kern_time.c revision 1.75 1 1.75 christos /* $NetBSD: kern_time.c,v 1.75 2003/09/13 22:39:18 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.42 cgd * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.75 christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.75 2003/09/13 22:39:18 christos Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.63 thorpej #include <sys/malloc.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.63 thorpej #include <sys/sa.h>
84 1.63 thorpej #include <sys/savar.h>
85 1.8 cgd #include <sys/vnode.h>
86 1.17 christos #include <sys/signalvar.h>
87 1.25 perry #include <sys/syslog.h>
88 1.1 cgd
89 1.11 cgd #include <sys/mount.h>
90 1.11 cgd #include <sys/syscallargs.h>
91 1.19 christos
92 1.37 thorpej #include <uvm/uvm_extern.h>
93 1.37 thorpej
94 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
95 1.20 fvdl #include <nfs/rpcv2.h>
96 1.20 fvdl #include <nfs/nfsproto.h>
97 1.19 christos #include <nfs/nfs_var.h>
98 1.19 christos #endif
99 1.17 christos
100 1.5 mycroft #include <machine/cpu.h>
101 1.23 cgd
102 1.63 thorpej static void timerupcall(struct lwp *, void *);
103 1.63 thorpej
104 1.63 thorpej
105 1.63 thorpej /* Time of day and interval timer support.
106 1.1 cgd *
107 1.1 cgd * These routines provide the kernel entry points to get and set
108 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
109 1.1 cgd * here provide support for adding and subtracting timeval structures
110 1.1 cgd * and decrementing interval timers, optionally reloading the interval
111 1.1 cgd * timers when they expire.
112 1.1 cgd */
113 1.1 cgd
114 1.22 jtc /* This function is used by clock_settime and settimeofday */
115 1.39 tron int
116 1.63 thorpej settime(struct timeval *tv)
117 1.22 jtc {
118 1.22 jtc struct timeval delta;
119 1.47 thorpej struct cpu_info *ci;
120 1.22 jtc int s;
121 1.22 jtc
122 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 1.22 jtc s = splclock();
124 1.22 jtc timersub(tv, &time, &delta);
125 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 1.55 tron splx(s);
127 1.29 tls return (EPERM);
128 1.55 tron }
129 1.29 tls #ifdef notyet
130 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
131 1.55 tron splx(s);
132 1.29 tls return (EPERM);
133 1.55 tron }
134 1.29 tls #endif
135 1.22 jtc time = *tv;
136 1.38 thorpej (void) spllowersoftclock();
137 1.22 jtc timeradd(&boottime, &delta, &boottime);
138 1.47 thorpej /*
139 1.47 thorpej * XXXSMP
140 1.47 thorpej * This is wrong. We should traverse a list of all
141 1.47 thorpej * CPUs and add the delta to the runtime of those
142 1.47 thorpej * CPUs which have a process on them.
143 1.47 thorpej */
144 1.47 thorpej ci = curcpu();
145 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 1.47 thorpej &ci->ci_schedstate.spc_runtime);
147 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
149 1.22 jtc # endif
150 1.22 jtc splx(s);
151 1.22 jtc resettodr();
152 1.29 tls return (0);
153 1.22 jtc }
154 1.22 jtc
155 1.22 jtc /* ARGSUSED */
156 1.22 jtc int
157 1.63 thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 1.22 jtc {
159 1.45 augustss struct sys_clock_gettime_args /* {
160 1.22 jtc syscallarg(clockid_t) clock_id;
161 1.23 cgd syscallarg(struct timespec *) tp;
162 1.23 cgd } */ *uap = v;
163 1.22 jtc clockid_t clock_id;
164 1.22 jtc struct timeval atv;
165 1.22 jtc struct timespec ats;
166 1.61 simonb int s;
167 1.22 jtc
168 1.22 jtc clock_id = SCARG(uap, clock_id);
169 1.61 simonb switch (clock_id) {
170 1.61 simonb case CLOCK_REALTIME:
171 1.61 simonb microtime(&atv);
172 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 1.61 simonb break;
174 1.61 simonb case CLOCK_MONOTONIC:
