kern_time.c revision 1.57 1 1.57 christos /* $NetBSD: kern_time.c,v 1.57 2001/11/12 14:52:33 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.31 thorpej
74 1.31 thorpej #include "fs_nfs.h"
75 1.54 bjh21 #include "opt_nfs.h"
76 1.34 thorpej #include "opt_nfsserver.h"
77 1.1 cgd
78 1.5 mycroft #include <sys/param.h>
79 1.5 mycroft #include <sys/resourcevar.h>
80 1.5 mycroft #include <sys/kernel.h>
81 1.8 cgd #include <sys/systm.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.8 cgd #include <sys/vnode.h>
84 1.17 christos #include <sys/signalvar.h>
85 1.25 perry #include <sys/syslog.h>
86 1.1 cgd
87 1.11 cgd #include <sys/mount.h>
88 1.11 cgd #include <sys/syscallargs.h>
89 1.19 christos
90 1.37 thorpej #include <uvm/uvm_extern.h>
91 1.37 thorpej
92 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
93 1.20 fvdl #include <nfs/rpcv2.h>
94 1.20 fvdl #include <nfs/nfsproto.h>
95 1.19 christos #include <nfs/nfs_var.h>
96 1.19 christos #endif
97 1.17 christos
98 1.5 mycroft #include <machine/cpu.h>
99 1.23 cgd
100 1.23 cgd /*
101 1.1 cgd * Time of day and interval timer support.
102 1.1 cgd *
103 1.1 cgd * These routines provide the kernel entry points to get and set
104 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
105 1.1 cgd * here provide support for adding and subtracting timeval structures
106 1.1 cgd * and decrementing interval timers, optionally reloading the interval
107 1.1 cgd * timers when they expire.
108 1.1 cgd */
109 1.1 cgd
110 1.22 jtc /* This function is used by clock_settime and settimeofday */
111 1.39 tron int
112 1.22 jtc settime(tv)
113 1.22 jtc struct timeval *tv;
114 1.22 jtc {
115 1.22 jtc struct timeval delta;
116 1.47 thorpej struct cpu_info *ci;
117 1.22 jtc int s;
118 1.22 jtc
119 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120 1.22 jtc s = splclock();
121 1.22 jtc timersub(tv, &time, &delta);
122 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
123 1.55 tron splx(s);
124 1.29 tls return (EPERM);
125 1.55 tron }
126 1.29 tls #ifdef notyet
127 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
128 1.55 tron splx(s);
129 1.29 tls return (EPERM);
130 1.55 tron }
131 1.29 tls #endif
132 1.22 jtc time = *tv;
133 1.38 thorpej (void) spllowersoftclock();
134 1.22 jtc timeradd(&boottime, &delta, &boottime);
135 1.47 thorpej /*
136 1.47 thorpej * XXXSMP
137 1.47 thorpej * This is wrong. We should traverse a list of all
138 1.47 thorpej * CPUs and add the delta to the runtime of those
139 1.47 thorpej * CPUs which have a process on them.
