kern_time.c revision 1.6 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.2 cgd * from: @(#)kern_time.c 7.15 (Berkeley) 3/17/91
34 1.6 cgd * $Id: kern_time.c,v 1.6 1994/05/05 05:38:20 cgd Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.5 mycroft #include <sys/param.h>
38 1.5 mycroft #include <sys/systm.h>
39 1.5 mycroft #include <sys/resourcevar.h>
40 1.5 mycroft #include <sys/kernel.h>
41 1.5 mycroft #include <sys/proc.h>
42 1.1 cgd
43 1.5 mycroft #include <machine/cpu.h>
44 1.1 cgd
45 1.1 cgd /*
46 1.1 cgd * Time of day and interval timer support.
47 1.1 cgd *
48 1.1 cgd * These routines provide the kernel entry points to get and set
49 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
50 1.1 cgd * here provide support for adding and subtracting timeval structures
51 1.1 cgd * and decrementing interval timers, optionally reloading the interval
52 1.1 cgd * timers when they expire.
53 1.1 cgd */
54 1.1 cgd
55 1.4 cgd struct gettimeofday_args {
56 1.4 cgd struct timeval *tp;
57 1.4 cgd struct timezone *tzp;
58 1.4 cgd };
59 1.4 cgd
60 1.1 cgd /* ARGSUSED */
61 1.3 andrew int
62 1.1 cgd gettimeofday(p, uap, retval)
63 1.1 cgd struct proc *p;
64 1.4 cgd register struct gettimeofday_args *uap;
65 1.1 cgd int *retval;
66 1.1 cgd {
67 1.1 cgd struct timeval atv;
68 1.1 cgd int error = 0;
69 1.1 cgd
70 1.1 cgd if (uap->tp) {
71 1.1 cgd microtime(&atv);
72 1.1 cgd if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
73 1.1 cgd sizeof (atv)))
74 1.1 cgd return (error);
75 1.1 cgd }
76 1.1 cgd if (uap->tzp)
77 1.1 cgd error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
78 1.1 cgd sizeof (tz));
79 1.1 cgd return (error);
80 1.1 cgd }
81 1.1 cgd
82 1.4 cgd struct settimeofday_args {
83 1.4 cgd struct timeval *tv;
84 1.4 cgd struct timezone *tzp;
85 1.4 cgd };
86 1.4 cgd
87 1.1 cgd /* ARGSUSED */
88 1.3 andrew int
89 1.1 cgd settimeofday(p, uap, retval)
90 1.1 cgd struct proc *p;
91 1.4 cgd struct settimeofday_args *uap;
92 1.1 cgd int *retval;
93 1.1 cgd {
94 1.1 cgd struct timeval atv;
95 1.1 cgd struct timezone atz;
96 1.1 cgd int error, s;
97 1.1 cgd
98 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
99 1.1 cgd return (error);
100 1.1 cgd if (uap->tv) {
101 1.1 cgd if (error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
102 1.1 cgd sizeof (struct timeval)))
103 1.1 cgd return (error);
104 1.1 cgd /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
105 1.1 cgd boottime.tv_sec += atv.tv_sec - time.tv_sec;
106 1.1 cgd s = splhigh(); time = atv; splx(s);
107 1.1 cgd resettodr();
108 1.1 cgd }
109 1.1 cgd if (uap->tzp && (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz,
110 1.1 cgd sizeof (atz))) == 0)
111 1.1 cgd tz = atz;
112 1.1 cgd return (error);
113 1.1 cgd }
114 1.1 cgd
115 1.1 cgd extern int tickadj; /* "standard" clock skew, us./tick */
116 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
117 1.1 cgd long timedelta; /* unapplied time correction, us. */
118 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
119 1.1 cgd
120 1.4 cgd struct adjtime_args {
121 1.4 cgd struct timeval *delta;
122 1.4 cgd struct timeval *olddelta;
123 1.4 cgd };
124 1.4 cgd
125 1.1 cgd /* ARGSUSED */