175 1.61 simonb /* XXX "hz" granularity */
176 1.63 thorpej s = splclock();
177 1.61 simonb atv = mono_time;
178 1.61 simonb splx(s);
179 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 1.61 simonb break;
181 1.61 simonb default:
182 1.22 jtc return (EINVAL);
183 1.61 simonb }
184 1.22 jtc
185 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 1.22 jtc }
187 1.22 jtc
188 1.22 jtc /* ARGSUSED */
189 1.22 jtc int
190 1.63 thorpej sys_clock_settime(l, v, retval)
191 1.63 thorpej struct lwp *l;
192 1.22 jtc void *v;
193 1.22 jtc register_t *retval;
194 1.22 jtc {
195 1.45 augustss struct sys_clock_settime_args /* {
196 1.22 jtc syscallarg(clockid_t) clock_id;
197 1.23 cgd syscallarg(const struct timespec *) tp;
198 1.23 cgd } */ *uap = v;
199 1.63 thorpej struct proc *p = l->l_proc;
200 1.22 jtc int error;
201 1.22 jtc
202 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
203 1.22 jtc return (error);
204 1.22 jtc
205 1.60 manu return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
206 1.56 manu }
207 1.56 manu
208 1.56 manu
209 1.56 manu int
210 1.60 manu clock_settime1(clock_id, tp)
211 1.56 manu clockid_t clock_id;
212 1.60 manu const struct timespec *tp;
213 1.56 manu {
214 1.60 manu struct timespec ats;
215 1.56 manu struct timeval atv;
216 1.56 manu int error;
217 1.56 manu
218 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
219 1.60 manu return (error);
220 1.60 manu
221 1.61 simonb switch (clock_id) {
222 1.61 simonb case CLOCK_REALTIME:
223 1.61 simonb TIMESPEC_TO_TIMEVAL(&atv, &ats);
224 1.61 simonb if ((error = settime(&atv)) != 0)
225 1.61 simonb return (error);
226 1.61 simonb break;
227 1.61 simonb case CLOCK_MONOTONIC:
228 1.61 simonb return (EINVAL); /* read-only clock */
229 1.61 simonb default:
230 1.56 manu return (EINVAL);
231 1.61 simonb }
232 1.22 jtc
233 1.22 jtc return 0;
234 1.22 jtc }
235 1.22 jtc
236 1.22 jtc int
237 1.63 thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
238 1.22 jtc {
239 1.45 augustss struct sys_clock_getres_args /* {
240 1.22 jtc syscallarg(clockid_t) clock_id;
241 1.23 cgd syscallarg(struct timespec *) tp;
242 1.23 cgd } */ *uap = v;
243 1.22 jtc clockid_t clock_id;
244 1.22 jtc struct timespec ts;
245 1.22 jtc int error = 0;
246 1.22 jtc
247 1.22 jtc clock_id = SCARG(uap, clock_id);
248 1.61 simonb switch (clock_id) {
249 1.61 simonb case CLOCK_REALTIME:
250 1.61 simonb case CLOCK_MONOTONIC:
251 1.22 jtc ts.tv_sec = 0;
252 1.22 jtc ts.tv_nsec = 1000000000 / hz;
253 1.61 simonb break;
254 1.61 simonb default:
255 1.61 simonb return (EINVAL);
256 1.61 simonb }
257 1.22 jtc
258 1.61 simonb if (SCARG(uap, tp))
259 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260 1.22 jtc
261 1.22 jtc return error;
262 1.22 jtc }
263 1.22 jtc
264 1.27 jtc /* ARGSUSED */
265 1.27 jtc int
266 1.63 thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
267 1.27 jtc {
268 1.27 jtc static int nanowait;
269 1.45 augustss struct sys_nanosleep_args/* {
270 1.27 jtc syscallarg(struct timespec *) rqtp;
271 1.27 jtc syscallarg(struct timespec *) rmtp;
272 1.27 jtc } */ *uap = v;
273 1.27 jtc struct timespec rqt;
274 1.27 jtc struct timespec rmt;
275 1.27 jtc struct timeval atv, utv;
276 1.27 jtc int error, s, timo;
277 1.27 jtc
278 1.27 jtc error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
279 1.27 jtc sizeof(struct timespec));
280 1.27 jtc if (error)
281 1.27 jtc return (error);
282 1.27 jtc
283 1.27 jtc TIMESPEC_TO_TIMEVAL(&atv,&rqt)
284 1.59 christos if (itimerfix(&atv) || atv.tv_sec > 1000000000)
285 1.27 jtc return (EINVAL);
286 1.27 jtc
287 1.27 jtc s = splclock();
288 1.27 jtc timeradd(&atv,&time,&atv);
289 1.27 jtc timo = hzto(&atv);
