Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.6
      1  1.1      cgd /*
      2  1.1      cgd  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
      3  1.1      cgd  * All rights reserved.
      4  1.1      cgd  *
      5  1.1      cgd  * Redistribution and use in source and binary forms, with or without
      6  1.1      cgd  * modification, are permitted provided that the following conditions
      7  1.1      cgd  * are met:
      8  1.1      cgd  * 1. Redistributions of source code must retain the above copyright
      9  1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     10  1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     11  1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     12  1.1      cgd  *    documentation and/or other materials provided with the distribution.
     13  1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     14  1.1      cgd  *    must display the following acknowledgement:
     15  1.1      cgd  *	This product includes software developed by the University of
     16  1.1      cgd  *	California, Berkeley and its contributors.
     17  1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     18  1.1      cgd  *    may be used to endorse or promote products derived from this software
     19  1.1      cgd  *    without specific prior written permission.
     20  1.1      cgd  *
     21  1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  1.1      cgd  * SUCH DAMAGE.
     32  1.1      cgd  *
     33  1.2      cgd  *	from: @(#)kern_time.c	7.15 (Berkeley) 3/17/91
     34  1.6      cgd  *	$Id: kern_time.c,v 1.6 1994/05/05 05:38:20 cgd Exp $
     35  1.1      cgd  */
     36  1.1      cgd 
     37  1.5  mycroft #include <sys/param.h>
     38  1.5  mycroft #include <sys/systm.h>
     39  1.5  mycroft #include <sys/resourcevar.h>
     40  1.5  mycroft #include <sys/kernel.h>
     41  1.5  mycroft #include <sys/proc.h>
     42  1.1      cgd 
     43  1.5  mycroft #include <machine/cpu.h>
     44  1.1      cgd 
     45  1.1      cgd /*
     46  1.1      cgd  * Time of day and interval timer support.
     47  1.1      cgd  *
     48  1.1      cgd  * These routines provide the kernel entry points to get and set
     49  1.1      cgd  * the time-of-day and per-process interval timers.  Subroutines
     50  1.1      cgd  * here provide support for adding and subtracting timeval structures
     51  1.1      cgd  * and decrementing interval timers, optionally reloading the interval
     52  1.1      cgd  * timers when they expire.
     53  1.1      cgd  */
     54  1.1      cgd 
     55  1.4      cgd struct gettimeofday_args {
     56  1.4      cgd 	struct	timeval *tp;
     57  1.4      cgd 	struct	timezone *tzp;
     58  1.4      cgd };
     59  1.4      cgd 
     60  1.1      cgd /* ARGSUSED */
     61  1.3   andrew int
     62  1.1      cgd gettimeofday(p, uap, retval)
     63  1.1      cgd 	struct proc *p;
     64  1.4      cgd 	register struct gettimeofday_args *uap;
     65  1.1      cgd 	int *retval;
     66  1.1      cgd {
     67  1.1      cgd 	struct timeval atv;
     68  1.1      cgd 	int error = 0;
     69  1.1      cgd 
     70  1.1      cgd 	if (uap->tp) {
     71  1.1      cgd 		microtime(&atv);
     72  1.1      cgd 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
     73  1.1      cgd 		    sizeof (atv)))
     74  1.1      cgd 			return (error);
     75  1.1      cgd 	}
     76  1.1      cgd 	if (uap->tzp)
     77  1.1      cgd 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
     78  1.1      cgd 		    sizeof (tz));
     79  1.1      cgd 	return (error);
     80  1.1      cgd }
     81  1.1      cgd 
     82  1.4      cgd struct settimeofday_args {
     83  1.4      cgd 	struct	timeval *tv;
     84  1.4      cgd 	struct	timezone *tzp;
     85  1.4      cgd };
     86  1.4      cgd 
     87  1.1      cgd /* ARGSUSED */
     88  1.3   andrew int
     89  1.1      cgd settimeofday(p, uap, retval)
     90  1.1      cgd 	struct proc *p;
     91  1.4      cgd 	struct settimeofday_args *uap;