126 1.3 andrew int
127 1.1 cgd adjtime(p, uap, retval)
128 1.1 cgd struct proc *p;
129 1.4 cgd register struct adjtime_args *uap;
130 1.1 cgd int *retval;
131 1.1 cgd {
132 1.1 cgd struct timeval atv, oatv;
133 1.1 cgd register long ndelta;
134 1.1 cgd int s, error;
135 1.1 cgd
136 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
137 1.1 cgd return (error);
138 1.1 cgd if (error =
139 1.1 cgd copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval)))
140 1.1 cgd return (error);
141 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
142 1.1 cgd if (timedelta == 0)
143 1.1 cgd if (ndelta > bigadj)
144 1.1 cgd tickdelta = 10 * tickadj;
145 1.1 cgd else
146 1.1 cgd tickdelta = tickadj;
147 1.1 cgd if (ndelta % tickdelta)
148 1.1 cgd ndelta = ndelta / tickadj * tickadj;
149 1.1 cgd
150 1.1 cgd s = splclock();
151 1.1 cgd if (uap->olddelta) {
152 1.1 cgd oatv.tv_sec = timedelta / 1000000;
153 1.1 cgd oatv.tv_usec = timedelta % 1000000;
154 1.1 cgd }
155 1.1 cgd timedelta = ndelta;
156 1.1 cgd splx(s);
157 1.1 cgd
158 1.1 cgd if (uap->olddelta)
159 1.1 cgd (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
160 1.1 cgd sizeof (struct timeval));
161 1.1 cgd return (0);
162 1.1 cgd }
163 1.1 cgd
164 1.1 cgd /*
165 1.1 cgd * Get value of an interval timer. The process virtual and
166 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
167 1.1 cgd * they can be swapped out. These are kept internally in the
168 1.1 cgd * way they are specified externally: in time until they expire.
169 1.1 cgd *
170 1.1 cgd * The real time interval timer is kept in the process table slot
171 1.1 cgd * for the process, and its value (it_value) is kept as an
172 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
173 1.1 cgd * periodic real-time signals from drifting.
174 1.1 cgd *
175 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
176 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
177 1.1 cgd * routine, called from the softclock() routine. Since a callout
178 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
179 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
180 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
181 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
182 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
183 1.1 cgd * absolute time the timer should go off.
184 1.1 cgd */
185 1.4 cgd
186 1.4 cgd struct getitimer_args {
187 1.4 cgd u_int which;
188 1.4 cgd struct itimerval *itv;
189 1.4 cgd };
190 1.1 cgd /* ARGSUSED */
191 1.3 andrew int
192 1.1 cgd getitimer(p, uap, retval)
193 1.1 cgd struct proc *p;
194 1.4 cgd register struct getitimer_args *uap;
195 1.1 cgd int *retval;
196 1.1 cgd {
197 1.1 cgd struct itimerval aitv;
198 1.1 cgd int s;
199 1.1 cgd
200 1.1 cgd if (uap->which > ITIMER_PROF)
201 1.1 cgd return (EINVAL);
202 1.1 cgd s = splclock();
203 1.1 cgd if (uap->which == ITIMER_REAL) {
204 1.1 cgd /*
205 1.1 cgd * Convert from absoulte to relative time in .it_value
206 1.1 cgd * part of real time timer. If time for real time timer
207 1.1 cgd * has passed return 0, else return difference between
208 1.1 cgd * current time and time for the timer to go off.