290 1.63 thorpej /*
291 1.27 jtc * Avoid inadvertantly sleeping forever
292 1.27 jtc */
293 1.27 jtc if (timo == 0)
294 1.27 jtc timo = 1;
295 1.27 jtc splx(s);
296 1.27 jtc
297 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
298 1.27 jtc if (error == ERESTART)
299 1.27 jtc error = EINTR;
300 1.27 jtc if (error == EWOULDBLOCK)
301 1.27 jtc error = 0;
302 1.27 jtc
303 1.27 jtc if (SCARG(uap, rmtp)) {
304 1.28 jtc int error;
305 1.28 jtc
306 1.27 jtc s = splclock();
307 1.27 jtc utv = time;
308 1.27 jtc splx(s);
309 1.27 jtc
310 1.27 jtc timersub(&atv, &utv, &utv);
311 1.27 jtc if (utv.tv_sec < 0)
312 1.27 jtc timerclear(&utv);
313 1.27 jtc
314 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
315 1.27 jtc error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
316 1.28 jtc sizeof(rmt));
317 1.28 jtc if (error)
318 1.28 jtc return (error);
319 1.27 jtc }
320 1.27 jtc
321 1.27 jtc return error;
322 1.27 jtc }
323 1.22 jtc
324 1.1 cgd /* ARGSUSED */
325 1.3 andrew int
326 1.63 thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
327 1.15 thorpej {
328 1.45 augustss struct sys_gettimeofday_args /* {
329 1.11 cgd syscallarg(struct timeval *) tp;
330 1.11 cgd syscallarg(struct timezone *) tzp;
331 1.15 thorpej } */ *uap = v;
332 1.1 cgd struct timeval atv;
333 1.1 cgd int error = 0;
334 1.25 perry struct timezone tzfake;
335 1.1 cgd
336 1.11 cgd if (SCARG(uap, tp)) {
337 1.1 cgd microtime(&atv);
338 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
339 1.17 christos if (error)
340 1.1 cgd return (error);
341 1.1 cgd }
342 1.25 perry if (SCARG(uap, tzp)) {
343 1.25 perry /*
344 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
345 1.25 perry * fake up a timezone struct and return it if demanded.
346 1.25 perry */
347 1.25 perry tzfake.tz_minuteswest = 0;
348 1.25 perry tzfake.tz_dsttime = 0;
349 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
350 1.25 perry }
351 1.1 cgd return (error);
352 1.1 cgd }
353 1.1 cgd
354 1.1 cgd /* ARGSUSED */
355 1.3 andrew int
356 1.63 thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
357 1.15 thorpej {
358 1.16 mycroft struct sys_settimeofday_args /* {
359 1.24 cgd syscallarg(const struct timeval *) tv;
360 1.24 cgd syscallarg(const struct timezone *) tzp;
361 1.15 thorpej } */ *uap = v;
362 1.63 thorpej struct proc *p = l->l_proc;
363 1.60 manu int error;
364 1.60 manu
365 1.60 manu if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
366 1.60 manu return (error);
367 1.60 manu
368 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
369 1.60 manu }
370 1.60 manu
371 1.60 manu int
372 1.60 manu settimeofday1(utv, utzp, p)
373 1.60 manu const struct timeval *utv;
374 1.60 manu const struct timezone *utzp;
375 1.60 manu struct proc *p;
376 1.60 manu {
377 1.22 jtc struct timeval atv;
378 1.1 cgd struct timezone atz;
379 1.56 manu struct timeval *tv = NULL;
380 1.56 manu struct timezone *tzp = NULL;
381 1.22 jtc int error;
382 1.1 cgd
383 1.8 cgd /* Verify all parameters before changing time. */
384 1.60 manu if (utv) {
385 1.60 manu if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
386 1.56 manu return (error);
387 1.56 manu tv = &atv;
388 1.56 manu }
389 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
390 1.60 manu if (utzp) {
391 1.60 manu if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
392 1.56 manu return (error);
393 1.56 manu tzp = &atz;
394 1.56 manu }
395 1.56 manu
396 1.56 manu if (tv)
397 1.56 manu if ((error = settime(tv)) != 0)
398 1.29 tls return (error);
399 1.25 perry /*
400 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
401 1.25 perry * obsolete program would try to set it, so we log a warning.
