kern_time.c revision 1.62 1 1.62 simonb /* $NetBSD: kern_time.c,v 1.62 2002/10/22 03:23:24 simonb Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.1 cgd * 3. All advertising materials mentioning features or use of this software
52 1.1 cgd * must display the following acknowledgement:
53 1.1 cgd * This product includes software developed by the University of
54 1.1 cgd * California, Berkeley and its contributors.
55 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
56 1.1 cgd * may be used to endorse or promote products derived from this software
57 1.1 cgd * without specific prior written permission.
58 1.1 cgd *
59 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 1.1 cgd * SUCH DAMAGE.
70 1.1 cgd *
71 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
72 1.1 cgd */
73 1.58 lukem
74 1.58 lukem #include <sys/cdefs.h>
75 1.62 simonb __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.62 2002/10/22 03:23:24 simonb Exp $");
76 1.31 thorpej
77 1.31 thorpej #include "fs_nfs.h"
78 1.54 bjh21 #include "opt_nfs.h"
79 1.34 thorpej #include "opt_nfsserver.h"
80 1.1 cgd
81 1.5 mycroft #include <sys/param.h>
82 1.5 mycroft #include <sys/resourcevar.h>
83 1.5 mycroft #include <sys/kernel.h>
84 1.8 cgd #include <sys/systm.h>
85 1.5 mycroft #include <sys/proc.h>
86 1.8 cgd #include <sys/vnode.h>
87 1.17 christos #include <sys/signalvar.h>
88 1.25 perry #include <sys/syslog.h>
89 1.1 cgd
90 1.11 cgd #include <sys/mount.h>
91 1.11 cgd #include <sys/syscallargs.h>
92 1.19 christos
93 1.37 thorpej #include <uvm/uvm_extern.h>
94 1.37 thorpej
95 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
96 1.20 fvdl #include <nfs/rpcv2.h>
97 1.20 fvdl #include <nfs/nfsproto.h>
98 1.19 christos #include <nfs/nfs_var.h>
99 1.19 christos #endif
100 1.17 christos
101 1.5 mycroft #include <machine/cpu.h>
102 1.23 cgd
103 1.23 cgd /*
104 1.1 cgd * Time of day and interval timer support.
105 1.1 cgd *
106 1.1 cgd * These routines provide the kernel entry points to get and set
107 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
108 1.1 cgd * here provide support for adding and subtracting timeval structures
109 1.1 cgd * and decrementing interval timers, optionally reloading the interval
110 1.1 cgd * timers when they expire.
111 1.1 cgd */
112 1.1 cgd
113 1.22 jtc /* This function is used by clock_settime and settimeofday */
114 1.39 tron int
115 1.22 jtc settime(tv)
116 1.22 jtc struct timeval *tv;
117 1.22 jtc {
118 1.22 jtc struct timeval delta;
119 1.47 thorpej struct cpu_info *ci;
120 1.22 jtc int s;
121 1.22 jtc
122 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 1.22 jtc s = splclock();
124 1.22 jtc timersub(tv, &time, &delta);
125 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 1.55 tron splx(s);
127 1.29 tls return (EPERM);
128 1.55 tron }
129 1.29 tls #ifdef notyet
130 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
131 1.55 tron splx(s);
132 1.29 tls return (EPERM);
133 1.55 tron }
134 1.29 tls #endif
135 1.22 jtc time = *tv;
136 1.38 thorpej (void) spllowersoftclock();
137 1.22 jtc timeradd(&boottime, &delta, &boottime);
138 1.47 thorpej /*
139 1.47 thorpej * XXXSMP
140 1.47 thorpej * This is wrong. We should traverse a list of all
141 1.47 thorpej * CPUs and add the delta to the runtime of those
142 1.47 thorpej * CPUs which have a process on them.