140 1.47 thorpej */
141 1.47 thorpej ci = curcpu();
142 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
143 1.47 thorpej &ci->ci_schedstate.spc_runtime);
144 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
145 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
146 1.22 jtc # endif
147 1.22 jtc splx(s);
148 1.22 jtc resettodr();
149 1.29 tls return (0);
150 1.22 jtc }
151 1.22 jtc
152 1.22 jtc /* ARGSUSED */
153 1.22 jtc int
154 1.22 jtc sys_clock_gettime(p, v, retval)
155 1.22 jtc struct proc *p;
156 1.22 jtc void *v;
157 1.22 jtc register_t *retval;
158 1.22 jtc {
159 1.45 augustss struct sys_clock_gettime_args /* {
160 1.22 jtc syscallarg(clockid_t) clock_id;
161 1.23 cgd syscallarg(struct timespec *) tp;
162 1.23 cgd } */ *uap = v;
163 1.22 jtc clockid_t clock_id;
164 1.22 jtc struct timeval atv;
165 1.22 jtc struct timespec ats;
166 1.22 jtc
167 1.22 jtc clock_id = SCARG(uap, clock_id);
168 1.22 jtc if (clock_id != CLOCK_REALTIME)
169 1.22 jtc return (EINVAL);
170 1.22 jtc
171 1.22 jtc microtime(&atv);
172 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 1.22 jtc
174 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
175 1.22 jtc }
176 1.22 jtc
177 1.22 jtc /* ARGSUSED */
178 1.22 jtc int
179 1.22 jtc sys_clock_settime(p, v, retval)
180 1.22 jtc struct proc *p;
181 1.22 jtc void *v;
182 1.22 jtc register_t *retval;
183 1.22 jtc {
184 1.45 augustss struct sys_clock_settime_args /* {
185 1.22 jtc syscallarg(clockid_t) clock_id;
186 1.23 cgd syscallarg(const struct timespec *) tp;
187 1.23 cgd } */ *uap = v;
188 1.22 jtc clockid_t clock_id;
189 1.22 jtc struct timespec ats;
190 1.22 jtc int error;
191 1.22 jtc
192 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
193 1.22 jtc return (error);
194 1.22 jtc
195 1.22 jtc clock_id = SCARG(uap, clock_id);
196 1.22 jtc
197 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
198 1.23 cgd return (error);
199 1.22 jtc
200 1.56 manu return (clock_settime1(clock_id, &ats));
201 1.56 manu }
202 1.56 manu
203 1.56 manu
204 1.56 manu int
205 1.56 manu clock_settime1(clock_id, ats)
206 1.56 manu clockid_t clock_id;
207 1.56 manu struct timespec *ats;
208 1.56 manu {
209 1.56 manu struct timeval atv;
210 1.56 manu int error;
211 1.56 manu
212 1.56 manu if (clock_id != CLOCK_REALTIME)
213 1.56 manu return (EINVAL);
214 1.56 manu
215 1.56 manu TIMESPEC_TO_TIMEVAL(&atv, ats);
216 1.56 manu if ((error = settime(&atv)) != 0)
217 1.29 tls return (error);
218 1.22 jtc
219 1.22 jtc return 0;
220 1.22 jtc }
221 1.22 jtc
222 1.22 jtc int
223 1.22 jtc sys_clock_getres(p, v, retval)
224 1.22 jtc struct proc *p;
225 1.22 jtc void *v;
226 1.22 jtc register_t *retval;
227 1.22 jtc {
228 1.45 augustss struct sys_clock_getres_args /* {
229 1.22 jtc syscallarg(clockid_t) clock_id;
230 1.23 cgd syscallarg(struct timespec *) tp;
231 1.23 cgd } */ *uap = v;
232 1.22 jtc clockid_t clock_id;
233 1.22 jtc struct timespec ts;
234 1.22 jtc int error = 0;
235 1.22 jtc
236 1.22 jtc clock_id = SCARG(uap, clock_id);
237 1.22 jtc if (clock_id != CLOCK_REALTIME)
238 1.22 jtc return (EINVAL);
239 1.22 jtc
240 1.22 jtc if (SCARG(uap, tp)) {
241 1.22 jtc ts.tv_sec = 0;
242 1.22 jtc ts.tv_nsec = 1000000000 / hz;
243 1.22 jtc
244 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
245 1.22 jtc }
246 1.22 jtc
247 1.22 jtc return error;
248 1.22 jtc }
249 1.22 jtc
250 1.27 jtc /* ARGSUSED */
251 1.27 jtc int
252 1.27 jtc sys_nanosleep(p, v, retval)
253 1.27 jtc struct proc *p;
254 1.27 jtc void *v;
255 1.27 jtc register_t *retval;
256 1.27 jtc {
257 1.27 jtc static int nanowait;
258 1.45 augustss struct sys_nanosleep_args/* {
259 1.27 jtc syscallarg(struct timespec *) rqtp;
260 1.27 jtc syscallarg(struct timespec *) rmtp;
261 1.27 jtc } */ *uap = v;
262 1.27 jtc struct timespec rqt;
263 1.27 jtc struct timespec rmt;
264 1.27 jtc struct timeval atv, utv;
265 1.27 jtc int error, s, timo;
266 1.27 jtc
267 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
268 1.27 jtc sizeof(struct timespec));
269 1.27 jtc if (error)
