kern_time.c revision 1.58 1 1.58 lukem /* $NetBSD: kern_time.c,v 1.58 2001/11/12 15:25:18 lukem Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.58 lukem
74 1.58 lukem #include <sys/cdefs.h>
75 1.58 lukem __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.58 2001/11/12 15:25:18 lukem Exp $");
76 1.31 thorpej
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.5 mycroft #include <sys/proc.h>
86 1.8 cgd #include <sys/vnode.h>
87 1.17 christos #include <sys/signalvar.h>
88 1.25 perry #include <sys/syslog.h>
89 1.1 cgd
90 1.11 cgd #include <sys/mount.h>
91 1.11 cgd #include <sys/syscallargs.h>
92 1.19 christos
93 1.37 thorpej #include <uvm/uvm_extern.h>
94 1.37 thorpej
95 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
96 1.20 fvdl #include <nfs/rpcv2.h>
97 1.20 fvdl #include <nfs/nfsproto.h>
98 1.19 christos #include <nfs/nfs_var.h>
99 1.19 christos #endif
100 1.17 christos
101 1.5 mycroft #include <machine/cpu.h>
102 1.23 cgd
103 1.23 cgd /*
104 1.1 cgd * Time of day and interval timer support.
105 1.1 cgd *
106 1.1 cgd * These routines provide the kernel entry points to get and set
107 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
108 1.1 cgd * here provide support for adding and subtracting timeval structures
109 1.1 cgd * and decrementing interval timers, optionally reloading the interval
110 1.1 cgd * timers when they expire.
111 1.1 cgd */
112 1.1 cgd
113 1.22 jtc /* This function is used by clock_settime and settimeofday */
114 1.39 tron int
115 1.22 jtc settime(tv)
116 1.22 jtc struct timeval *tv;
117 1.22 jtc {
118 1.22 jtc struct timeval delta;
119 1.47 thorpej struct cpu_info *ci;
120 1.22 jtc int s;
121 1.22 jtc
122 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 1.22 jtc s = splclock();
124 1.22 jtc timersub(tv, &time, &delta);
125 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 1.55 tron splx(s);
127 1.29 tls return (EPERM);
128 1.55 tron }
129 1.29 tls #ifdef notyet
130 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
131 1.55 tron splx(s);
132 1.29 tls return (EPERM);
133 1.55 tron }
134 1.29 tls #endif
135 1.22 jtc time = *tv;
136 1.38 thorpej (void) spllowersoftclock();
137 1.22 jtc timeradd(&boottime, &delta, &boottime);
138 1.47 thorpej /*
139 1.47 thorpej * XXXSMP
140 1.47 thorpej * This is wrong. We should traverse a list of all
141 1.47 thorpej * CPUs and add the delta to the runtime of those
142 1.47 thorpej * CPUs which have a process on them.
143 1.47 thorpej */
144 1.47 thorpej ci = curcpu();
145 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 1.47 thorpej &ci->ci_schedstate.spc_runtime);
147 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
149 1.22 jtc # endif
150 1.22 jtc splx(s);
151 1.22 jtc resettodr();
152 1.29 tls return (0);
153 1.22 jtc }
154 1.22 jtc
155 1.22 jtc /* ARGSUSED */
156 1.22 jtc int
157 1.22 jtc sys_clock_gettime(p, v, retval)
158 1.22 jtc struct proc *p;
159 1.22 jtc void *v;
160 1.22 jtc register_t *retval;
161 1.22 jtc {
162 1.45 augustss struct sys_clock_gettime_args /* {
163 1.22 jtc syscallarg(clockid_t) clock_id;
164 1.23 cgd syscallarg(struct timespec *) tp;
165 1.23 cgd } */ *uap = v;
166 1.22 jtc clockid_t clock_id;
167 1.22 jtc struct timeval atv;
168 1.22 jtc struct timespec ats;
169 1.22 jtc
170 1.22 jtc clock_id = SCARG(uap, clock_id);
171 1.22 jtc if (clock_id != CLOCK_REALTIME)
172 1.22 jtc return (EINVAL);
173 1.22 jtc
174 1.22 jtc microtime(&atv);
175 1.22 jtc TIMEVAL_TO_TIMESPEC(&atv,&ats);