143 1.47 thorpej */
144 1.47 thorpej ci = curcpu();
145 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 1.47 thorpej &ci->ci_schedstate.spc_runtime);
147 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
149 1.22 jtc # endif
150 1.22 jtc splx(s);
151 1.22 jtc resettodr();
152 1.29 tls return (0);
153 1.22 jtc }
154 1.22 jtc
155 1.22 jtc /* ARGSUSED */
156 1.22 jtc int
157 1.22 jtc sys_clock_gettime(p, v, retval)
158 1.22 jtc struct proc *p;
159 1.22 jtc void *v;
160 1.22 jtc register_t *retval;
161 1.22 jtc {
162 1.45 augustss struct sys_clock_gettime_args /* {
163 1.22 jtc syscallarg(clockid_t) clock_id;
164 1.23 cgd syscallarg(struct timespec *) tp;
165 1.23 cgd } */ *uap = v;
166 1.22 jtc clockid_t clock_id;
167 1.22 jtc struct timeval atv;
168 1.22 jtc struct timespec ats;
169 1.61 simonb int s;
170 1.22 jtc
171 1.22 jtc clock_id = SCARG(uap, clock_id);
172 1.61 simonb switch (clock_id) {
173 1.61 simonb case CLOCK_REALTIME:
174 1.61 simonb microtime(&atv);
175 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
176 1.61 simonb break;
177 1.61 simonb case CLOCK_MONOTONIC:
178 1.61 simonb /* XXX "hz" granularity */
179 1.61 simonb s = splclock();
180 1.61 simonb atv = mono_time;
181 1.61 simonb splx(s);
182 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
183 1.61 simonb break;
184 1.61 simonb default:
185 1.22 jtc return (EINVAL);
186 1.61 simonb }
187 1.22 jtc
188 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
189 1.22 jtc }
190 1.22 jtc
191 1.22 jtc /* ARGSUSED */
192 1.22 jtc int
193 1.22 jtc sys_clock_settime(p, v, retval)
194 1.22 jtc struct proc *p;
195 1.22 jtc void *v;
196 1.22 jtc register_t *retval;
197 1.22 jtc {
198 1.45 augustss struct sys_clock_settime_args /* {
199 1.22 jtc syscallarg(clockid_t) clock_id;
200 1.23 cgd syscallarg(const struct timespec *) tp;
201 1.23 cgd } */ *uap = v;
202 1.22 jtc int error;
203 1.22 jtc
204 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
205 1.22 jtc return (error);
206 1.22 jtc
207 1.60 manu return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
208 1.56 manu }
209 1.56 manu
210 1.56 manu
211 1.56 manu int
212 1.60 manu clock_settime1(clock_id, tp)
213 1.56 manu clockid_t clock_id;
214 1.60 manu const struct timespec *tp;
215 1.56 manu {
216 1.60 manu struct timespec ats;
217 1.56 manu struct timeval atv;
218 1.56 manu int error;
219 1.56 manu
220 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
221 1.60 manu return (error);
222 1.60 manu
223 1.61 simonb switch (clock_id) {
224 1.61 simonb case CLOCK_REALTIME:
225 1.61 simonb TIMESPEC_TO_TIMEVAL(&atv, &ats);
226 1.61 simonb if ((error = settime(&atv)) != 0)
227 1.61 simonb return (error);
228 1.61 simonb break;
229 1.61 simonb case CLOCK_MONOTONIC:
230 1.61 simonb return (EINVAL); /* read-only clock */
231 1.61 simonb default:
232 1.56 manu return (EINVAL);
233 1.61 simonb }
234 1.22 jtc
235 1.22 jtc return 0;
236 1.22 jtc }
237 1.22 jtc
238 1.22 jtc int
239 1.22 jtc sys_clock_getres(p, v, retval)
240 1.22 jtc struct proc *p;
241 1.22 jtc void *v;
242 1.22 jtc register_t *retval;
243 1.22 jtc {
244 1.45 augustss struct sys_clock_getres_args /* {
245 1.22 jtc syscallarg(clockid_t) clock_id;
246 1.23 cgd syscallarg(struct timespec *) tp;
247 1.23 cgd } */ *uap = v;
248 1.22 jtc clockid_t clock_id;
249 1.22 jtc struct timespec ts;