270 1.27 jtc return (error);
271 1.27 jtc
272 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
273 1.27 jtc if (itimerfix(&atv))
274 1.27 jtc return (EINVAL);
275 1.27 jtc
276 1.27 jtc s = splclock();
277 1.27 jtc timeradd(&atv,&time,&atv);
278 1.27 jtc timo = hzto(&atv);
279 1.27 jtc /*
280 1.27 jtc * Avoid inadvertantly sleeping forever
281 1.27 jtc */
282 1.27 jtc if (timo == 0)
283 1.27 jtc timo = 1;
284 1.27 jtc splx(s);
285 1.27 jtc
286 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
287 1.27 jtc if (error == ERESTART)
288 1.27 jtc error = EINTR;
289 1.27 jtc if (error == EWOULDBLOCK)
290 1.27 jtc error = 0;
291 1.27 jtc
292 1.27 jtc if (SCARG(uap, rmtp)) {
293 1.28 jtc int error;
294 1.28 jtc
295 1.27 jtc s = splclock();
296 1.27 jtc utv = time;
297 1.27 jtc splx(s);
298 1.27 jtc
299 1.27 jtc timersub(&atv, &utv, &utv);
300 1.27 jtc if (utv.tv_sec < 0)
301 1.27 jtc timerclear(&utv);
302 1.27 jtc
303 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
304 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
305 1.28 jtc sizeof(rmt));
306 1.28 jtc if (error)
307 1.28 jtc return (error);
308 1.27 jtc }
309 1.27 jtc
310 1.27 jtc return error;
311 1.27 jtc }
312 1.22 jtc
313 1.1 cgd /* ARGSUSED */
314 1.3 andrew int
315 1.16 mycroft sys_gettimeofday(p, v, retval)
316 1.1 cgd struct proc *p;
317 1.15 thorpej void *v;
318 1.15 thorpej register_t *retval;
319 1.15 thorpej {
320 1.45 augustss struct sys_gettimeofday_args /* {
321 1.11 cgd syscallarg(struct timeval *) tp;
322 1.11 cgd syscallarg(struct timezone *) tzp;
323 1.15 thorpej } */ *uap = v;
324 1.1 cgd struct timeval atv;
325 1.1 cgd int error = 0;
326 1.25 perry struct timezone tzfake;
327 1.1 cgd
328 1.11 cgd if (SCARG(uap, tp)) {
329 1.1 cgd microtime(&atv);
330 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
331 1.17 christos if (error)
332 1.1 cgd return (error);
333 1.1 cgd }
334 1.25 perry if (SCARG(uap, tzp)) {
335 1.25 perry /*
336 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
337 1.25 perry * fake up a timezone struct and return it if demanded.
338 1.25 perry */
339 1.25 perry tzfake.tz_minuteswest = 0;
340 1.25 perry tzfake.tz_dsttime = 0;
341 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
342 1.25 perry }
343 1.1 cgd return (error);
344 1.1 cgd }
345 1.1 cgd
346 1.1 cgd /* ARGSUSED */
347 1.3 andrew int
348 1.16 mycroft sys_settimeofday(p, v, retval)
349 1.1 cgd struct proc *p;
350 1.15 thorpej void *v;
351 1.15 thorpej register_t *retval;
352 1.15 thorpej {
353 1.16 mycroft struct sys_settimeofday_args /* {
354 1.24 cgd syscallarg(const struct timeval *) tv;
355 1.24 cgd syscallarg(const struct timezone *) tzp;
356 1.15 thorpej } */ *uap = v;
357 1.22 jtc struct timeval atv;
358 1.1 cgd struct timezone atz;
359 1.56 manu struct timeval *tv = NULL;
360 1.56 manu struct timezone *tzp = NULL;
361 1.22 jtc int error;
362 1.1 cgd
363 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
364 1.1 cgd return (error);
365 1.56 manu
366 1.8 cgd /* Verify all parameters before changing time. */
367 1.56 manu if (SCARG(uap, tv)) {
368 1.56 manu if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
369 1.56 manu return (error);
370 1.56 manu tv = &atv;
371 1.56 manu }
372 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
373 1.56 manu if (SCARG(uap, tzp)) {
374 1.56 manu if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
375 1.56 manu return (error);
376 1.56 manu tzp = &atz;
377 1.56 manu }
378 1.56 manu
379 1.56 manu return settimeofday1(tv, tzp, p);
380 1.56 manu }
381 1.56 manu
382 1.56 manu int
383 1.56 manu settimeofday1(tv, tzp, p)
384 1.56 manu struct timeval *tv;
385 1.56 manu struct timezone *tzp;
386 1.56 manu struct proc *p;
387 1.56 manu {
388 1.56 manu int error;
389 1.56 manu
390 1.56 manu if (tv)
391 1.56 manu if ((error = settime(tv)) != 0)
392 1.29 tls return (error);
393 1.25 perry /*
394 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
395 1.25 perry * obsolete program would try to set it, so we log a warning.