402 1.25 perry */
403 1.56 manu if (tzp)
404 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
405 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
406 1.8 cgd return (0);
407 1.1 cgd }
408 1.1 cgd
409 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
410 1.1 cgd long timedelta; /* unapplied time correction, us. */
411 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
412 1.68 dsl int time_adjusted; /* set if an adjustment is made */
413 1.1 cgd
414 1.1 cgd /* ARGSUSED */
415 1.3 andrew int
416 1.63 thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
417 1.15 thorpej {
418 1.45 augustss struct sys_adjtime_args /* {
419 1.24 cgd syscallarg(const struct timeval *) delta;
420 1.11 cgd syscallarg(struct timeval *) olddelta;
421 1.15 thorpej } */ *uap = v;
422 1.63 thorpej struct proc *p = l->l_proc;
423 1.56 manu int error;
424 1.1 cgd
425 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426 1.1 cgd return (error);
427 1.17 christos
428 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
429 1.56 manu }
430 1.56 manu
431 1.56 manu int
432 1.56 manu adjtime1(delta, olddelta, p)
433 1.60 manu const struct timeval *delta;
434 1.56 manu struct timeval *olddelta;
435 1.56 manu struct proc *p;
436 1.56 manu {
437 1.60 manu struct timeval atv;
438 1.56 manu long ndelta, ntickdelta, odelta;
439 1.60 manu int error;
440 1.56 manu int s;
441 1.8 cgd
442 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
443 1.60 manu if (error)
444 1.60 manu return (error);
445 1.60 manu
446 1.60 manu if (olddelta != NULL) {
447 1.60 manu if (uvm_useracc((caddr_t)olddelta,
448 1.60 manu sizeof(struct timeval), B_WRITE) == FALSE)
449 1.60 manu return (EFAULT);
450 1.60 manu }
451 1.60 manu
452 1.8 cgd /*
453 1.8 cgd * Compute the total correction and the rate at which to apply it.
454 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
455 1.8 cgd * delta, so that after some number of incremental changes in
456 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
457 1.8 cgd * overshoot and start taking us away from the desired final time.
458 1.8 cgd */
459 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
460 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
461 1.8 cgd ntickdelta = 10 * tickadj;
462 1.8 cgd else
463 1.8 cgd ntickdelta = tickadj;
464 1.8 cgd if (ndelta % ntickdelta)
465 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
466 1.8 cgd
467 1.8 cgd /*
468 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
469 1.8 cgd * if we want time to run slower; then hardclock can simply compute
470 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
471 1.8 cgd */
472 1.8 cgd if (ndelta < 0)
473 1.8 cgd ntickdelta = -ntickdelta;
474 1.68 dsl if (ndelta != 0)
475 1.68 dsl /* We need to save the system clock time during shutdown */
476 1.68 dsl time_adjusted |= 1;
477 1.1 cgd s = splclock();
478 1.8 cgd odelta = timedelta;
479 1.1 cgd timedelta = ndelta;
480 1.8 cgd tickdelta = ntickdelta;
481 1.1 cgd splx(s);
482 1.1 cgd
483 1.56 manu if (olddelta) {
484 1.60 manu atv.tv_sec = odelta / 1000000;
485 1.60 manu atv.tv_usec = odelta % 1000000;
486 1.60 manu (void) copyout(&atv, olddelta, sizeof(struct timeval));
487 1.8 cgd }
488 1.1 cgd return (0);
489 1.1 cgd }
490 1.1 cgd
491 1.1 cgd /*
492 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
493 1.63 thorpej * timer_*() family of routines are supported.
494 1.1 cgd *
495 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
496 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
497 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
498 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
499 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
500 1.63 thorpej * syscall.
501 1.1 cgd *
502 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
503 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
504 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
505 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
506 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
507 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
508 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
509 1.63 thorpej * given below), to be delayed in real time past when it is supposed
510 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
511 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
512 1.63 thorpej * compute the next time in absolute time the timer should go off. */
513 1.63 thorpej
514 1.63 thorpej /* Allocate a POSIX realtime timer. */
515 1.63 thorpej int
516 1.63 thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
517 1.63 thorpej {
518 1.63 thorpej struct sys_timer_create_args /* {
519 1.63 thorpej syscallarg(clockid_t) clock_id;
520 1.63 thorpej syscallarg(struct sigevent *) evp;
521 1.63 thorpej syscallarg(timer_t *) timerid;
522 1.63 thorpej } */ *uap = v;
523 1.63 thorpej struct proc *p = l->l_proc;