250 1.22 jtc int error = 0;
251 1.22 jtc
252 1.22 jtc clock_id = SCARG(uap, clock_id);
253 1.61 simonb switch (clock_id) {
254 1.61 simonb case CLOCK_REALTIME:
255 1.61 simonb case CLOCK_MONOTONIC:
256 1.22 jtc ts.tv_sec = 0;
257 1.22 jtc ts.tv_nsec = 1000000000 / hz;
258 1.61 simonb break;
259 1.61 simonb default:
260 1.61 simonb return (EINVAL);
261 1.61 simonb }
262 1.22 jtc
263 1.61 simonb if (SCARG(uap, tp))
264 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
265 1.22 jtc
266 1.22 jtc return error;
267 1.22 jtc }
268 1.22 jtc
269 1.27 jtc /* ARGSUSED */
270 1.27 jtc int
271 1.27 jtc sys_nanosleep(p, v, retval)
272 1.27 jtc struct proc *p;
273 1.27 jtc void *v;
274 1.27 jtc register_t *retval;
275 1.27 jtc {
276 1.27 jtc static int nanowait;
277 1.45 augustss struct sys_nanosleep_args/* {
278 1.27 jtc syscallarg(struct timespec *) rqtp;
279 1.27 jtc syscallarg(struct timespec *) rmtp;
280 1.27 jtc } */ *uap = v;
281 1.27 jtc struct timespec rqt;
282 1.27 jtc struct timespec rmt;
283 1.27 jtc struct timeval atv, utv;
284 1.27 jtc int error, s, timo;
285 1.27 jtc
286 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
287 1.27 jtc sizeof(struct timespec));
288 1.27 jtc if (error)
289 1.27 jtc return (error);
290 1.27 jtc
291 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
292 1.59 christos if (itimerfix(&atv) || atv.tv_sec > 1000000000)
293 1.27 jtc return (EINVAL);
294 1.27 jtc
295 1.27 jtc s = splclock();
296 1.27 jtc timeradd(&atv,&time,&atv);
297 1.27 jtc timo = hzto(&atv);
298 1.27 jtc /*
299 1.27 jtc * Avoid inadvertantly sleeping forever
300 1.27 jtc */
301 1.27 jtc if (timo == 0)
302 1.27 jtc timo = 1;
303 1.27 jtc splx(s);
304 1.27 jtc
305 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
306 1.27 jtc if (error == ERESTART)
307 1.27 jtc error = EINTR;
308 1.27 jtc if (error == EWOULDBLOCK)
309 1.27 jtc error = 0;
310 1.27 jtc
311 1.27 jtc if (SCARG(uap, rmtp)) {
312 1.28 jtc int error;
313 1.28 jtc
314 1.27 jtc s = splclock();
315 1.27 jtc utv = time;
316 1.27 jtc splx(s);
317 1.27 jtc
318 1.27 jtc timersub(&atv, &utv, &utv);
319 1.27 jtc if (utv.tv_sec < 0)
320 1.27 jtc timerclear(&utv);
321 1.27 jtc
322 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
323 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
324 1.28 jtc sizeof(rmt));
325 1.28 jtc if (error)
326 1.28 jtc return (error);
327 1.27 jtc }
328 1.27 jtc
329 1.27 jtc return error;
330 1.27 jtc }
331 1.22 jtc
332 1.1 cgd /* ARGSUSED */
333 1.3 andrew int
334 1.16 mycroft sys_gettimeofday(p, v, retval)
335 1.1 cgd struct proc *p;
336 1.15 thorpej void *v;
337 1.15 thorpej register_t *retval;
338 1.15 thorpej {
339 1.45 augustss struct sys_gettimeofday_args /* {
340 1.11 cgd syscallarg(struct timeval *) tp;
341 1.11 cgd syscallarg(struct timezone *) tzp;
342 1.15 thorpej } */ *uap = v;
343 1.1 cgd struct timeval atv;
344 1.1 cgd int error = 0;
345 1.25 perry struct timezone tzfake;
346 1.1 cgd
347 1.11 cgd if (SCARG(uap, tp)) {
348 1.1 cgd microtime(&atv);
349 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
350 1.17 christos if (error)
351 1.1 cgd return (error);
352 1.1 cgd }
353 1.25 perry if (SCARG(uap, tzp)) {
354 1.25 perry /*
355 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
356 1.25 perry * fake up a timezone struct and return it if demanded.
