
221 1.22 jtc struct timespec ts;
222 1.22 jtc int error = 0;
223 1.22 jtc
224 1.22 jtc clock_id = SCARG(uap, clock_id);
225 1.22 jtc if (clock_id != CLOCK_REALTIME)
226 1.22 jtc return (EINVAL);
227 1.22 jtc
228 1.22 jtc if (SCARG(uap, tp)) {
229 1.22 jtc ts.tv_sec = 0;
230 1.22 jtc ts.tv_nsec = 1000000000 / hz;
231 1.22 jtc
232 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
233 1.22 jtc }
234 1.22 jtc
235 1.22 jtc return error;
236 1.22 jtc }
237 1.22 jtc
238 1.27 jtc /* ARGSUSED */
239 1.27 jtc int
240 1.27 jtc sys_nanosleep(p, v, retval)
241 1.27 jtc struct proc *p;
242 1.27 jtc void *v;
243 1.27 jtc register_t *retval;
244 1.27 jtc {
245 1.27 jtc static int nanowait;
246 1.45 augustss struct sys_nanosleep_args/* {
247 1.27 jtc syscallarg(struct timespec *) rqtp;
248 1.27 jtc syscallarg(struct timespec *) rmtp;
249 1.27 jtc } */ *uap = v;
250 1.27 jtc struct timespec rqt;
251 1.27 jtc struct timespec rmt;
252 1.27 jtc struct timeval atv, utv;
253 1.27 jtc int error, s, timo;
254 1.27 jtc
255 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
256 1.27 jtc sizeof(struct timespec));
257 1.27 jtc if (error)
258 1.27 jtc return (error);
259 1.27 jtc
260 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
261 1.27 jtc if (itimerfix(&atv))
262 1.27 jtc return (EINVAL);
263 1.27 jtc
264 1.27 jtc s = splclock();
265 1.27 jtc timeradd(&atv,&time,&atv);
266 1.27 jtc timo = hzto(&atv);
267 1.27 jtc /*
268 1.27 jtc * Avoid inadvertantly sleeping forever
269 1.27 jtc */
270 1.27 jtc if (timo == 0)
271 1.27 jtc timo = 1;
272 1.27 jtc splx(s);
273 1.27 jtc
274 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
275 1.27 jtc if (error == ERESTART)
276 1.27 jtc error = EINTR;
277 1.27 jtc if (error == EWOULDBLOCK)
278 1.27 jtc error = 0;
279 1.27 jtc
280 1.27 jtc if (SCARG(uap, rmtp)) {
281 1.28 jtc int error;
282 1.28 jtc
283 1.27 jtc s = splclock();
284 1.27 jtc utv = time;
285 1.27 jtc splx(s);
286 1.27 jtc
287 1.27 jtc timersub(&atv, &utv, &utv);
288 1.27 jtc if (utv.tv_sec < 0)
289 1.27 jtc timerclear(&utv);
290 1.27 jtc
291 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
292 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
293 1.28 jtc sizeof(rmt));
294 1.28 jtc if (error)
295 1.28 jtc return (error);
296 1.27 jtc }
297 1.27 jtc
298 1.27 jtc return error;
299 1.27 jtc }
300 1.22 jtc
301 1.1 cgd /* ARGSUSED */
302 1.3 andrew int
303 1.16 mycroft sys_gettimeofday(p, v, retval)
304 1.1 cgd struct proc *p;
305 1.15 thorpej void *v;
306 1.15 thorpej register_t *retval;
307 1.15 thorpej {
308 1.45 augustss struct sys_gettimeofday_args /* {
309 1.11 cgd syscallarg(struct timeval *) tp;
310 1.11 cgd syscallarg(struct timezone *) tzp;
311 1.15 thorpej } */ *uap = v;
312 1.1 cgd struct timeval atv;
313 1.1 cgd int error = 0;
314 1.25 perry struct timezone tzfake;
315 1.1 cgd
316 1.11 cgd if (SCARG(uap, tp)) {
317 1.1 cgd microtime(&atv);
318 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
319 1.17 christos if (error)
320 1.1 cgd return (error);
321 1.1 cgd }
322 1.25 perry if (SCARG(uap, tzp)) {
323 1.25 perry /*
324 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
325 1.25 perry * fake up a timezone struct and return it if demanded.