524 1.63 thorpej clockid_t id;
525 1.63 thorpej struct sigevent *evp;
526 1.63 thorpej struct ptimer *pt;
527 1.65 jdolecek timer_t timerid;
528 1.65 jdolecek int error;
529 1.63 thorpej
530 1.63 thorpej id = SCARG(uap, clock_id);
531 1.63 thorpej if (id < CLOCK_REALTIME ||
532 1.63 thorpej id > CLOCK_PROF)
533 1.63 thorpej return (EINVAL);
534 1.63 thorpej
535 1.63 thorpej if (p->p_timers == NULL)
536 1.63 thorpej timers_alloc(p);
537 1.63 thorpej
538 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
539 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
540 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
541 1.63 thorpej break;
542 1.63 thorpej
543 1.63 thorpej if (timerid == TIMER_MAX)
544 1.63 thorpej return EAGAIN;
545 1.63 thorpej
546 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
547 1.63 thorpej evp = SCARG(uap, evp);
548 1.63 thorpej if (evp) {
549 1.63 thorpej if (((error =
550 1.63 thorpej copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
551 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
552 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
553 1.63 thorpej pool_put(&ptimer_pool, pt);
554 1.63 thorpej return (error ? error : EINVAL);
555 1.63 thorpej }
556 1.63 thorpej } else {
557 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
558 1.63 thorpej switch (id) {
559 1.63 thorpej case CLOCK_REALTIME:
560 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
561 1.63 thorpej break;
562 1.63 thorpej case CLOCK_VIRTUAL:
563 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
564 1.63 thorpej break;
565 1.63 thorpej case CLOCK_PROF:
566 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
567 1.63 thorpej break;
568 1.63 thorpej }
569 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
570 1.63 thorpej }
571 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
572 1.73 christos pt->pt_info.ksi_errno = 0;
573 1.73 christos pt->pt_info.ksi_code = 0;
574 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
575 1.73 christos pt->pt_info.ksi_uid = p->p_cred->p_ruid;
576 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
577 1.63 thorpej
578 1.63 thorpej pt->pt_type = id;
579 1.63 thorpej pt->pt_proc = p;
580 1.63 thorpej pt->pt_overruns = 0;
581 1.63 thorpej pt->pt_poverruns = 0;
582 1.64 nathanw pt->pt_entry = timerid;
583 1.63 thorpej timerclear(&pt->pt_time.it_value);
584 1.63 thorpej if (id == CLOCK_REALTIME)
585 1.63 thorpej callout_init(&pt->pt_ch);
586 1.63 thorpej else
587 1.63 thorpej pt->pt_active = 0;
588 1.63 thorpej
589 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
590 1.63 thorpej
591 1.63 thorpej return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
592 1.63 thorpej }
593 1.63 thorpej
594 1.63 thorpej
595 1.63 thorpej /* Delete a POSIX realtime timer */
596 1.3 andrew int
597 1.63 thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
598 1.15 thorpej {
599 1.63 thorpej struct sys_timer_delete_args /* {
600 1.63 thorpej syscallarg(timer_t) timerid;
601 1.15 thorpej } */ *uap = v;
602 1.63 thorpej struct proc *p = l->l_proc;
603 1.65 jdolecek timer_t timerid;
604 1.63 thorpej struct ptimer *pt, *ptn;
605 1.1 cgd int s;
606 1.1 cgd
607 1.63 thorpej timerid = SCARG(uap, timerid);
608 1.63 thorpej
609 1.63 thorpej if ((p->p_timers == NULL) ||
610 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
611 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
612 1.1 cgd return (EINVAL);
613 1.63 thorpej
614 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
615 1.63 thorpej callout_stop(&pt->pt_ch);
616 1.63 thorpej else if (pt->pt_active) {
617 1.63 thorpej s = splclock();
618 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
619 1.63 thorpej LIST_REMOVE(pt, pt_list);
620 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
621 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
622 1.63 thorpej &ptn->pt_time.it_value);
623 1.63 thorpej splx(s);
624 1.63 thorpej }
625 1.63 thorpej
626 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
627 1.63 thorpej pool_put(&ptimer_pool, pt);
628 1.63 thorpej
629 1.63 thorpej return (0);
630 1.63 thorpej }
631 1.63 thorpej
632 1.63 thorpej /*
633 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
634 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
635 1.67 nathanw * time for virtual timers.
636 1.63 thorpej * Must be called at splclock().
637 1.63 thorpej */
638 1.63 thorpej void
639 1.63 thorpej timer_settime(struct ptimer *pt)
640 1.63 thorpej {
641 1.63 thorpej struct ptimer *ptn, *pptn;
642 1.63 thorpej struct ptlist *ptl;
643 1.63 thorpej
644 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
645 1.63 thorpej callout_stop(&pt->pt_ch);
646 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
647 1.63 thorpej /*
648 1.63 thorpej * Don't need to check hzto() return value, here.
649 1.63 thorpej * callout_reset() does it for us.