396 1.25 perry */
397 1.56 manu if (tzp)
398 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
399 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
400 1.8 cgd return (0);
401 1.1 cgd }
402 1.1 cgd
403 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
404 1.1 cgd long timedelta; /* unapplied time correction, us. */
405 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
406 1.1 cgd
407 1.1 cgd /* ARGSUSED */
408 1.3 andrew int
409 1.16 mycroft sys_adjtime(p, v, retval)
410 1.1 cgd struct proc *p;
411 1.15 thorpej void *v;
412 1.15 thorpej register_t *retval;
413 1.15 thorpej {
414 1.45 augustss struct sys_adjtime_args /* {
415 1.24 cgd syscallarg(const struct timeval *) delta;
416 1.11 cgd syscallarg(struct timeval *) olddelta;
417 1.15 thorpej } */ *uap = v;
418 1.8 cgd struct timeval atv;
419 1.56 manu struct timeval *oatv = NULL;
420 1.56 manu int error;
421 1.1 cgd
422 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
423 1.1 cgd return (error);
424 1.17 christos
425 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
426 1.17 christos if (error)
427 1.1 cgd return (error);
428 1.56 manu
429 1.56 manu if (SCARG(uap, olddelta) != NULL) {
430 1.56 manu if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
431 1.56 manu sizeof(struct timeval), B_WRITE) == FALSE)
432 1.56 manu return (EFAULT);
433 1.56 manu oatv = SCARG(uap, olddelta);
434 1.56 manu }
435 1.56 manu
436 1.56 manu return adjtime1(&atv, oatv, p);
437 1.56 manu }
438 1.56 manu
439 1.56 manu int
440 1.56 manu adjtime1(delta, olddelta, p)
441 1.56 manu struct timeval *delta;
442 1.56 manu struct timeval *olddelta;
443 1.56 manu struct proc *p;
444 1.56 manu {
445 1.56 manu long ndelta, ntickdelta, odelta;
446 1.56 manu int s;
447 1.8 cgd
448 1.8 cgd /*
449 1.8 cgd * Compute the total correction and the rate at which to apply it.
450 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
451 1.8 cgd * delta, so that after some number of incremental changes in
452 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
453 1.8 cgd * overshoot and start taking us away from the desired final time.
454 1.8 cgd */
455 1.56 manu ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
456 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
457 1.8 cgd ntickdelta = 10 * tickadj;
458 1.8 cgd else
459 1.8 cgd ntickdelta = tickadj;
460 1.8 cgd if (ndelta % ntickdelta)
461 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
462 1.8 cgd
463 1.8 cgd /*
464 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
465 1.8 cgd * if we want time to run slower; then hardclock can simply compute
466 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
467 1.8 cgd */
468 1.8 cgd if (ndelta < 0)
469 1.8 cgd ntickdelta = -ntickdelta;
470 1.1 cgd s = splclock();
471 1.8 cgd odelta = timedelta;
472 1.1 cgd timedelta = ndelta;
473 1.8 cgd tickdelta = ntickdelta;
474 1.1 cgd splx(s);
475 1.1 cgd
476 1.56 manu if (olddelta) {
477 1.56 manu delta->tv_sec = odelta / 1000000;
478 1.56 manu delta->tv_usec = odelta % 1000000;
479 1.56 manu (void) copyout(delta, olddelta, sizeof(struct timeval));
480 1.8 cgd }
481 1.1 cgd return (0);
482 1.1 cgd }
483 1.1 cgd
484 1.1 cgd /*
485 1.1 cgd * Get value of an interval timer. The process virtual and
486 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
487 1.1 cgd * they can be swapped out. These are kept internally in the
488 1.1 cgd * way they are specified externally: in time until they expire.