357 1.25 perry */
358 1.25 perry tzfake.tz_minuteswest = 0;
359 1.25 perry tzfake.tz_dsttime = 0;
360 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
361 1.25 perry }
362 1.1 cgd return (error);
363 1.1 cgd }
364 1.1 cgd
365 1.1 cgd /* ARGSUSED */
366 1.3 andrew int
367 1.16 mycroft sys_settimeofday(p, v, retval)
368 1.1 cgd struct proc *p;
369 1.15 thorpej void *v;
370 1.15 thorpej register_t *retval;
371 1.15 thorpej {
372 1.16 mycroft struct sys_settimeofday_args /* {
373 1.24 cgd syscallarg(const struct timeval *) tv;
374 1.24 cgd syscallarg(const struct timezone *) tzp;
375 1.15 thorpej } */ *uap = v;
376 1.60 manu int error;
377 1.60 manu
378 1.60 manu if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
379 1.60 manu return (error);
380 1.60 manu
381 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
382 1.60 manu }
383 1.60 manu
384 1.60 manu int
385 1.60 manu settimeofday1(utv, utzp, p)
386 1.60 manu const struct timeval *utv;
387 1.60 manu const struct timezone *utzp;
388 1.60 manu struct proc *p;
389 1.60 manu {
390 1.22 jtc struct timeval atv;
391 1.1 cgd struct timezone atz;
392 1.56 manu struct timeval *tv = NULL;
393 1.56 manu struct timezone *tzp = NULL;
394 1.22 jtc int error;
395 1.1 cgd
396 1.8 cgd /* Verify all parameters before changing time. */
397 1.60 manu if (utv) {
398 1.60 manu if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
399 1.56 manu return (error);
400 1.56 manu tv = &atv;
401 1.56 manu }
402 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
403 1.60 manu if (utzp) {
404 1.60 manu if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
405 1.56 manu return (error);
406 1.56 manu tzp = &atz;
407 1.56 manu }
408 1.56 manu
409 1.56 manu if (tv)
410 1.56 manu if ((error = settime(tv)) != 0)
411 1.29 tls return (error);
412 1.25 perry /*
413 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
414 1.25 perry * obsolete program would try to set it, so we log a warning.
415 1.25 perry */
416 1.56 manu if (tzp)
417 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
418 1.32 mycroft "(obsolete) kernel time zone\n", p->p_pid);
419 1.8 cgd return (0);
420 1.1 cgd }
421 1.1 cgd
422 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
423 1.1 cgd long timedelta; /* unapplied time correction, us. */
424 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
425 1.1 cgd
426 1.1 cgd /* ARGSUSED */
427 1.3 andrew int
428 1.16 mycroft sys_adjtime(p, v, retval)
429 1.1 cgd struct proc *p;
430 1.15 thorpej void *v;
431 1.15 thorpej register_t *retval;
432 1.15 thorpej {
433 1.45 augustss struct sys_adjtime_args /* {
434 1.24 cgd syscallarg(const struct timeval *) delta;
435 1.11 cgd syscallarg(struct timeval *) olddelta;
436 1.15 thorpej } */ *uap = v;
437 1.56 manu int error;
438 1.1 cgd
439 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
440 1.1 cgd return (error);
441 1.17 christos
442 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
443 1.56 manu }
444 1.56 manu
445 1.56 manu int
446 1.56 manu adjtime1(delta, olddelta, p)
447 1.60 manu const struct timeval *delta;
448 1.56 manu struct timeval *olddelta;
449 1.56 manu struct proc *p;
450 1.56 manu {
451 1.60 manu struct timeval atv;
452 1.56 manu long ndelta, ntickdelta, odelta;
453 1.60 manu int error;
454 1.56 manu int s;
455 1.8 cgd
456 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
457 1.60 manu if (error)
458 1.60 manu return (error);
459 1.60 manu
460 1.60 manu if (olddelta != NULL) {
461 1.60 manu if (uvm_useracc((caddr_t)olddelta,
462 1.60 manu sizeof(struct timeval), B_WRITE) == FALSE)
463 1.60 manu return (EFAULT);
464 1.60 manu }
465 1.60 manu
466 1.8 cgd /*
467 1.8 cgd * Compute the total correction and the rate at which to apply it.
468 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
469 1.8 cgd * delta, so that after some number of incremental changes in
470 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
471 1.8 cgd * overshoot and start taking us away from the desired final time.
472 1.8 cgd */
473 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
474 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
475 1.8 cgd ntickdelta = 10 * tickadj;
476 1.8 cgd else
477 1.8 cgd ntickdelta = tickadj;
478 1.8 cgd if (ndelta % ntickdelta)
479 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
480 1.8 cgd
481 1.8 cgd /*
482 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
483 1.8 cgd * if we want time to run slower; then hardclock can simply compute
484 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
485 1.8 cgd */
486 1.8 cgd if (ndelta < 0)
487 1.8 cgd ntickdelta = -ntickdelta;
488 1.1 cgd s = splclock();
489 1.8 cgd odelta = timedelta;
490 1.1 cgd timedelta = ndelta;
491 1.8 cgd tickdelta = ntickdelta;
492 1.1 cgd splx(s);
493 1.1 cgd
494 1.56 manu if (olddelta) {
495 1.60 manu atv.tv_sec = odelta / 1000000;
496 1.60 manu atv.tv_usec = odelta % 1000000;
497 1.60 manu (void) copyout(&atv, olddelta, sizeof(struct timeval));
498 1.8 cgd }
499 1.1 cgd return (0);
500 1.1 cgd }
501 1.1 cgd
502 1.1 cgd /*
503 1.1 cgd * Get value of an interval timer. The process virtual and
504 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
505 1.1 cgd * they can be swapped out. These are kept internally in the
506 1.1 cgd * way they are specified externally: in time until they expire.