650 1.63 thorpej */
651 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
652 1.63 thorpej realtimerexpire, pt);
653 1.63 thorpej }
654 1.63 thorpej } else {
655 1.63 thorpej if (pt->pt_active) {
656 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
657 1.63 thorpej LIST_REMOVE(pt, pt_list);
658 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
659 1.63 thorpej timeradd(&pt->pt_time.it_value,
660 1.63 thorpej &ptn->pt_time.it_value,
661 1.63 thorpej &ptn->pt_time.it_value);
662 1.63 thorpej }
663 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
664 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
665 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
666 1.63 thorpej else
667 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
668 1.63 thorpej
669 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
670 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
671 1.63 thorpej &ptn->pt_time.it_value, >);
672 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
673 1.63 thorpej timersub(&pt->pt_time.it_value,
674 1.63 thorpej &ptn->pt_time.it_value,
675 1.63 thorpej &pt->pt_time.it_value);
676 1.63 thorpej
677 1.63 thorpej if (pptn)
678 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
679 1.63 thorpej else
680 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
681 1.63 thorpej
682 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
683 1.63 thorpej timersub(&ptn->pt_time.it_value,
684 1.63 thorpej &pt->pt_time.it_value,
685 1.63 thorpej &ptn->pt_time.it_value);
686 1.63 thorpej
687 1.63 thorpej pt->pt_active = 1;
688 1.63 thorpej } else
689 1.63 thorpej pt->pt_active = 0;
690 1.63 thorpej }
691 1.63 thorpej }
692 1.63 thorpej
693 1.63 thorpej void
694 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
695 1.63 thorpej {
696 1.63 thorpej struct ptimer *ptn;
697 1.63 thorpej
698 1.63 thorpej *aitv = pt->pt_time;
699 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
700 1.1 cgd /*
701 1.12 mycroft * Convert from absolute to relative time in .it_value
702 1.63 thorpej * part of real time timer. If time for real time
703 1.63 thorpej * timer has passed return 0, else return difference
704 1.63 thorpej * between current time and time for the timer to go
705 1.63 thorpej * off.
706 1.1 cgd */
707 1.63 thorpej if (timerisset(&aitv->it_value)) {
708 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
709 1.63 thorpej timerclear(&aitv->it_value);
710 1.1 cgd else
711 1.63 thorpej timersub(&aitv->it_value, &time,
712 1.63 thorpej &aitv->it_value);
713 1.36 thorpej }
714 1.63 thorpej } else if (pt->pt_active) {
715 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
716 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
717 1.63 thorpej else
718 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
719 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
720 1.63 thorpej timeradd(&aitv->it_value,
721 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
722 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
723 1.1 cgd } else
724 1.63 thorpej timerclear(&aitv->it_value);
725 1.63 thorpej }
726 1.63 thorpej
727 1.63 thorpej
728 1.63 thorpej
729 1.63 thorpej /* Set and arm a POSIX realtime timer */
730 1.63 thorpej int
731 1.63 thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
732 1.63 thorpej {
733 1.63 thorpej struct sys_timer_settime_args /* {
734 1.63 thorpej syscallarg(timer_t) timerid;
735 1.63 thorpej syscallarg(int) flags;
736 1.63 thorpej syscallarg(const struct itimerspec *) value;
737 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
738 1.63 thorpej } */ *uap = v;
739 1.63 thorpej struct proc *p = l->l_proc;
740 1.63 thorpej int error, s, timerid;
741 1.63 thorpej struct itimerval val, oval;
742 1.63 thorpej struct itimerspec value, ovalue;
743 1.63 thorpej struct ptimer *pt;
744 1.63 thorpej
745 1.63 thorpej timerid = SCARG(uap, timerid);
746 1.63 thorpej
747 1.63 thorpej if ((p->p_timers == NULL) ||
748 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
749 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
750 1.63 thorpej return (EINVAL);
751 1.63 thorpej
752 1.63 thorpej if ((error = copyin(SCARG(uap, value), &value,
753 1.63 thorpej sizeof(struct itimerspec))) != 0)
754 1.63 thorpej return (error);
755 1.63 thorpej
756 1.63 thorpej TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
757 1.63 thorpej TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
758 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
759 1.63 thorpej return (EINVAL);
760 1.63 thorpej
761 1.63 thorpej oval = pt->pt_time;
762 1.63 thorpej pt->pt_time = val;
763 1.63 thorpej
764 1.63 thorpej s = splclock();
765 1.67 nathanw /*
766 1.67 nathanw * If we've been passed a relative time for a realtime timer,
767 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
768 1.67 nathanw * timer, convert it to relative and make sure we don't set it
769 1.67 nathanw * to zero, which would cancel the timer, or let it go
770 1.67 nathanw * negative, which would confuse the comparison tests.