326 1.25 perry */
327 1.25 perry tzfake.tz_minuteswest = 0;
328 1.25 perry tzfake.tz_dsttime = 0;
329 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
330 1.25 perry }
331 1.1 cgd return (error);
332 1.1 cgd }
333 1.1 cgd
334 1.1 cgd /* ARGSUSED */
335 1.3 andrew int
336 1.16 mycroft sys_settimeofday(p, v, retval)
337 1.1 cgd struct proc *p;
338 1.15 thorpej void *v;
339 1.15 thorpej register_t *retval;
340 1.15 thorpej {
341 1.16 mycroft struct sys_settimeofday_args /* {
342 1.24 cgd syscallarg(const struct timeval *) tv;
343 1.24 cgd syscallarg(const struct timezone *) tzp;
344 1.15 thorpej } */ *uap = v;
345 1.22 jtc struct timeval atv;
346 1.1 cgd struct timezone atz;
347 1.22 jtc int error;
348 1.1 cgd
349 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
350 1.1 cgd return (error);
351 1.8 cgd /* Verify all parameters before changing time. */
352 1.24 cgd if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
353 1.24 cgd &atv, sizeof(atv))))
354 1.8 cgd return (error);
355 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
356 1.24 cgd if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
357 1.24 cgd &atz, sizeof(atz))))
358 1.8 cgd return (error);
359 1.22 jtc if (SCARG(uap, tv))
360 1.29 tls if ((error = settime(&atv)))
361 1.29 tls return (error);
362 1.25 perry /*
363 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
364 1.25 perry * obsolete program would try to set it, so we log a warning.
365 1.25 perry */
366 1.11 cgd if (SCARG(uap, tzp))
367 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
368 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
369 1.8 cgd return (0);
370 1.1 cgd }
371 1.1 cgd
372 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
373 1.1 cgd long timedelta; /* unapplied time correction, us. */
374 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
375 1.1 cgd
376 1.1 cgd /* ARGSUSED */
377 1.3 andrew int
378 1.16 mycroft sys_adjtime(p, v, retval)
379 1.1 cgd struct proc *p;
380 1.15 thorpej void *v;
381 1.15 thorpej register_t *retval;
382 1.15 thorpej {
383 1.45 augustss struct sys_adjtime_args /* {
384 1.24 cgd syscallarg(const struct timeval *) delta;
385 1.11 cgd syscallarg(struct timeval *) olddelta;
386 1.15 thorpej } */ *uap = v;
387 1.8 cgd struct timeval atv;
388 1.45 augustss long ndelta, ntickdelta, odelta;
389 1.1 cgd int s, error;
390 1.1 cgd
391 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
392 1.1 cgd return (error);
393 1.17 christos
394 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
395 1.17 christos if (error)
396 1.1 cgd return (error);
397 1.37 thorpej if (SCARG(uap, olddelta) != NULL &&
398 1.37 thorpej uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
399 1.37 thorpej B_WRITE) == FALSE)
400 1.37 thorpej return (EFAULT);
401 1.8 cgd
402 1.8 cgd /*
403 1.8 cgd * Compute the total correction and the rate at which to apply it.
404 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
405 1.8 cgd * delta, so that after some number of incremental changes in
406 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
407 1.8 cgd * overshoot and start taking us away from the desired final time.
408 1.8 cgd */
409 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
410 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
411 1.8 cgd ntickdelta = 10 * tickadj;
412 1.8 cgd else
413 1.8 cgd ntickdelta = tickadj;
414 1.8 cgd if (ndelta % ntickdelta)
415 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
416 1.8 cgd
417 1.8 cgd /*
418 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
419 1.8 cgd * if we want time to run slower; then hardclock can simply compute
420 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
421 1.8 cgd */
422 1.8 cgd if (ndelta < 0)
423 1.8 cgd ntickdelta = -ntickdelta;
424 1.1 cgd s = splclock();
425 1.8 cgd odelta = timedelta;
426 1.1 cgd timedelta = ndelta;
427 1.8 cgd tickdelta = ntickdelta;
428 1.1 cgd splx(s);
429 1.1 cgd
430 1.11 cgd if (SCARG(uap, olddelta)) {
431 1.8 cgd atv.tv_sec = odelta / 1000000;
432 1.8 cgd atv.tv_usec = odelta % 1000000;
433 1.24 cgd (void) copyout(&atv, SCARG(uap, olddelta),
434 1.8 cgd sizeof(struct timeval));
435 1.8 cgd }
436 1.1 cgd return (0);
437 1.1 cgd }
438 1.1 cgd
439 1.1 cgd /*
440 1.1 cgd * Get value of an interval timer. The process virtual and
441 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
442 1.1 cgd * they can be swapped out. These are kept internally in the
443 1.1 cgd * way they are specified externally: in time until they expire.