507 1.1 cgd *
508 1.1 cgd * The real time interval timer is kept in the process table slot
509 1.1 cgd * for the process, and its value (it_value) is kept as an
510 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
511 1.1 cgd * periodic real-time signals from drifting.
512 1.1 cgd *
513 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
514 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
515 1.1 cgd * routine, called from the softclock() routine. Since a callout
516 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
517 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
518 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
519 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
520 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
521 1.1 cgd * absolute time the timer should go off.
522 1.1 cgd */
523 1.1 cgd /* ARGSUSED */
524 1.3 andrew int
525 1.16 mycroft sys_getitimer(p, v, retval)
526 1.1 cgd struct proc *p;
527 1.15 thorpej void *v;
528 1.15 thorpej register_t *retval;
529 1.15 thorpej {
530 1.45 augustss struct sys_getitimer_args /* {
531 1.30 mycroft syscallarg(int) which;
532 1.11 cgd syscallarg(struct itimerval *) itv;
533 1.15 thorpej } */ *uap = v;
534 1.30 mycroft int which = SCARG(uap, which);
535 1.1 cgd struct itimerval aitv;
536 1.1 cgd int s;
537 1.1 cgd
538 1.30 mycroft if ((u_int)which > ITIMER_PROF)
539 1.1 cgd return (EINVAL);
540 1.1 cgd s = splclock();
541 1.30 mycroft if (which == ITIMER_REAL) {
542 1.1 cgd /*
543 1.12 mycroft * Convert from absolute to relative time in .it_value
544 1.1 cgd * part of real time timer. If time for real time timer
545 1.1 cgd * has passed return 0, else return difference between
546 1.1 cgd * current time and time for the timer to go off.
547 1.1 cgd */
548 1.1 cgd aitv = p->p_realtimer;
549 1.36 thorpej if (timerisset(&aitv.it_value)) {
550 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
551 1.1 cgd timerclear(&aitv.it_value);
552 1.1 cgd else
553 1.14 mycroft timersub(&aitv.it_value, &time, &aitv.it_value);
554 1.36 thorpej }
555 1.1 cgd } else
556 1.30 mycroft aitv = p->p_stats->p_timer[which];
557 1.1 cgd splx(s);
558 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
559 1.1 cgd }
560 1.1 cgd
561 1.1 cgd /* ARGSUSED */
562 1.3 andrew int
563 1.16 mycroft sys_setitimer(p, v, retval)
564 1.1 cgd struct proc *p;
565 1.45 augustss void *v;
566 1.15 thorpej register_t *retval;
567 1.15 thorpej {
568 1.45 augustss struct sys_setitimer_args /* {
569 1.30 mycroft syscallarg(int) which;
570 1.24 cgd syscallarg(const struct itimerval *) itv;
571 1.11 cgd syscallarg(struct itimerval *) oitv;
572 1.15 thorpej } */ *uap = v;
573 1.30 mycroft int which = SCARG(uap, which);
574 1.21 cgd struct sys_getitimer_args getargs;
575 1.1 cgd struct itimerval aitv;
576 1.45 augustss const struct itimerval *itvp;
577 1.1 cgd int s, error;
578 1.1 cgd
579 1.30 mycroft if ((u_int)which > ITIMER_PROF)
580 1.1 cgd return (EINVAL);
581 1.11 cgd itvp = SCARG(uap, itv);
582 1.56 manu if (itvp &&
583 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
584 1.1 cgd return (error);
585 1.21 cgd if (SCARG(uap, oitv) != NULL) {
586 1.30 mycroft SCARG(&getargs, which) = which;
587 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
588 1.23 cgd if ((error = sys_getitimer(p, &getargs, retval)) != 0)
589 1.21 cgd return (error);
590 1.21 cgd }
591 1.1 cgd if (itvp == 0)
592 1.1 cgd return (0);
593 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
594 1.1 cgd return (EINVAL);
595 1.1 cgd s = splclock();
596 1.30 mycroft if (which == ITIMER_REAL) {
597 1.44 thorpej callout_stop(&p->p_realit_ch);
598 1.1 cgd if (timerisset(&aitv.it_value)) {
599 1.52 thorpej /*
600 1.52 thorpej * Don't need to check hzto() return value, here.