771 1.67 nathanw */
772 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
773 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
774 1.67 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
775 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
776 1.67 nathanw &pt->pt_time.it_value);
777 1.67 nathanw } else {
778 1.67 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
779 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
780 1.67 nathanw &pt->pt_time.it_value);
781 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
782 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
783 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
784 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
785 1.67 nathanw }
786 1.67 nathanw }
787 1.67 nathanw }
788 1.67 nathanw }
789 1.67 nathanw
790 1.63 thorpej timer_settime(pt);
791 1.63 thorpej splx(s);
792 1.63 thorpej
793 1.63 thorpej if (SCARG(uap, ovalue)) {
794 1.63 thorpej TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
795 1.63 thorpej TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
796 1.63 thorpej return copyout(&ovalue, SCARG(uap, ovalue),
797 1.63 thorpej sizeof(struct itimerspec));
798 1.63 thorpej }
799 1.63 thorpej
800 1.63 thorpej return (0);
801 1.63 thorpej }
802 1.63 thorpej
803 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
804 1.63 thorpej int
805 1.63 thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
806 1.63 thorpej {
807 1.63 thorpej struct sys_timer_gettime_args /* {
808 1.63 thorpej syscallarg(timer_t) timerid;
809 1.63 thorpej syscallarg(struct itimerspec *) value;
810 1.63 thorpej } */ *uap = v;
811 1.63 thorpej struct itimerval aitv;
812 1.63 thorpej struct itimerspec its;
813 1.63 thorpej struct proc *p = l->l_proc;
814 1.63 thorpej int s, timerid;
815 1.63 thorpej struct ptimer *pt;
816 1.63 thorpej
817 1.63 thorpej timerid = SCARG(uap, timerid);
818 1.63 thorpej
819 1.63 thorpej if ((p->p_timers == NULL) ||
820 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
821 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
822 1.63 thorpej return (EINVAL);
823 1.63 thorpej
824 1.63 thorpej s = splclock();
825 1.63 thorpej timer_gettime(pt, &aitv);
826 1.1 cgd splx(s);
827 1.63 thorpej
828 1.63 thorpej TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
829 1.63 thorpej TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
830 1.63 thorpej
831 1.63 thorpej return copyout(&its, SCARG(uap, value), sizeof(its));
832 1.63 thorpej }
833 1.63 thorpej
834 1.63 thorpej /*
835 1.63 thorpej * Return the count of the number of times a periodic timer expired
836 1.63 thorpej * while a notification was already pending. The counter is reset when
837 1.63 thorpej * a timer expires and a notification can be posted.
838 1.63 thorpej */
839 1.63 thorpej int
840 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
841 1.63 thorpej {
842 1.63 thorpej struct sys_timer_getoverrun_args /* {
843 1.63 thorpej syscallarg(timer_t) timerid;
844 1.63 thorpej } */ *uap = v;
845 1.63 thorpej struct proc *p = l->l_proc;
846 1.63 thorpej int timerid;
847 1.63 thorpej struct ptimer *pt;
848 1.63 thorpej
849 1.63 thorpej timerid = SCARG(uap, timerid);
850 1.63 thorpej
851 1.63 thorpej if ((p->p_timers == NULL) ||
852 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
853 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
854 1.63 thorpej return (EINVAL);
855 1.63 thorpej
856 1.63 thorpej *retval = pt->pt_poverruns;
857 1.63 thorpej
858 1.63 thorpej return (0);
859 1.63 thorpej }
860 1.63 thorpej
861 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
862 1.63 thorpej static void
863 1.63 thorpej timerupcall(struct lwp *l, void *arg)
864 1.63 thorpej {
865 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
866 1.64 nathanw unsigned int i, fired, done;
867 1.74 cl extern struct pool siginfo_pool; /* XXX Ew. */
868 1.74 cl
869 1.63 thorpej KERNEL_PROC_LOCK(l);
870 1.71 fvdl
871 1.71 fvdl {
872 1.71 fvdl struct proc *p = l->l_proc;
873 1.71 fvdl struct sadata *sa = p->p_sa;
874 1.71 fvdl
875 1.71 fvdl /* Bail out if we do not own the virtual processor */
876 1.71 fvdl if (sa->sa_vp != l) {
877 1.71 fvdl KERNEL_PROC_UNLOCK(l);
878 1.71 fvdl return ;
879 1.71 fvdl }
880 1.71 fvdl }
881 1.64 nathanw
882 1.64 nathanw fired = pt->pts_fired;
883 1.64 nathanw done = 0;
884 1.64 nathanw while ((i = ffs(fired)) != 0) {
885 1.74 cl siginfo_t *si;
886 1.73 christos int mask = 1 << --i;
887 1.74 cl int f;
888 1.73 christos
889 1.74 cl f = l->l_flag & L_SA;
890 1.74 cl l->l_flag &= ~L_SA;
891 1.74 cl si = pool_get(&siginfo_pool, PR_WAITOK);
892 1.74 cl si->_info = pt->pts_timers[i]->pt_info;
893 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
894 1.74 cl sizeof(*si), si) == 0)
895 1.73 christos done |= mask;
896 1.73 christos fired &= ~mask;
897 1.74 cl l->l_flag |= f;
898 1.64 nathanw }
899 1.64 nathanw pt->pts_fired &= ~done;
900 1.64 nathanw if (pt->pts_fired == 0)
901 1.63 thorpej l->l_proc->p_userret = NULL;
902 1.63 thorpej
903 1.63 thorpej KERNEL_PROC_UNLOCK(l);
904 1.63 thorpej }
905 1.63 thorpej
906 1.63 thorpej
907 1.63 thorpej /*
908 1.63 thorpej * Real interval timer expired:
909 1.63 thorpej * send process whose timer expired an alarm signal.