     92  1.1      cgd 	int *retval;
     93  1.1      cgd {
     94  1.1      cgd 	struct timeval atv;
     95  1.1      cgd 	struct timezone atz;
     96  1.1      cgd 	int error, s;
     97  1.1      cgd 
     98  1.1      cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
     99  1.1      cgd 		return (error);
    100  1.1      cgd 	if (uap->tv) {
    101  1.1      cgd 		if (error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
    102  1.1      cgd 		    sizeof (struct timeval)))
    103  1.1      cgd 			return (error);
    104  1.1      cgd 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    105  1.1      cgd 		boottime.tv_sec += atv.tv_sec - time.tv_sec;
    106  1.1      cgd 		s = splhigh(); time = atv; splx(s);
    107  1.1      cgd 		resettodr();
    108  1.1      cgd 	}
    109  1.1      cgd 	if (uap->tzp && (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz,
    110  1.1      cgd 	    sizeof (atz))) == 0)
    111  1.1      cgd 		tz = atz;
    112  1.1      cgd 	return (error);
    113  1.1      cgd }
    114  1.1      cgd 
    115  1.1      cgd extern	int tickadj;			/* "standard" clock skew, us./tick */
    116  1.1      cgd int	tickdelta;			/* current clock skew, us. per tick */
    117  1.1      cgd long	timedelta;			/* unapplied time correction, us. */
    118  1.1      cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    119  1.1      cgd 
    120  1.4      cgd struct adjtime_args {
    121  1.4      cgd 	struct timeval *delta;
    122  1.4      cgd 	struct timeval *olddelta;
    123  1.4      cgd };
    124  1.4      cgd 
    125  1.1      cgd /* ARGSUSED */
    126  1.3   andrew int
    127  1.1      cgd adjtime(p, uap, retval)
    128  1.1      cgd 	struct proc *p;
    129  1.4      cgd 	register struct adjtime_args *uap;
    130  1.1      cgd 	int *retval;
    131  1.1      cgd {
    132  1.1      cgd 	struct timeval atv, oatv;
    133  1.1      cgd 	register long ndelta;
    134  1.1      cgd 	int s, error;
    135  1.1      cgd 
    136  1.1      cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
    137  1.1      cgd 		return (error);
    138  1.1      cgd 	if (error =
    139  1.1      cgd 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval)))
    140  1.1      cgd 		return (error);
    141  1.1      cgd 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    142  1.1      cgd 	if (timedelta == 0)
    143  1.1      cgd 		if (ndelta > bigadj)
    144  1.1      cgd 			tickdelta = 10 * tickadj;
    145  1.1      cgd 		else
    146  1.1      cgd 			tickdelta = tickadj;
    147  1.1      cgd 	if (ndelta % tickdelta)
    148  1.1      cgd 		ndelta = ndelta / tickadj * tickadj;
    149  1.1      cgd 
    150  1.1      cgd 	s = splclock();
    151  1.1      cgd 	if (uap->olddelta) {
    152  1.1      cgd 		oatv.tv_sec = timedelta / 1000000;
    153  1.1      cgd 		oatv.tv_usec = timedelta % 1000000;
    154  1.1      cgd 	}
    155  1.1      cgd 	timedelta = ndelta;
    156  1.1      cgd 	splx(s);
    157  1.1      cgd 
    158  1.1      cgd 	if (uap->olddelta)
    159  1.1      cgd 		(void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta,
    160  1.1      cgd 			sizeof (struct timeval));
    161  1.1      cgd 	return (0);
    162  1.1      cgd }
    163  1.1      cgd 
    164  1.1      cgd /*
    165  1.1      cgd  * Get value of an interval timer.  The process virtual and
    166  1.1      cgd  * profiling virtual time timers are kept in the p_stats area, since
    167  1.1      cgd  * they can be swapped out.  These are kept internally in the
    168  1.1      cgd  * way they are specified externally: in time until they expire.
    169  1.1      cgd  *
    170  1.1      cgd  * The real time interval timer is kept in the process table slot
    171  1.1      cgd  * for the process, and its value (it_value) is kept as an
    172  1.1      cgd  * absolute time rather than as a delta, so that it is easy to keep
    173  1.1      cgd  * periodic real-time signals from drifting.