176 1.22 jtc
177 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
178 1.22 jtc }
179 1.22 jtc
180 1.22 jtc /* ARGSUSED */
181 1.22 jtc int
182 1.22 jtc sys_clock_settime(p, v, retval)
183 1.22 jtc struct proc *p;
184 1.22 jtc void *v;
185 1.22 jtc register_t *retval;
186 1.22 jtc {
187 1.45 augustss struct sys_clock_settime_args /* {
188 1.22 jtc syscallarg(clockid_t) clock_id;
189 1.23 cgd syscallarg(const struct timespec *) tp;
190 1.23 cgd } */ *uap = v;
191 1.22 jtc clockid_t clock_id;
192 1.22 jtc struct timespec ats;
193 1.22 jtc int error;
194 1.22 jtc
195 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
196 1.22 jtc return (error);
197 1.22 jtc
198 1.22 jtc clock_id = SCARG(uap, clock_id);
199 1.22 jtc
200 1.24 cgd if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201 1.23 cgd return (error);
202 1.22 jtc
203 1.56 manu return (clock_settime1(clock_id, &ats));
204 1.56 manu }
205 1.56 manu
206 1.56 manu
207 1.56 manu int
208 1.56 manu clock_settime1(clock_id, ats)
209 1.56 manu clockid_t clock_id;
210 1.56 manu struct timespec *ats;
211 1.56 manu {
212 1.56 manu struct timeval atv;
213 1.56 manu int error;
214 1.56 manu
215 1.56 manu if (clock_id != CLOCK_REALTIME)
216 1.56 manu return (EINVAL);
217 1.56 manu
218 1.56 manu TIMESPEC_TO_TIMEVAL(&atv, ats);
219 1.56 manu if ((error = settime(&atv)) != 0)
220 1.29 tls return (error);
221 1.22 jtc
222 1.22 jtc return 0;
223 1.22 jtc }
224 1.22 jtc
225 1.22 jtc int
226 1.22 jtc sys_clock_getres(p, v, retval)
227 1.22 jtc struct proc *p;
228 1.22 jtc void *v;
229 1.22 jtc register_t *retval;
230 1.22 jtc {
231 1.45 augustss struct sys_clock_getres_args /* {
232 1.22 jtc syscallarg(clockid_t) clock_id;
233 1.23 cgd syscallarg(struct timespec *) tp;
234 1.23 cgd } */ *uap = v;
235 1.22 jtc clockid_t clock_id;
236 1.22 jtc struct timespec ts;
237 1.22 jtc int error = 0;
238 1.22 jtc
239 1.22 jtc clock_id = SCARG(uap, clock_id);
240 1.22 jtc if (clock_id != CLOCK_REALTIME)
241 1.22 jtc return (EINVAL);
242 1.22 jtc
243 1.22 jtc if (SCARG(uap, tp)) {
244 1.22 jtc ts.tv_sec = 0;
245 1.22 jtc ts.tv_nsec = 1000000000 / hz;
246 1.22 jtc
247 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248 1.22 jtc }
249 1.22 jtc
250 1.22 jtc return error;
251 1.22 jtc }
252 1.22 jtc
253 1.27 jtc /* ARGSUSED */
254 1.27 jtc int
255 1.27 jtc sys_nanosleep(p, v, retval)
256 1.27 jtc struct proc *p;
257 1.27 jtc void *v;
258 1.27 jtc register_t *retval;
259 1.27 jtc {
260 1.27 jtc static int nanowait;
261 1.45 augustss struct sys_nanosleep_args/* {
262 1.27 jtc syscallarg(struct timespec *) rqtp;
263 1.27 jtc syscallarg(struct timespec *) rmtp;
264 1.27 jtc } */ *uap = v;
265 1.27 jtc struct timespec rqt;
266 1.27 jtc struct timespec rmt;
267 1.27 jtc struct timeval atv, utv;
268 1.27 jtc int error, s, timo;
269 1.27 jtc
270 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
271 1.27 jtc sizeof(struct timespec));
272 1.27 jtc if (error)
273 1.27 jtc return (error);
274 1.27 jtc
275 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
276 1.27 jtc if (itimerfix(&atv))
277 1.27 jtc return (EINVAL);
278 1.27 jtc
279 1.27 jtc s = splclock();
280 1.27 jtc timeradd(&atv,&time,&atv);
281 1.27 jtc timo = hzto(&atv);
282 1.27 jtc /*
283 1.27 jtc * Avoid inadvertantly sleeping forever
284 1.27 jtc */
285 1.27 jtc if (timo == 0)
286 1.27 jtc timo = 1;
287 1.27 jtc splx(s);
288 1.27 jtc
289 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
290 1.27 jtc if (error == ERESTART)