489 1.1 cgd *
490 1.1 cgd * The real time interval timer is kept in the process table slot
491 1.1 cgd * for the process, and its value (it_value) is kept as an
492 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
493 1.1 cgd * periodic real-time signals from drifting.
494 1.1 cgd *
495 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
496 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
497 1.1 cgd * routine, called from the softclock() routine. Since a callout
498 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
499 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
500 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
501 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
502 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
503 1.1 cgd * absolute time the timer should go off.
504 1.1 cgd */
505 1.1 cgd /* ARGSUSED */
506 1.3 andrew int
507 1.16 mycroft sys_getitimer(p, v, retval)
508 1.1 cgd struct proc *p;
509 1.15 thorpej void *v;
510 1.15 thorpej register_t *retval;
511 1.15 thorpej {
512 1.45 augustss struct sys_getitimer_args /* {
513 1.30 mycroft syscallarg(int) which;
514 1.11 cgd syscallarg(struct itimerval *) itv;
515 1.15 thorpej } */ *uap = v;
516 1.30 mycroft int which = SCARG(uap, which);
517 1.1 cgd struct itimerval aitv;
518 1.1 cgd int s;
519 1.1 cgd
520 1.30 mycroft if ((u_int)which > ITIMER_PROF)
521 1.1 cgd return (EINVAL);
522 1.1 cgd s = splclock();
523 1.30 mycroft if (which == ITIMER_REAL) {
524 1.1 cgd /*
525 1.12 mycroft * Convert from absolute to relative time in .it_value
526 1.1 cgd * part of real time timer. If time for real time timer
527 1.1 cgd * has passed return 0, else return difference between
528 1.1 cgd * current time and time for the timer to go off.
529 1.1 cgd */
530 1.1 cgd aitv = p->p_realtimer;
531 1.36 thorpej if (timerisset(&aitv.it_value)) {
532 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
533 1.1 cgd timerclear(&aitv.it_value);
534 1.1 cgd else
535 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
536 1.36 thorpej }
537 1.1 cgd } else
538 1.30 mycroft aitv = p->p_stats->p_timer[which];
539 1.1 cgd splx(s);
540 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
541 1.1 cgd }
542 1.1 cgd
543 1.1 cgd /* ARGSUSED */
544 1.3 andrew int
545 1.16 mycroft sys_setitimer(p, v, retval)
546 1.1 cgd struct proc *p;
547 1.45 augustss void *v;
548 1.15 thorpej register_t *retval;
549 1.15 thorpej {
550 1.45 augustss struct sys_setitimer_args /* {
551 1.30 mycroft syscallarg(int) which;
552 1.24 cgd syscallarg(const struct itimerval *) itv;
553 1.11 cgd syscallarg(struct itimerval *) oitv;
554 1.15 thorpej } */ *uap = v;
555 1.30 mycroft int which = SCARG(uap, which);
556 1.21 cgd struct sys_getitimer_args getargs;
557 1.1 cgd struct itimerval aitv;
558 1.45 augustss const struct itimerval *itvp;
559 1.1 cgd int s, error;
560 1.1 cgd
561 1.30 mycroft if ((u_int)which > ITIMER_PROF)
562 1.1 cgd return (EINVAL);
563 1.11 cgd itvp = SCARG(uap, itv);
564 1.56 manu if (itvp &&
565 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
566 1.1 cgd return (error);
567 1.21 cgd if (SCARG(uap, oitv) != NULL) {
568 1.30 mycroft SCARG(&getargs, which) = which;
569 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
570 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
571 1.21 cgd return (error);
572 1.21 cgd }
573 1.1 cgd if (itvp == 0)
574 1.1 cgd return (0);
575 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
576 1.1 cgd return (EINVAL);
577 1.1 cgd s = splclock();
578 1.30 mycroft if (which == ITIMER_REAL) {
579 1.44 thorpej callout_stop(&p->p_realit_ch);
580 1.1 cgd if (timerisset(&aitv.it_value)) {
581 1.52 thorpej /*
582 1.52 thorpej * Don't need to check hzto() return value, here.