    174  1.1      cgd  *
    175  1.1      cgd  * Virtual time timers are processed in the hardclock() routine of
    176  1.1      cgd  * kern_clock.c.  The real time timer is processed by a timeout
    177  1.1      cgd  * routine, called from the softclock() routine.  Since a callout
    178  1.1      cgd  * may be delayed in real time due to interrupt processing in the system,
    179  1.1      cgd  * it is possible for the real time timeout routine (realitexpire, given below),
    180  1.1      cgd  * to be delayed in real time past when it is supposed to occur.  It
    181  1.1      cgd  * does not suffice, therefore, to reload the real timer .it_value from the
    182  1.1      cgd  * real time timers .it_interval.  Rather, we compute the next time in
    183  1.1      cgd  * absolute time the timer should go off.
    184  1.1      cgd  */
    185  1.4      cgd 
    186  1.4      cgd struct getitimer_args {
    187  1.4      cgd 	u_int	which;
    188  1.4      cgd 	struct	itimerval *itv;
    189  1.4      cgd };
    190  1.1      cgd /* ARGSUSED */
    191  1.3   andrew int
    192  1.1      cgd getitimer(p, uap, retval)
    193  1.1      cgd 	struct proc *p;
    194  1.4      cgd 	register struct getitimer_args *uap;
    195  1.1      cgd 	int *retval;
    196  1.1      cgd {
    197  1.1      cgd 	struct itimerval aitv;
    198  1.1      cgd 	int s;
    199  1.1      cgd 
    200  1.1      cgd 	if (uap->which > ITIMER_PROF)
    201  1.1      cgd 		return (EINVAL);
    202  1.1      cgd 	s = splclock();
    203  1.1      cgd 	if (uap->which == ITIMER_REAL) {
    204  1.1      cgd 		/*
    205  1.1      cgd 		 * Convert from absoulte to relative time in .it_value
    206  1.1      cgd 		 * part of real time timer.  If time for real time timer
    207  1.1      cgd 		 * has passed return 0, else return difference between
    208  1.1      cgd 		 * current time and time for the timer to go off.
    209  1.1      cgd 		 */
    210  1.1      cgd 		aitv = p->p_realtimer;
    211  1.1      cgd 		if (timerisset(&aitv.it_value))
    212  1.1      cgd 			if (timercmp(&aitv.it_value, &time, <))
    213  1.1      cgd 				timerclear(&aitv.it_value);
    214  1.1      cgd 			else
    215  1.6      cgd 				timevalsub(&aitv.it_value,
    216  1.6      cgd 				    (struct timeval *)&time);
    217  1.1      cgd 	} else
    218  1.1      cgd 		aitv = p->p_stats->p_timer[uap->which];
    219  1.1      cgd 	splx(s);
    220  1.1      cgd 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
    221  1.1      cgd 	    sizeof (struct itimerval)));
    222  1.1      cgd }
    223  1.1      cgd 
    224  1.4      cgd struct setitimer_args {
    225  1.4      cgd 	u_int	which;
    226  1.4      cgd 	struct	itimerval *itv, *oitv;
    227  1.4      cgd };
    228  1.4      cgd 
    229  1.1      cgd /* ARGSUSED */
    230  1.3   andrew int
    231  1.1      cgd setitimer(p, uap, retval)
    232  1.1      cgd 	struct proc *p;
    233  1.4      cgd 	register struct setitimer_args *uap;
    234  1.1      cgd 	int *retval;
    235  1.1      cgd {
    236  1.1      cgd 	struct itimerval aitv;
    237  1.1      cgd 	register struct itimerval *itvp;
    238  1.1      cgd 	int s, error;
    239  1.1      cgd 
    240  1.1      cgd 	if (uap->which > ITIMER_PROF)
    241  1.1      cgd 		return (EINVAL);
    242  1.1      cgd 	itvp = uap->itv;
    243  1.1      cgd 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    244  1.1      cgd 	    sizeof(struct itimerval))))
    245  1.1      cgd 		return (error);
    246  1.1      cgd 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
    247  1.1      cgd 		return (error);
    248  1.1      cgd 	if (itvp == 0)
    249  1.1      cgd 		return (0);
    250  1.1      cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    251  1.1      cgd 		return (EINVAL);
    252  1.1      cgd 	s = splclock();
    253  1.1      cgd 	if (uap->which == ITIMER_REAL) {
    254  1.6      cgd 		untimeout(realitexpire, (caddr_t)p);
    255  1.1      cgd 		if (timerisset(&aitv.it_value)) {
    256  1.6      cgd 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    257  1.6      cgd 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
    258  1.1      cgd 		}
    259  1.1      cgd 		p->p_realtimer = aitv;
    260  1.1      cgd 	} else
    261  1.1      cgd 		p->p_stats->p_timer[uap->which] = aitv;
    262  1.1      cgd 	splx(s);
    263  1.1      cgd 	return (0);
    264  1.1      cgd }
    265  1.1      cgd 
    266  1.1      cgd /*
    267  1.1      cgd  * Real interval timer expired:
    268  1.1      cgd  * send process whose timer expired an alarm signal.