444 1.1 cgd *
445 1.1 cgd * The real time interval timer is kept in the process table slot
446 1.1 cgd * for the process, and its value (it_value) is kept as an
447 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
448 1.1 cgd * periodic real-time signals from drifting.
449 1.1 cgd *
450 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
451 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
452 1.1 cgd * routine, called from the softclock() routine. Since a callout
453 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
454 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
455 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
456 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
457 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
458 1.1 cgd * absolute time the timer should go off.
459 1.1 cgd */
460 1.1 cgd /* ARGSUSED */
461 1.3 andrew int
462 1.16 mycroft sys_getitimer(p, v, retval)
463 1.1 cgd struct proc *p;
464 1.15 thorpej void *v;
465 1.15 thorpej register_t *retval;
466 1.15 thorpej {
467 1.45 augustss struct sys_getitimer_args /* {
468 1.30 mycroft syscallarg(int) which;
469 1.11 cgd syscallarg(struct itimerval *) itv;
470 1.15 thorpej } */ *uap = v;
471 1.30 mycroft int which = SCARG(uap, which);
472 1.1 cgd struct itimerval aitv;
473 1.1 cgd int s;
474 1.1 cgd
475 1.30 mycroft if ((u_int)which > ITIMER_PROF)
476 1.1 cgd return (EINVAL);
477 1.1 cgd s = splclock();
478 1.30 mycroft if (which == ITIMER_REAL) {
479 1.1 cgd /*
480 1.12 mycroft * Convert from absolute to relative time in .it_value
481 1.1 cgd * part of real time timer. If time for real time timer
482 1.1 cgd * has passed return 0, else return difference between
483 1.1 cgd * current time and time for the timer to go off.
484 1.1 cgd */
485 1.1 cgd aitv = p->p_realtimer;
486 1.36 thorpej if (timerisset(&aitv.it_value)) {
487 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
488 1.1 cgd timerclear(&aitv.it_value);
489 1.1 cgd else
490 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
491 1.36 thorpej }
492 1.1 cgd } else
493 1.30 mycroft aitv = p->p_stats->p_timer[which];
494 1.1 cgd splx(s);
495 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
496 1.1 cgd }
497 1.1 cgd
498 1.1 cgd /* ARGSUSED */
499 1.3 andrew int
500 1.16 mycroft sys_setitimer(p, v, retval)
501 1.1 cgd struct proc *p;
502 1.45 augustss void *v;
503 1.15 thorpej register_t *retval;
504 1.15 thorpej {
505 1.45 augustss struct sys_setitimer_args /* {
506 1.30 mycroft syscallarg(int) which;
507 1.24 cgd syscallarg(const struct itimerval *) itv;
508 1.11 cgd syscallarg(struct itimerval *) oitv;
509 1.15 thorpej } */ *uap = v;
510 1.30 mycroft int which = SCARG(uap, which);
511 1.21 cgd struct sys_getitimer_args getargs;
512 1.1 cgd struct itimerval aitv;
513 1.45 augustss const struct itimerval *itvp;
514 1.1 cgd int s, error;
515 1.1 cgd
516 1.30 mycroft if ((u_int)which > ITIMER_PROF)
517 1.1 cgd return (EINVAL);
518 1.11 cgd itvp = SCARG(uap, itv);
519 1.24 cgd if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
520 1.1 cgd return (error);
521 1.21 cgd if (SCARG(uap, oitv) != NULL) {
522 1.30 mycroft SCARG(&getargs, which) = which;
523 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
524 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
525 1.21 cgd return (error);
526 1.21 cgd }
527 1.1 cgd if (itvp == 0)
528 1.1 cgd return (0);
529 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
530 1.1 cgd return (EINVAL);
531 1.1 cgd s = splclock();
532 1.30 mycroft if (which == ITIMER_REAL) {
533 1.44 thorpej callout_stop(&p->p_realit_ch);
534 1.1 cgd if (timerisset(&aitv.it_value)) {
535 1.52 thorpej /*
536 1.52 thorpej * Don't need to check hzto() return value, here.