291 1.27 jtc error = EINTR;
292 1.27 jtc if (error == EWOULDBLOCK)
293 1.27 jtc error = 0;
294 1.27 jtc
295 1.27 jtc if (SCARG(uap, rmtp)) {
296 1.28 jtc int error;
297 1.28 jtc
298 1.27 jtc s = splclock();
299 1.27 jtc utv = time;
300 1.27 jtc splx(s);
301 1.27 jtc
302 1.27 jtc timersub(&atv, &utv, &utv);
303 1.27 jtc if (utv.tv_sec < 0)
304 1.27 jtc timerclear(&utv);
305 1.27 jtc
306 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
307 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
308 1.28 jtc sizeof(rmt));
309 1.28 jtc if (error)
310 1.28 jtc return (error);
311 1.27 jtc }
312 1.27 jtc
313 1.27 jtc return error;
314 1.27 jtc }
315 1.22 jtc
316 1.1 cgd /* ARGSUSED */
317 1.3 andrew int
318 1.16 mycroft sys_gettimeofday(p, v, retval)
319 1.1 cgd struct proc *p;
320 1.15 thorpej void *v;
321 1.15 thorpej register_t *retval;
322 1.15 thorpej {
323 1.45 augustss struct sys_gettimeofday_args /* {
324 1.11 cgd syscallarg(struct timeval *) tp;
325 1.11 cgd syscallarg(struct timezone *) tzp;
326 1.15 thorpej } */ *uap = v;
327 1.1 cgd struct timeval atv;
328 1.1 cgd int error = 0;
329 1.25 perry struct timezone tzfake;
330 1.1 cgd
331 1.11 cgd if (SCARG(uap, tp)) {
332 1.1 cgd microtime(&atv);
333 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
334 1.17 christos if (error)
335 1.1 cgd return (error);
336 1.1 cgd }
337 1.25 perry if (SCARG(uap, tzp)) {
338 1.25 perry /*
339 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
340 1.25 perry * fake up a timezone struct and return it if demanded.
341 1.25 perry */
342 1.25 perry tzfake.tz_minuteswest = 0;
343 1.25 perry tzfake.tz_dsttime = 0;
344 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
345 1.25 perry }
346 1.1 cgd return (error);
347 1.1 cgd }
348 1.1 cgd
349 1.1 cgd /* ARGSUSED */
350 1.3 andrew int
351 1.16 mycroft sys_settimeofday(p, v, retval)
352 1.1 cgd struct proc *p;
353 1.15 thorpej void *v;
354 1.15 thorpej register_t *retval;
355 1.15 thorpej {
356 1.16 mycroft struct sys_settimeofday_args /* {
357 1.24 cgd syscallarg(const struct timeval *) tv;
358 1.24 cgd syscallarg(const struct timezone *) tzp;
359 1.15 thorpej } */ *uap = v;
360 1.22 jtc struct timeval atv;
361 1.1 cgd struct timezone atz;
362 1.56 manu struct timeval *tv = NULL;
363 1.56 manu struct timezone *tzp = NULL;
364 1.22 jtc int error;
365 1.1 cgd
366 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
367 1.1 cgd return (error);
368 1.56 manu
369 1.8 cgd /* Verify all parameters before changing time. */
370 1.56 manu if (SCARG(uap, tv)) {
371 1.56 manu if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0)
372 1.56 manu return (error);
373 1.56 manu tv = &atv;
374 1.56 manu }
375 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
376 1.56 manu if (SCARG(uap, tzp)) {
377 1.56 manu if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0)
378 1.56 manu return (error);
379 1.56 manu tzp = &atz;
380 1.56 manu }
381 1.56 manu
382 1.56 manu return settimeofday1(tv, tzp, p);
383 1.56 manu }
384 1.56 manu
385 1.56 manu int
386 1.56 manu settimeofday1(tv, tzp, p)
387 1.56 manu struct timeval *tv;
388 1.56 manu struct timezone *tzp;
389 1.56 manu struct proc *p;
390 1.56 manu {
391 1.56 manu int error;
392 1.56 manu
393 1.56 manu if (tv)
394 1.56 manu if ((error = settime(tv)) != 0)
395 1.29 tls return (error);
396 1.25 perry /*
397 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
398 1.25 perry * obsolete program would try to set it, so we log a warning.