209 1.1 cgd */
210 1.1 cgd aitv = p->p_realtimer;
211 1.1 cgd if (timerisset(&aitv.it_value))
212 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
213 1.1 cgd timerclear(&aitv.it_value);
214 1.1 cgd else
215 1.6 cgd timevalsub(&aitv.it_value,
216 1.6 cgd (struct timeval *)&time);
217 1.1 cgd } else
218 1.1 cgd aitv = p->p_stats->p_timer[uap->which];
219 1.1 cgd splx(s);
220 1.1 cgd return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
221 1.1 cgd sizeof (struct itimerval)));
222 1.1 cgd }
223 1.1 cgd
224 1.4 cgd struct setitimer_args {
225 1.4 cgd u_int which;
226 1.4 cgd struct itimerval *itv, *oitv;
227 1.4 cgd };
228 1.4 cgd
229 1.1 cgd /* ARGSUSED */
230 1.3 andrew int
231 1.1 cgd setitimer(p, uap, retval)
232 1.1 cgd struct proc *p;
233 1.4 cgd register struct setitimer_args *uap;
234 1.1 cgd int *retval;
235 1.1 cgd {
236 1.1 cgd struct itimerval aitv;
237 1.1 cgd register struct itimerval *itvp;
238 1.1 cgd int s, error;
239 1.1 cgd
240 1.1 cgd if (uap->which > ITIMER_PROF)
241 1.1 cgd return (EINVAL);
242 1.1 cgd itvp = uap->itv;
243 1.1 cgd if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
244 1.1 cgd sizeof(struct itimerval))))
245 1.1 cgd return (error);
246 1.1 cgd if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
247 1.1 cgd return (error);
248 1.1 cgd if (itvp == 0)
249 1.1 cgd return (0);
250 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
251 1.1 cgd return (EINVAL);
252 1.1 cgd s = splclock();
253 1.1 cgd if (uap->which == ITIMER_REAL) {
254 1.6 cgd untimeout(realitexpire, (caddr_t)p);
255 1.1 cgd if (timerisset(&aitv.it_value)) {
256 1.6 cgd timevaladd(&aitv.it_value, (struct timeval *)&time);
257 1.6 cgd timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
258 1.1 cgd }
259 1.1 cgd p->p_realtimer = aitv;
260 1.1 cgd } else
261 1.1 cgd p->p_stats->p_timer[uap->which] = aitv;
262 1.1 cgd splx(s);
263 1.1 cgd return (0);
264 1.1 cgd }
265 1.1 cgd
266 1.1 cgd /*
267 1.1 cgd * Real interval timer expired:
268 1.1 cgd * send process whose timer expired an alarm signal.
269 1.1 cgd * If time is not set up to reload, then just return.
270 1.1 cgd * Else compute next time timer should go off which is > current time.
271 1.1 cgd * This is where delay in processing this timeout causes multiple
272 1.1 cgd * SIGALRM calls to be compressed into one.
273 1.1 cgd */
274 1.3 andrew void
275 1.6 cgd realitexpire(arg)
276 1.6 cgd void *arg;
277 1.6 cgd {
278 1.1 cgd register struct proc *p;
279 1.1 cgd int s;
280 1.1 cgd
281 1.6 cgd p = (struct proc *)arg;
282 1.1 cgd psignal(p, SIGALRM);
283 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
284 1.1 cgd timerclear(&p->p_realtimer.it_value);
285 1.1 cgd return;
286 1.1 cgd }
287 1.1 cgd for (;;) {
288 1.1 cgd s = splclock();
289 1.1 cgd timevaladd(&p->p_realtimer.it_value,
290 1.1 cgd &p->p_realtimer.it_interval);
291 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
292 1.6 cgd timeout(realitexpire, (caddr_t)p,
293 1.1 cgd hzto(&p->p_realtimer.it_value));
294 1.1 cgd splx(s);
295 1.1 cgd return;
296 1.1 cgd }
297 1.1 cgd splx(s);
298 1.1 cgd }
299 1.1 cgd }
300 1.1 cgd
301 1.1 cgd /*
302 1.1 cgd * Check that a proposed value to load into the .it_value or
303 1.1 cgd * .it_interval part of an interval timer is acceptable, and
304 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
305 1.1 cgd * than the resolution of the clock, round it up.)