537 1.52 thorpej * callout_reset() does it for us.
538 1.52 thorpej */
539 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
540 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
541 1.44 thorpej realitexpire, p);
542 1.1 cgd }
543 1.1 cgd p->p_realtimer = aitv;
544 1.1 cgd } else
545 1.30 mycroft p->p_stats->p_timer[which] = aitv;
546 1.1 cgd splx(s);
547 1.1 cgd return (0);
548 1.1 cgd }
549 1.1 cgd
550 1.1 cgd /*
551 1.1 cgd * Real interval timer expired:
552 1.1 cgd * send process whose timer expired an alarm signal.
553 1.1 cgd * If time is not set up to reload, then just return.
554 1.1 cgd * Else compute next time timer should go off which is > current time.
555 1.1 cgd * This is where delay in processing this timeout causes multiple
556 1.1 cgd * SIGALRM calls to be compressed into one.
557 1.1 cgd */
558 1.3 andrew void
559 1.6 cgd realitexpire(arg)
560 1.6 cgd void *arg;
561 1.6 cgd {
562 1.45 augustss struct proc *p;
563 1.1 cgd int s;
564 1.1 cgd
565 1.6 cgd p = (struct proc *)arg;
566 1.1 cgd psignal(p, SIGALRM);
567 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
568 1.1 cgd timerclear(&p->p_realtimer.it_value);
569 1.1 cgd return;
570 1.1 cgd }
571 1.1 cgd for (;;) {
572 1.1 cgd s = splclock();
573 1.14 mycroft timeradd(&p->p_realtimer.it_value,
574 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
575 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
576 1.52 thorpej /*
577 1.52 thorpej * Don't need to check hzto() return value, here.
578 1.52 thorpej * callout_reset() does it for us.
579 1.52 thorpej */
580 1.44 thorpej callout_reset(&p->p_realit_ch,
581 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
582 1.1 cgd splx(s);
583 1.1 cgd return;
584 1.1 cgd }
585 1.1 cgd splx(s);
586 1.1 cgd }
587 1.1 cgd }
588 1.1 cgd
589 1.1 cgd /*
590 1.1 cgd * Check that a proposed value to load into the .it_value or
591 1.1 cgd * .it_interval part of an interval timer is acceptable, and
592 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
593 1.1 cgd * than the resolution of the clock, round it up.)
594 1.1 cgd */
595 1.3 andrew int
596 1.1 cgd itimerfix(tv)
597 1.1 cgd struct timeval *tv;
598 1.1 cgd {
599 1.1 cgd
600 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
601 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
602 1.1 cgd return (EINVAL);
603 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
604 1.1 cgd tv->tv_usec = tick;
605 1.1 cgd return (0);
606 1.1 cgd }
607 1.1 cgd
608 1.1 cgd /*
609 1.1 cgd * Decrement an interval timer by a specified number
610 1.1 cgd * of microseconds, which must be less than a second,
611 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
612 1.1 cgd * it. In this case, carry over (usec - old value) to
613 1.8 cgd * reduce the value reloaded into the timer so that
614 1.1 cgd * the timer does not drift. This routine assumes
615 1.1 cgd * that it is called in a context where the timers
616 1.1 cgd * on which it is operating cannot change in value.