399 1.25 perry */
400 1.56 manu if (tzp)
401 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
402 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
403 1.8 cgd return (0);
404 1.1 cgd }
405 1.1 cgd
406 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
407 1.1 cgd long timedelta; /* unapplied time correction, us. */
408 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
409 1.1 cgd
410 1.1 cgd /* ARGSUSED */
411 1.3 andrew int
412 1.16 mycroft sys_adjtime(p, v, retval)
413 1.1 cgd struct proc *p;
414 1.15 thorpej void *v;
415 1.15 thorpej register_t *retval;
416 1.15 thorpej {
417 1.45 augustss struct sys_adjtime_args /* {
418 1.24 cgd syscallarg(const struct timeval *) delta;
419 1.11 cgd syscallarg(struct timeval *) olddelta;
420 1.15 thorpej } */ *uap = v;
421 1.8 cgd struct timeval atv;
422 1.56 manu struct timeval *oatv = NULL;
423 1.56 manu int error;
424 1.1 cgd
425 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 1.1 cgd return (error);
427 1.17 christos
428 1.24 cgd error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
429 1.17 christos if (error)
430 1.1 cgd return (error);
431 1.56 manu
432 1.56 manu if (SCARG(uap, olddelta) != NULL) {
433 1.56 manu if (uvm_useracc((caddr_t)SCARG(uap, olddelta),
434 1.56 manu sizeof(struct timeval), B_WRITE) == FALSE)
435 1.56 manu return (EFAULT);
436 1.56 manu oatv = SCARG(uap, olddelta);
437 1.56 manu }
438 1.56 manu
439 1.56 manu return adjtime1(&atv, oatv, p);
440 1.56 manu }
441 1.56 manu
442 1.56 manu int
443 1.56 manu adjtime1(delta, olddelta, p)
444 1.56 manu struct timeval *delta;
445 1.56 manu struct timeval *olddelta;
446 1.56 manu struct proc *p;
447 1.56 manu {
448 1.56 manu long ndelta, ntickdelta, odelta;
449 1.56 manu int s;
450 1.8 cgd
451 1.8 cgd /*
452 1.8 cgd * Compute the total correction and the rate at which to apply it.
453 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
454 1.8 cgd * delta, so that after some number of incremental changes in
455 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
456 1.8 cgd * overshoot and start taking us away from the desired final time.
457 1.8 cgd */
458 1.56 manu ndelta = delta->tv_sec * 1000000 + delta->tv_usec;
459 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
460 1.8 cgd ntickdelta = 10 * tickadj;
461 1.8 cgd else
462 1.8 cgd ntickdelta = tickadj;
463 1.8 cgd if (ndelta % ntickdelta)
464 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
465 1.8 cgd
466 1.8 cgd /*
467 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
468 1.8 cgd * if we want time to run slower; then hardclock can simply compute
469 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
470 1.8 cgd */
471 1.8 cgd if (ndelta < 0)
472 1.8 cgd ntickdelta = -ntickdelta;
473 1.1 cgd s = splclock();
474 1.8 cgd odelta = timedelta;
475 1.1 cgd timedelta = ndelta;
476 1.8 cgd tickdelta = ntickdelta;
477 1.1 cgd splx(s);
478 1.1 cgd
479 1.56 manu if (olddelta) {
480 1.56 manu delta->tv_sec = odelta / 1000000;
481 1.56 manu delta->tv_usec = odelta % 1000000;
482 1.56 manu (void) copyout(delta, olddelta, sizeof(struct timeval));
483 1.8 cgd }
484 1.1 cgd return (0);
485 1.1 cgd }
486 1.1 cgd
487 1.1 cgd /*
488 1.1 cgd * Get value of an interval timer. The process virtual and
489 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
490 1.1 cgd * they can be swapped out. These are kept internally in the
491 1.1 cgd * way they are specified externally: in time until they expire.