306 1.1 cgd */
307 1.3 andrew int
308 1.1 cgd itimerfix(tv)
309 1.1 cgd struct timeval *tv;
310 1.1 cgd {
311 1.1 cgd
312 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
313 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
314 1.1 cgd return (EINVAL);
315 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
316 1.1 cgd tv->tv_usec = tick;
317 1.1 cgd return (0);
318 1.1 cgd }
319 1.1 cgd
320 1.1 cgd /*
321 1.1 cgd * Decrement an interval timer by a specified number
322 1.1 cgd * of microseconds, which must be less than a second,
323 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
324 1.1 cgd * it. In this case, carry over (usec - old value) to
325 1.1 cgd * reducint the value reloaded into the timer so that
326 1.1 cgd * the timer does not drift. This routine assumes
327 1.1 cgd * that it is called in a context where the timers
328 1.1 cgd * on which it is operating cannot change in value.
329 1.1 cgd */
330 1.3 andrew int
331 1.1 cgd itimerdecr(itp, usec)
332 1.1 cgd register struct itimerval *itp;
333 1.1 cgd int usec;
334 1.1 cgd {
335 1.1 cgd
336 1.1 cgd if (itp->it_value.tv_usec < usec) {
337 1.1 cgd if (itp->it_value.tv_sec == 0) {
338 1.1 cgd /* expired, and already in next interval */
339 1.1 cgd usec -= itp->it_value.tv_usec;
340 1.1 cgd goto expire;
341 1.1 cgd }
342 1.1 cgd itp->it_value.tv_usec += 1000000;
343 1.1 cgd itp->it_value.tv_sec--;
344 1.1 cgd }
345 1.1 cgd itp->it_value.tv_usec -= usec;
346 1.1 cgd usec = 0;
347 1.1 cgd if (timerisset(&itp->it_value))
348 1.1 cgd return (1);
349 1.1 cgd /* expired, exactly at end of interval */
350 1.1 cgd expire:
351 1.1 cgd if (timerisset(&itp->it_interval)) {
352 1.1 cgd itp->it_value = itp->it_interval;
353 1.1 cgd itp->it_value.tv_usec -= usec;
354 1.1 cgd if (itp->it_value.tv_usec < 0) {
355 1.1 cgd itp->it_value.tv_usec += 1000000;
356 1.1 cgd itp->it_value.tv_sec--;
357 1.1 cgd }
358 1.1 cgd } else
359 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
360 1.1 cgd return (0);
361 1.1 cgd }
362 1.1 cgd
363 1.1 cgd /*
364 1.1 cgd * Add and subtract routines for timevals.
365 1.1 cgd * N.B.: subtract routine doesn't deal with
366 1.1 cgd * results which are before the beginning,
367 1.1 cgd * it just gets very confused in this case.
368 1.1 cgd * Caveat emptor.
369 1.1 cgd */
370 1.3 andrew void
371 1.1 cgd timevaladd(t1, t2)
372 1.1 cgd struct timeval *t1, *t2;
373 1.1 cgd {
374 1.1 cgd
375 1.1 cgd t1->tv_sec += t2->tv_sec;
376 1.1 cgd t1->tv_usec += t2->tv_usec;
377 1.1 cgd timevalfix(t1);
378 1.1 cgd }
379 1.1 cgd
380 1.3 andrew void
381 1.1 cgd timevalsub(t1, t2)
382 1.1 cgd struct timeval *t1, *t2;
383 1.1 cgd {
384 1.1 cgd
385 1.1 cgd t1->tv_sec -= t2->tv_sec;
386 1.1 cgd t1->tv_usec -= t2->tv_usec;
387 1.1 cgd timevalfix(t1);
388 1.1 cgd }
389 1.1 cgd
390 1.3 andrew void
391 1.1 cgd timevalfix(t1)
392 1.1 cgd struct timeval *t1;
393 1.1 cgd {
394 1.1 cgd
395 1.1 cgd if (t1->tv_usec < 0) {
396 1.1 cgd t1->tv_sec--;
397 1.1 cgd t1->tv_usec += 1000000;
398 1.1 cgd }
399 1.1 cgd if (t1->tv_usec >= 1000000) {
400 1.1 cgd t1->tv_sec++;
401 1.1 cgd t1->tv_usec -= 1000000;
402 1.1 cgd }
403 1.1 cgd }
404