583 1.52 thorpej * callout_reset() does it for us.
584 1.52 thorpej */
585 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
586 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
587 1.44 thorpej realitexpire, p);
588 1.1 cgd }
589 1.1 cgd p->p_realtimer = aitv;
590 1.1 cgd } else
591 1.30 mycroft p->p_stats->p_timer[which] = aitv;
592 1.1 cgd splx(s);
593 1.1 cgd return (0);
594 1.1 cgd }
595 1.1 cgd
596 1.1 cgd /*
597 1.1 cgd * Real interval timer expired:
598 1.1 cgd * send process whose timer expired an alarm signal.
599 1.1 cgd * If time is not set up to reload, then just return.
600 1.1 cgd * Else compute next time timer should go off which is > current time.
601 1.1 cgd * This is where delay in processing this timeout causes multiple
602 1.1 cgd * SIGALRM calls to be compressed into one.
603 1.1 cgd */
604 1.3 andrew void
605 1.6 cgd realitexpire(arg)
606 1.6 cgd void *arg;
607 1.6 cgd {
608 1.45 augustss struct proc *p;
609 1.1 cgd int s;
610 1.1 cgd
611 1.6 cgd p = (struct proc *)arg;
612 1.1 cgd psignal(p, SIGALRM);
613 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
614 1.1 cgd timerclear(&p->p_realtimer.it_value);
615 1.1 cgd return;
616 1.1 cgd }
617 1.1 cgd for (;;) {
618 1.1 cgd s = splclock();
619 1.14 mycroft timeradd(&p->p_realtimer.it_value,
620 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
621 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
622 1.52 thorpej /*
623 1.52 thorpej * Don't need to check hzto() return value, here.
624 1.52 thorpej * callout_reset() does it for us.
625 1.52 thorpej */
626 1.44 thorpej callout_reset(&p->p_realit_ch,
627 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
628 1.1 cgd splx(s);
629 1.1 cgd return;
630 1.1 cgd }
631 1.1 cgd splx(s);
632 1.1 cgd }
633 1.1 cgd }
634 1.1 cgd
635 1.1 cgd /*
636 1.1 cgd * Check that a proposed value to load into the .it_value or
637 1.1 cgd * .it_interval part of an interval timer is acceptable, and
638 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
639 1.1 cgd * than the resolution of the clock, round it up.)
640 1.1 cgd */
641 1.3 andrew int
642 1.1 cgd itimerfix(tv)
643 1.1 cgd struct timeval *tv;
644 1.1 cgd {
645 1.1 cgd
646 1.57 christos if (tv->tv_sec < 0 || tv->tv_sec > 1000000000 ||
647 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
648 1.1 cgd return (EINVAL);
649 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
650 1.1 cgd tv->tv_usec = tick;
651 1.1 cgd return (0);
652 1.1 cgd }
653 1.1 cgd
654 1.1 cgd /*
655 1.1 cgd * Decrement an interval timer by a specified number
656 1.1 cgd * of microseconds, which must be less than a second,
657 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
658 1.1 cgd * it. In this case, carry over (usec - old value) to
659 1.8 cgd * reduce the value reloaded into the timer so that
660 1.1 cgd * the timer does not drift. This routine assumes
661 1.1 cgd * that it is called in a context where the timers
662 1.1 cgd * on which it is operating cannot change in value.