492 1.1 cgd *
493 1.1 cgd * The real time interval timer is kept in the process table slot
494 1.1 cgd * for the process, and its value (it_value) is kept as an
495 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
496 1.1 cgd * periodic real-time signals from drifting.
497 1.1 cgd *
498 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
499 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
500 1.1 cgd * routine, called from the softclock() routine. Since a callout
501 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
502 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
503 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
504 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
505 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
506 1.1 cgd * absolute time the timer should go off.
507 1.1 cgd */
508 1.1 cgd /* ARGSUSED */
509 1.3 andrew int
510 1.16 mycroft sys_getitimer(p, v, retval)
511 1.1 cgd struct proc *p;
512 1.15 thorpej void *v;
513 1.15 thorpej register_t *retval;
514 1.15 thorpej {
515 1.45 augustss struct sys_getitimer_args /* {
516 1.30 mycroft syscallarg(int) which;
517 1.11 cgd syscallarg(struct itimerval *) itv;
518 1.15 thorpej } */ *uap = v;
519 1.30 mycroft int which = SCARG(uap, which);
520 1.1 cgd struct itimerval aitv;
521 1.1 cgd int s;
522 1.1 cgd
523 1.30 mycroft if ((u_int)which > ITIMER_PROF)
524 1.1 cgd return (EINVAL);
525 1.1 cgd s = splclock();
526 1.30 mycroft if (which == ITIMER_REAL) {
527 1.1 cgd /*
528 1.12 mycroft * Convert from absolute to relative time in .it_value
529 1.1 cgd * part of real time timer. If time for real time timer
530 1.1 cgd * has passed return 0, else return difference between
531 1.1 cgd * current time and time for the timer to go off.
532 1.1 cgd */
533 1.1 cgd aitv = p->p_realtimer;
534 1.36 thorpej if (timerisset(&aitv.it_value)) {
535 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
536 1.1 cgd timerclear(&aitv.it_value);
537 1.1 cgd else
538 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
539 1.36 thorpej }
540 1.1 cgd } else
541 1.30 mycroft aitv = p->p_stats->p_timer[which];
542 1.1 cgd splx(s);
543 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
544 1.1 cgd }
545 1.1 cgd
546 1.1 cgd /* ARGSUSED */
547 1.3 andrew int
548 1.16 mycroft sys_setitimer(p, v, retval)
549 1.1 cgd struct proc *p;
550 1.45 augustss void *v;
551 1.15 thorpej register_t *retval;
552 1.15 thorpej {
553 1.45 augustss struct sys_setitimer_args /* {
554 1.30 mycroft syscallarg(int) which;
555 1.24 cgd syscallarg(const struct itimerval *) itv;
556 1.11 cgd syscallarg(struct itimerval *) oitv;
557 1.15 thorpej } */ *uap = v;
558 1.30 mycroft int which = SCARG(uap, which);
559 1.21 cgd struct sys_getitimer_args getargs;
560 1.1 cgd struct itimerval aitv;
561 1.45 augustss const struct itimerval *itvp;
562 1.1 cgd int s, error;
563 1.1 cgd
564 1.30 mycroft if ((u_int)which > ITIMER_PROF)
565 1.1 cgd return (EINVAL);
566 1.11 cgd itvp = SCARG(uap, itv);
567 1.56 manu if (itvp &&
568 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
569 1.1 cgd return (error);
570 1.21 cgd if (SCARG(uap, oitv) != NULL) {
571 1.30 mycroft SCARG(&getargs, which) = which;
572 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
573 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
574 1.21 cgd return (error);
575 1.21 cgd }
576 1.1 cgd if (itvp == 0)
577 1.1 cgd return (0);
578 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
579 1.1 cgd return (EINVAL);
580 1.1 cgd s = splclock();
581 1.30 mycroft if (which == ITIMER_REAL) {
582 1.44 thorpej callout_stop(&p->p_realit_ch);
583 1.1 cgd if (timerisset(&aitv.it_value)) {
584 1.52 thorpej /*
585 1.52 thorpej * Don't need to check hzto() return value, here.