    269  1.1      cgd  * If time is not set up to reload, then just return.
    270  1.1      cgd  * Else compute next time timer should go off which is > current time.
    271  1.1      cgd  * This is where delay in processing this timeout causes multiple
    272  1.1      cgd  * SIGALRM calls to be compressed into one.
    273  1.1      cgd  */
    274  1.3   andrew void
    275  1.6      cgd realitexpire(arg)
    276  1.6      cgd 	void *arg;
    277  1.6      cgd {
    278  1.1      cgd 	register struct proc *p;
    279  1.1      cgd 	int s;
    280  1.1      cgd 
    281  1.6      cgd 	p = (struct proc *)arg;
    282  1.1      cgd 	psignal(p, SIGALRM);
    283  1.1      cgd 	if (!timerisset(&p->p_realtimer.it_interval)) {
    284  1.1      cgd 		timerclear(&p->p_realtimer.it_value);
    285  1.1      cgd 		return;
    286  1.1      cgd 	}
    287  1.1      cgd 	for (;;) {
    288  1.1      cgd 		s = splclock();
    289  1.1      cgd 		timevaladd(&p->p_realtimer.it_value,
    290  1.1      cgd 		    &p->p_realtimer.it_interval);
    291  1.1      cgd 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    292  1.6      cgd 			timeout(realitexpire, (caddr_t)p,
    293  1.1      cgd 			    hzto(&p->p_realtimer.it_value));
    294  1.1      cgd 			splx(s);
    295  1.1      cgd 			return;
    296  1.1      cgd 		}
    297  1.1      cgd 		splx(s);
    298  1.1      cgd 	}
    299  1.1      cgd }
    300  1.1      cgd 
    301  1.1      cgd /*
    302  1.1      cgd  * Check that a proposed value to load into the .it_value or
    303  1.1      cgd  * .it_interval part of an interval timer is acceptable, and
    304  1.1      cgd  * fix it to have at least minimal value (i.e. if it is less
    305  1.1      cgd  * than the resolution of the clock, round it up.)
    306  1.1      cgd  */
    307  1.3   andrew int
    308  1.1      cgd itimerfix(tv)
    309  1.1      cgd 	struct timeval *tv;
    310  1.1      cgd {
    311  1.1      cgd 
    312  1.1      cgd 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    313  1.1      cgd 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    314  1.1      cgd 		return (EINVAL);
    315  1.1      cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    316  1.1      cgd 		tv->tv_usec = tick;
    317  1.1      cgd 	return (0);
    318  1.1      cgd }
    319  1.1      cgd 
    320  1.1      cgd /*
    321  1.1      cgd  * Decrement an interval timer by a specified number
    322  1.1      cgd  * of microseconds, which must be less than a second,
    323  1.1      cgd  * i.e. < 1000000.  If the timer expires, then reload
    324  1.1      cgd  * it.  In this case, carry over (usec - old value) to
    325  1.1      cgd  * reducint the value reloaded into the timer so that
    326  1.1      cgd  * the timer does not drift.  This routine assumes
    327  1.1      cgd  * that it is called in a context where the timers
    328  1.1      cgd  * on which it is operating cannot change in value.