663 1.1 cgd */
664 1.3 andrew int
665 1.1 cgd itimerdecr(itp, usec)
666 1.45 augustss struct itimerval *itp;
667 1.1 cgd int usec;
668 1.1 cgd {
669 1.1 cgd
670 1.1 cgd if (itp->it_value.tv_usec < usec) {
671 1.1 cgd if (itp->it_value.tv_sec == 0) {
672 1.1 cgd /* expired, and already in next interval */
673 1.1 cgd usec -= itp->it_value.tv_usec;
674 1.1 cgd goto expire;
675 1.1 cgd }
676 1.1 cgd itp->it_value.tv_usec += 1000000;
677 1.1 cgd itp->it_value.tv_sec--;
678 1.1 cgd }
679 1.1 cgd itp->it_value.tv_usec -= usec;
680 1.1 cgd usec = 0;
681 1.1 cgd if (timerisset(&itp->it_value))
682 1.1 cgd return (1);
683 1.1 cgd /* expired, exactly at end of interval */
684 1.1 cgd expire:
685 1.1 cgd if (timerisset(&itp->it_interval)) {
686 1.1 cgd itp->it_value = itp->it_interval;
687 1.1 cgd itp->it_value.tv_usec -= usec;
688 1.1 cgd if (itp->it_value.tv_usec < 0) {
689 1.1 cgd itp->it_value.tv_usec += 1000000;
690 1.1 cgd itp->it_value.tv_sec--;
691 1.1 cgd }
692 1.1 cgd } else
693 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
694 1.1 cgd return (0);
695 1.42 cgd }
696 1.42 cgd
697 1.42 cgd /*
698 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
699 1.42 cgd * for usage and rationale.
700 1.42 cgd */
701 1.42 cgd int
702 1.42 cgd ratecheck(lasttime, mininterval)
703 1.42 cgd struct timeval *lasttime;
704 1.42 cgd const struct timeval *mininterval;
705 1.42 cgd {
706 1.49 itojun struct timeval tv, delta;
707 1.42 cgd int s, rv = 0;
708 1.42 cgd
709 1.42 cgd s = splclock();
710 1.49 itojun tv = mono_time;
711 1.49 itojun splx(s);
712 1.49 itojun
713 1.49 itojun timersub(&tv, lasttime, &delta);
714 1.42 cgd
715 1.42 cgd /*
716 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
717 1.42 cgd * even if interval is huge.
718 1.42 cgd */
719 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
720 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
721 1.49 itojun *lasttime = tv;
722 1.42 cgd rv = 1;
723 1.42 cgd }
724 1.50 itojun
725 1.50 itojun return (rv);
726 1.50 itojun }
727 1.50 itojun
728 1.50 itojun /*
729 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
730 1.50 itojun */
731 1.50 itojun int
732 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
733 1.50 itojun struct timeval *lasttime;
734 1.50 itojun int *curpps;
735 1.50 itojun int maxpps; /* maximum pps allowed */
736 1.50 itojun {
737 1.50 itojun struct timeval tv, delta;
738 1.50 itojun int s, rv;
739 1.50 itojun
740 1.50 itojun s = splclock();
741 1.50 itojun tv = mono_time;
742 1.50 itojun splx(s);
743 1.50 itojun
744 1.50 itojun timersub(&tv, lasttime, &delta);
745 1.50 itojun
746 1.50 itojun /*
747 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
748 1.50 itojun * if more than one second have passed since the last update of
749 1.50 itojun * lasttime, reset the counter.
750 1.50 itojun *
751 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
752 1.50 itojun * try to use *curpps for stat purposes as well.
753 1.50 itojun */
754 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
755 1.50 itojun delta.tv_sec >= 1) {
756 1.50 itojun *lasttime = tv;
757 1.50 itojun *curpps = 0;
758 1.50 itojun rv = 1;
759 1.53 itojun } else if (maxpps < 0)
760 1.53 itojun rv = 1;
761 1.53 itojun else if (*curpps < maxpps)
762 1.50 itojun rv = 1;
763 1.50 itojun else
764 1.50 itojun rv = 0;
765 1.50 itojun
766 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
767 1.50 itojun /* be careful about wrap-around */
768 1.50 itojun if (*curpps + 1 > *curpps)
769 1.50 itojun *curpps = *curpps + 1;
770 1.50 itojun #else
771 1.50 itojun /*
772 1.50 itojun * assume that there's not too many calls to this function.
773 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
774 1.50 itojun * behavior, not the behavior of this function.
775 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
776 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
777 1.50 itojun */
778 1.50 itojun *curpps = *curpps + 1;
779 1.50 itojun #endif
780 1.42 cgd
781 1.42 cgd return (rv);
782 1.1 cgd }
783