617 1.1 cgd */
618 1.3 andrew int
619 1.1 cgd itimerdecr(itp, usec)
620 1.45 augustss struct itimerval *itp;
621 1.1 cgd int usec;
622 1.1 cgd {
623 1.1 cgd
624 1.1 cgd if (itp->it_value.tv_usec < usec) {
625 1.1 cgd if (itp->it_value.tv_sec == 0) {
626 1.1 cgd /* expired, and already in next interval */
627 1.1 cgd usec -= itp->it_value.tv_usec;
628 1.1 cgd goto expire;
629 1.1 cgd }
630 1.1 cgd itp->it_value.tv_usec += 1000000;
631 1.1 cgd itp->it_value.tv_sec--;
632 1.1 cgd }
633 1.1 cgd itp->it_value.tv_usec -= usec;
634 1.1 cgd usec = 0;
635 1.1 cgd if (timerisset(&itp->it_value))
636 1.1 cgd return (1);
637 1.1 cgd /* expired, exactly at end of interval */
638 1.1 cgd expire:
639 1.1 cgd if (timerisset(&itp->it_interval)) {
640 1.1 cgd itp->it_value = itp->it_interval;
641 1.1 cgd itp->it_value.tv_usec -= usec;
642 1.1 cgd if (itp->it_value.tv_usec < 0) {
643 1.1 cgd itp->it_value.tv_usec += 1000000;
644 1.1 cgd itp->it_value.tv_sec--;
645 1.1 cgd }
646 1.1 cgd } else
647 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
648 1.1 cgd return (0);
649 1.42 cgd }
650 1.42 cgd
651 1.42 cgd /*
652 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
653 1.42 cgd * for usage and rationale.
654 1.42 cgd */
655 1.42 cgd int
656 1.42 cgd ratecheck(lasttime, mininterval)
657 1.42 cgd struct timeval *lasttime;
658 1.42 cgd const struct timeval *mininterval;
659 1.42 cgd {
660 1.49 itojun struct timeval tv, delta;
661 1.42 cgd int s, rv = 0;
662 1.42 cgd
663 1.42 cgd s = splclock();
664 1.49 itojun tv = mono_time;
665 1.49 itojun splx(s);
666 1.49 itojun
667 1.49 itojun timersub(&tv, lasttime, &delta);
668 1.42 cgd
669 1.42 cgd /*
670 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
671 1.42 cgd * even if interval is huge.
672 1.42 cgd */
673 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
674 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
675 1.49 itojun *lasttime = tv;
676 1.42 cgd rv = 1;
677 1.42 cgd }
678 1.50 itojun
679 1.50 itojun return (rv);
680 1.50 itojun }
681 1.50 itojun
682 1.50 itojun /*
683 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
684 1.50 itojun */
685 1.50 itojun int
686 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
687 1.50 itojun struct timeval *lasttime;
688 1.50 itojun int *curpps;
689 1.50 itojun int maxpps; /* maximum pps allowed */
690 1.50 itojun {
691 1.50 itojun struct timeval tv, delta;
692 1.50 itojun int s, rv;
693 1.50 itojun
694 1.50 itojun s = splclock();
695 1.50 itojun tv = mono_time;
696 1.50 itojun splx(s);
697 1.50 itojun
698 1.50 itojun timersub(&tv, lasttime, &delta);
699 1.50 itojun
700 1.50 itojun /*
701 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
702 1.50 itojun * if more than one second have passed since the last update of
703 1.50 itojun * lasttime, reset the counter.
704 1.50 itojun *
705 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
706 1.50 itojun * try to use *curpps for stat purposes as well.
707 1.50 itojun */
708 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
709 1.50 itojun delta.tv_sec >= 1) {
710 1.50 itojun *lasttime = tv;
711 1.50 itojun *curpps = 0;
712 1.50 itojun rv = 1;
713 1.53 itojun } else if (maxpps < 0)
714 1.53 itojun rv = 1;
715 1.53 itojun else if (*curpps < maxpps)
716 1.50 itojun rv = 1;
717 1.50 itojun else
718 1.50 itojun rv = 0;
719 1.50 itojun
720 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
721 1.50 itojun /* be careful about wrap-around */
722 1.50 itojun if (*curpps + 1 > *curpps)
723 1.50 itojun *curpps = *curpps + 1;
724 1.50 itojun #else
725 1.50 itojun /*
726 1.50 itojun * assume that there's not too many calls to this function.
727 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
728 1.50 itojun * behavior, not the behavior of this function.
729 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
730 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
731 1.50 itojun */
732 1.50 itojun *curpps = *curpps + 1;
733 1.50 itojun #endif
734 1.42 cgd
735 1.42 cgd return (rv);
736 1.1 cgd }
737