    329  1.1      cgd  */
    330  1.3   andrew int
    331  1.1      cgd itimerdecr(itp, usec)
    332  1.1      cgd 	register struct itimerval *itp;
    333  1.1      cgd 	int usec;
    334  1.1      cgd {
    335  1.1      cgd 
    336  1.1      cgd 	if (itp->it_value.tv_usec < usec) {
    337  1.1      cgd 		if (itp->it_value.tv_sec == 0) {
    338  1.1      cgd 			/* expired, and already in next interval */
    339  1.1      cgd 			usec -= itp->it_value.tv_usec;
    340  1.1      cgd 			goto expire;
    341  1.1      cgd 		}
    342  1.1      cgd 		itp->it_value.tv_usec += 1000000;
    343  1.1      cgd 		itp->it_value.tv_sec--;
    344  1.1      cgd 	}
    345  1.1      cgd 	itp->it_value.tv_usec -= usec;
    346  1.1      cgd 	usec = 0;
    347  1.1      cgd 	if (timerisset(&itp->it_value))
    348  1.1      cgd 		return (1);
    349  1.1      cgd 	/* expired, exactly at end of interval */
    350  1.1      cgd expire:
    351  1.1      cgd 	if (timerisset(&itp->it_interval)) {
    352  1.1      cgd 		itp->it_value = itp->it_interval;
    353  1.1      cgd 		itp->it_value.tv_usec -= usec;
    354  1.1      cgd 		if (itp->it_value.tv_usec < 0) {
    355  1.1      cgd 			itp->it_value.tv_usec += 1000000;
    356  1.1      cgd 			itp->it_value.tv_sec--;
    357  1.1      cgd 		}
    358  1.1      cgd 	} else
    359  1.1      cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    360  1.1      cgd 	return (0);
    361  1.1      cgd }
    362  1.1      cgd 
    363  1.1      cgd /*
    364  1.1      cgd  * Add and subtract routines for timevals.
    365  1.1      cgd  * N.B.: subtract routine doesn't deal with
    366  1.1      cgd  * results which are before the beginning,
    367  1.1      cgd  * it just gets very confused in this case.
    368  1.1      cgd  * Caveat emptor.
    369  1.1      cgd  */
    370  1.3   andrew void
    371  1.1      cgd timevaladd(t1, t2)
    372  1.1      cgd 	struct timeval *t1, *t2;
    373  1.1      cgd {
    374  1.1      cgd 
    375  1.1      cgd 	t1->tv_sec += t2->tv_sec;
    376  1.1      cgd 	t1->tv_usec += t2->tv_usec;
    377  1.1      cgd 	timevalfix(t1);
    378  1.1      cgd }
    379  1.1      cgd 
    380  1.3   andrew void
    381  1.1      cgd timevalsub(t1, t2)
    382  1.1      cgd 	struct timeval *t1, *t2;
    383  1.1      cgd {
    384  1.1      cgd 
    385  1.1      cgd 	t1->tv_sec -= t2->tv_sec;
    386  1.1      cgd 	t1->tv_usec -= t2->tv_usec;
    387  1.1      cgd 	timevalfix(t1);
    388  1.1      cgd }
    389  1.1      cgd 
    390  1.3   andrew void
    391  1.1      cgd timevalfix(t1)
    392  1.1      cgd 	struct timeval *t1;
    393  1.1      cgd {
    394  1.1      cgd 
    395  1.1      cgd 	if (t1->tv_usec < 0) {
    396  1.1      cgd 		t1->tv_sec--;
    397  1.1      cgd 		t1->tv_usec += 1000000;
    398  1.1      cgd 	}
    399  1.1      cgd 	if (t1->tv_usec >= 1000000) {
    400  1.1      cgd 		t1->tv_sec++;
    401  1.1      cgd 		t1->tv_usec -= 1000000;
    402  1.1      cgd 	}
    403  1.1      cgd }
    404