601 1.52 thorpej * callout_reset() does it for us.
602 1.52 thorpej */
603 1.14 mycroft timeradd(&aitv.it_value, &time, &aitv.it_value);
604 1.44 thorpej callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
605 1.44 thorpej realitexpire, p);
606 1.1 cgd }
607 1.1 cgd p->p_realtimer = aitv;
608 1.1 cgd } else
609 1.30 mycroft p->p_stats->p_timer[which] = aitv;
610 1.1 cgd splx(s);
611 1.1 cgd return (0);
612 1.1 cgd }
613 1.1 cgd
614 1.1 cgd /*
615 1.1 cgd * Real interval timer expired:
616 1.1 cgd * send process whose timer expired an alarm signal.
617 1.1 cgd * If time is not set up to reload, then just return.
618 1.1 cgd * Else compute next time timer should go off which is > current time.
619 1.1 cgd * This is where delay in processing this timeout causes multiple
620 1.1 cgd * SIGALRM calls to be compressed into one.
621 1.1 cgd */
622 1.3 andrew void
623 1.6 cgd realitexpire(arg)
624 1.6 cgd void *arg;
625 1.6 cgd {
626 1.45 augustss struct proc *p;
627 1.1 cgd int s;
628 1.1 cgd
629 1.6 cgd p = (struct proc *)arg;
630 1.1 cgd psignal(p, SIGALRM);
631 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
632 1.1 cgd timerclear(&p->p_realtimer.it_value);
633 1.1 cgd return;
634 1.1 cgd }
635 1.1 cgd for (;;) {
636 1.1 cgd s = splclock();
637 1.14 mycroft timeradd(&p->p_realtimer.it_value,
638 1.14 mycroft &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
639 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
640 1.52 thorpej /*
641 1.52 thorpej * Don't need to check hzto() return value, here.
642 1.52 thorpej * callout_reset() does it for us.
643 1.52 thorpej */
644 1.44 thorpej callout_reset(&p->p_realit_ch,
645 1.44 thorpej hzto(&p->p_realtimer.it_value), realitexpire, p);
646 1.1 cgd splx(s);
647 1.1 cgd return;
648 1.1 cgd }
649 1.1 cgd splx(s);
650 1.1 cgd }
651 1.1 cgd }
652 1.1 cgd
653 1.1 cgd /*
654 1.1 cgd * Check that a proposed value to load into the .it_value or
655 1.1 cgd * .it_interval part of an interval timer is acceptable, and
656 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
657 1.1 cgd * than the resolution of the clock, round it up.)
658 1.1 cgd */
659 1.3 andrew int
660 1.1 cgd itimerfix(tv)
661 1.1 cgd struct timeval *tv;
662 1.1 cgd {
663 1.1 cgd
664 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
665 1.1 cgd return (EINVAL);
666 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
667 1.1 cgd tv->tv_usec = tick;
668 1.1 cgd return (0);
669 1.1 cgd }
670 1.1 cgd
671 1.1 cgd /*
672 1.1 cgd * Decrement an interval timer by a specified number
673 1.1 cgd * of microseconds, which must be less than a second,
674 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
675 1.1 cgd * it. In this case, carry over (usec - old value) to
676 1.8 cgd * reduce the value reloaded into the timer so that
677 1.1 cgd * the timer does not drift. This routine assumes
678 1.1 cgd * that it is called in a context where the timers
679 1.1 cgd * on which it is operating cannot change in value.