586 1.52 thorpej * callout_reset() does it for us.
587 1.52 thorpej */
588 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
589 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
590 1.44 thorpej realitexpire, p);
591 1.1 cgd }
592 1.1 cgd p->p_realtimer = aitv;
593 1.1 cgd } else
594 1.30 mycroft p->p_stats->p_timer[which] = aitv;
595 1.1 cgd splx(s);
596 1.1 cgd return (0);
597 1.1 cgd }
598 1.1 cgd
599 1.1 cgd /*
600 1.1 cgd * Real interval timer expired:
601 1.1 cgd * send process whose timer expired an alarm signal.
602 1.1 cgd * If time is not set up to reload, then just return.
603 1.1 cgd * Else compute next time timer should go off which is > current time.
604 1.1 cgd * This is where delay in processing this timeout causes multiple
605 1.1 cgd * SIGALRM calls to be compressed into one.
606 1.1 cgd */
607 1.3 andrew void
608 1.6 cgd realitexpire(arg)
609 1.6 cgd void *arg;
610 1.6 cgd {
611 1.45 augustss struct proc *p;
612 1.1 cgd int s;
613 1.1 cgd
614 1.6 cgd p = (struct proc *)arg;
615 1.1 cgd psignal(p, SIGALRM);
616 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
617 1.1 cgd timerclear(&p->p_realtimer.it_value);
618 1.1 cgd return;
619 1.1 cgd }
620 1.1 cgd for (;;) {
621 1.1 cgd s = splclock();
622 1.14 mycroft timeradd(&p->p_realtimer.it_value,
623 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
624 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
625 1.52 thorpej /*
626 1.52 thorpej * Don't need to check hzto() return value, here.
627 1.52 thorpej * callout_reset() does it for us.
628 1.52 thorpej */
629 1.44 thorpej callout_reset(&p->p_realit_ch,
630 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
631 1.1 cgd splx(s);
632 1.1 cgd return;
633 1.1 cgd }
634 1.1 cgd splx(s);
635 1.1 cgd }
636 1.1 cgd }
637 1.1 cgd
638 1.1 cgd /*
639 1.1 cgd * Check that a proposed value to load into the .it_value or
640 1.1 cgd * .it_interval part of an interval timer is acceptable, and
641 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
642 1.1 cgd * than the resolution of the clock, round it up.)
643 1.1 cgd */
644 1.3 andrew int
645 1.1 cgd itimerfix(tv)
646 1.1 cgd struct timeval *tv;
647 1.1 cgd {
648 1.1 cgd
649 1.57 christos if (tv->tv_sec < 0 || tv->tv_sec > 1000000000 ||
650 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
651 1.1 cgd return (EINVAL);
652 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
653 1.1 cgd tv->tv_usec = tick;
654 1.1 cgd return (0);
655 1.1 cgd }
656 1.1 cgd
657 1.1 cgd /*
658 1.1 cgd * Decrement an interval timer by a specified number
659 1.1 cgd * of microseconds, which must be less than a second,
660 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
661 1.1 cgd * it. In this case, carry over (usec - old value) to
662 1.8 cgd * reduce the value reloaded into the timer so that
663 1.1 cgd * the timer does not drift. This routine assumes
664 1.1 cgd * that it is called in a context where the timers
665 1.1 cgd * on which it is operating cannot change in value.
666 1.1 cgd */
667 1.3 andrew int
668 1.1 cgd itimerdecr(itp, usec)
669 1.45 augustss struct itimerval *itp;
670 1.1 cgd int usec;
671 1.1 cgd {
672 1.1 cgd
673 1.1 cgd if (itp->it_value.tv_usec < usec) {
674 1.1 cgd if (itp->it_value.tv_sec == 0) {
675 1.1 cgd /* expired, and already in next interval */
676 1.1 cgd usec -= itp->it_value.tv_usec;
677 1.1 cgd goto expire;
678 1.1 cgd }
679 1.1 cgd itp->it_value.tv_usec += 1000000;
680 1.1 cgd itp->it_value.tv_sec--;
681 1.1 cgd }
682 1.1 cgd itp->it_value.tv_usec -= usec;
683 1.1 cgd usec = 0;
684 1.1 cgd if (timerisset(&itp->it_value))
685 1.1 cgd return (1);
686 1.1 cgd /* expired, exactly at end of interval */
687 1.1 cgd expire:
688 1.1 cgd if (timerisset(&itp->it_interval)) {
689 1.1 cgd itp->it_value = itp->it_interval;
690 1.1 cgd itp->it_value.tv_usec -= usec;
691 1.1 cgd if (itp->it_value.tv_usec < 0) {
692 1.1 cgd itp->it_value.tv_usec += 1000000;
693 1.1 cgd itp->it_value.tv_sec--;
694 1.1 cgd }
695 1.1 cgd } else
696 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
697 1.1 cgd return (0);
698 1.42 cgd }
699 1.42 cgd
700 1.42 cgd /*
701 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
702 1.42 cgd * for usage and rationale.
703 1.42 cgd */
704 1.42 cgd int
705 1.42 cgd ratecheck(lasttime, mininterval)
706 1.42 cgd struct timeval *lasttime;
707 1.42 cgd const struct timeval *mininterval;
708 1.42 cgd {
709 1.49 itojun struct timeval tv, delta;
710 1.42 cgd int s, rv = 0;
711 1.42 cgd
712 1.42 cgd s = splclock();
713 1.49 itojun tv = mono_time;
714 1.49 itojun splx(s);
715 1.49 itojun
716 1.49 itojun timersub(&tv, lasttime, &delta);
717 1.42 cgd
718 1.42 cgd /*
719 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
720 1.42 cgd * even if interval is huge.
721 1.42 cgd */
722 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
723 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
724 1.49 itojun *lasttime = tv;
725 1.42 cgd rv = 1;
726 1.42 cgd }
727 1.50 itojun
728 1.50 itojun return (rv);
729 1.50 itojun }
730 1.50 itojun
731 1.50 itojun /*
732 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
733 1.50 itojun */
734 1.50 itojun int
735 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
736 1.50 itojun struct timeval *lasttime;
737 1.50 itojun int *curpps;
738 1.50 itojun int maxpps; /* maximum pps allowed */
739 1.50 itojun {
740 1.50 itojun struct timeval tv, delta;
741 1.50 itojun int s, rv;
742 1.50 itojun
743 1.50 itojun s = splclock();
744 1.50 itojun tv = mono_time;
745 1.50 itojun splx(s);
746 1.50 itojun
747 1.50 itojun timersub(&tv, lasttime, &delta);
748 1.50 itojun
749 1.50 itojun /*
750 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
751 1.50 itojun * if more than one second have passed since the last update of
752 1.50 itojun * lasttime, reset the counter.
753 1.50 itojun *
754 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
755 1.50 itojun * try to use *curpps for stat purposes as well.
756 1.50 itojun */
757 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
758 1.50 itojun delta.tv_sec >= 1) {
759 1.50 itojun *lasttime = tv;
760 1.50 itojun *curpps = 0;
761 1.50 itojun rv = 1;
762 1.53 itojun } else if (maxpps < 0)
763 1.53 itojun rv = 1;
764 1.53 itojun else if (*curpps < maxpps)
765 1.50 itojun rv = 1;
766 1.50 itojun else
767 1.50 itojun rv = 0;
768 1.50 itojun
769 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
770 1.50 itojun /* be careful about wrap-around */
771 1.50 itojun if (*curpps + 1 > *curpps)
772 1.50 itojun *curpps = *curpps + 1;
773 1.50 itojun #else
774 1.50 itojun /*
775 1.50 itojun * assume that there's not too many calls to this function.
776 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
777 1.50 itojun * behavior, not the behavior of this function.
778 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
779 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
780 1.50 itojun */
781 1.50 itojun *curpps = *curpps + 1;
782 1.50 itojun #endif
783 1.42 cgd
784 1.42 cgd return (rv);
785 1.1 cgd }
786