680 1.1 cgd */
681 1.3 andrew int
682 1.1 cgd itimerdecr(itp, usec)
683 1.45 augustss struct itimerval *itp;
684 1.1 cgd int usec;
685 1.1 cgd {
686 1.1 cgd
687 1.1 cgd if (itp->it_value.tv_usec < usec) {
688 1.1 cgd if (itp->it_value.tv_sec == 0) {
689 1.1 cgd /* expired, and already in next interval */
690 1.1 cgd usec -= itp->it_value.tv_usec;
691 1.1 cgd goto expire;
692 1.1 cgd }
693 1.1 cgd itp->it_value.tv_usec += 1000000;
694 1.1 cgd itp->it_value.tv_sec--;
695 1.1 cgd }
696 1.1 cgd itp->it_value.tv_usec -= usec;
697 1.1 cgd usec = 0;
698 1.1 cgd if (timerisset(&itp->it_value))
699 1.1 cgd return (1);
700 1.1 cgd /* expired, exactly at end of interval */
701 1.1 cgd expire:
702 1.1 cgd if (timerisset(&itp->it_interval)) {
703 1.1 cgd itp->it_value = itp->it_interval;
704 1.1 cgd itp->it_value.tv_usec -= usec;
705 1.1 cgd if (itp->it_value.tv_usec < 0) {
706 1.1 cgd itp->it_value.tv_usec += 1000000;
707 1.1 cgd itp->it_value.tv_sec--;
708 1.1 cgd }
709 1.1 cgd } else
710 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
711 1.1 cgd return (0);
712 1.42 cgd }
713 1.42 cgd
714 1.42 cgd /*
715 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
716 1.42 cgd * for usage and rationale.
717 1.42 cgd */
718 1.42 cgd int
719 1.42 cgd ratecheck(lasttime, mininterval)
720 1.42 cgd struct timeval *lasttime;
721 1.42 cgd const struct timeval *mininterval;
722 1.42 cgd {
723 1.49 itojun struct timeval tv, delta;
724 1.42 cgd int s, rv = 0;
725 1.42 cgd
726 1.42 cgd s = splclock();
727 1.49 itojun tv = mono_time;
728 1.49 itojun splx(s);
729 1.49 itojun
730 1.49 itojun timersub(&tv, lasttime, &delta);
731 1.42 cgd
732 1.42 cgd /*
733 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
734 1.42 cgd * even if interval is huge.
735 1.42 cgd */
736 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
737 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
738 1.49 itojun *lasttime = tv;
739 1.42 cgd rv = 1;
740 1.42 cgd }
741 1.50 itojun
742 1.50 itojun return (rv);
743 1.50 itojun }
744 1.50 itojun
745 1.50 itojun /*
746 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
747 1.50 itojun */
748 1.50 itojun int
749 1.50 itojun ppsratecheck(lasttime, curpps, maxpps)
750 1.50 itojun struct timeval *lasttime;
751 1.50 itojun int *curpps;
752 1.50 itojun int maxpps; /* maximum pps allowed */
753 1.50 itojun {
754 1.50 itojun struct timeval tv, delta;
755 1.50 itojun int s, rv;
756 1.50 itojun
757 1.50 itojun s = splclock();
758 1.50 itojun tv = mono_time;
759 1.50 itojun splx(s);
760 1.50 itojun
761 1.50 itojun timersub(&tv, lasttime, &delta);
762 1.50 itojun
763 1.50 itojun /*
764 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
765 1.50 itojun * if more than one second have passed since the last update of
766 1.50 itojun * lasttime, reset the counter.
767 1.50 itojun *
768 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
769 1.50 itojun * try to use *curpps for stat purposes as well.
770 1.50 itojun */
771 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
772 1.50 itojun delta.tv_sec >= 1) {
773 1.50 itojun *lasttime = tv;
774 1.50 itojun *curpps = 0;
775 1.50 itojun rv = 1;
776 1.53 itojun } else if (maxpps < 0)
777 1.53 itojun rv = 1;
778 1.53 itojun else if (*curpps < maxpps)
779 1.50 itojun rv = 1;
780 1.50 itojun else
781 1.50 itojun rv = 0;
782 1.50 itojun
783 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
784 1.50 itojun /* be careful about wrap-around */
785 1.50 itojun if (*curpps + 1 > *curpps)
786 1.50 itojun *curpps = *curpps + 1;
787 1.50 itojun #else
788 1.50 itojun /*
789 1.50 itojun * assume that there's not too many calls to this function.
790 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
791 1.50 itojun * behavior, not the behavior of this function.
792 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
793 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
794 1.50 itojun */
795 1.50 itojun *curpps = *curpps + 1;
796 1.50 itojun #endif
797 1.42 cgd
798 1.42 cgd return (rv);
799 1.1 cgd }
800