910 1.63 thorpej * If time is not set up to reload, then just return.
911 1.63 thorpej * Else compute next time timer should go off which is > current time.
912 1.63 thorpej * This is where delay in processing this timeout causes multiple
913 1.63 thorpej * SIGALRM calls to be compressed into one.
914 1.63 thorpej */
915 1.63 thorpej void
916 1.63 thorpej realtimerexpire(void *arg)
917 1.63 thorpej {
918 1.63 thorpej struct ptimer *pt;
919 1.63 thorpej int s;
920 1.63 thorpej
921 1.63 thorpej pt = (struct ptimer *)arg;
922 1.63 thorpej
923 1.63 thorpej itimerfire(pt);
924 1.63 thorpej
925 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
926 1.63 thorpej timerclear(&pt->pt_time.it_value);
927 1.63 thorpej return;
928 1.63 thorpej }
929 1.63 thorpej for (;;) {
930 1.63 thorpej s = splclock();
931 1.63 thorpej timeradd(&pt->pt_time.it_value,
932 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
933 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
934 1.63 thorpej /*
935 1.63 thorpej * Don't need to check hzto() return value, here.
936 1.63 thorpej * callout_reset() does it for us.
937 1.63 thorpej */
938 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
939 1.63 thorpej realtimerexpire, pt);
940 1.63 thorpej splx(s);
941 1.63 thorpej return;
942 1.63 thorpej }
943 1.63 thorpej splx(s);
944 1.63 thorpej pt->pt_overruns++;
945 1.63 thorpej }
946 1.63 thorpej }
947 1.63 thorpej
948 1.63 thorpej /* BSD routine to get the value of an interval timer. */
949 1.63 thorpej /* ARGSUSED */
950 1.63 thorpej int
951 1.63 thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
952 1.63 thorpej {
953 1.63 thorpej struct sys_getitimer_args /* {
954 1.63 thorpej syscallarg(int) which;
955 1.63 thorpej syscallarg(struct itimerval *) itv;
956 1.63 thorpej } */ *uap = v;
957 1.63 thorpej struct proc *p = l->l_proc;
958 1.63 thorpej struct itimerval aitv;
959 1.63 thorpej int s, which;
960 1.63 thorpej
961 1.63 thorpej which = SCARG(uap, which);
962 1.63 thorpej
963 1.63 thorpej if ((u_int)which > ITIMER_PROF)
964 1.63 thorpej return (EINVAL);
965 1.63 thorpej
966 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
967 1.63 thorpej timerclear(&aitv.it_value);
968 1.63 thorpej timerclear(&aitv.it_interval);
969 1.63 thorpej } else {
970 1.63 thorpej s = splclock();
971 1.63 thorpej timer_gettime(p->p_timers->pts_timers[which], &aitv);
972 1.63 thorpej splx(s);
973 1.63 thorpej }
974 1.63 thorpej
975 1.35 perry return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
976 1.63 thorpej
977 1.1 cgd }
978 1.1 cgd
979 1.63 thorpej /* BSD routine to set/arm an interval timer. */
980 1.1 cgd /* ARGSUSED */
981 1.3 andrew int
982 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
983 1.15 thorpej {
984 1.45 augustss struct sys_setitimer_args /* {
985 1.30 mycroft syscallarg(int) which;
986 1.24 cgd syscallarg(const struct itimerval *) itv;
987 1.11 cgd syscallarg(struct itimerval *) oitv;
988 1.15 thorpej } */ *uap = v;
989 1.63 thorpej struct proc *p = l->l_proc;
990 1.30 mycroft int which = SCARG(uap, which);
991 1.21 cgd struct sys_getitimer_args getargs;
992 1.1 cgd struct itimerval aitv;
993 1.45 augustss const struct itimerval *itvp;
994 1.63 thorpej struct ptimer *pt;
995 1.1 cgd int s, error;
996 1.1 cgd
997 1.30 mycroft if ((u_int)which > ITIMER_PROF)
998 1.1 cgd return (EINVAL);
999 1.11 cgd itvp = SCARG(uap, itv);
1000 1.63 thorpej if (itvp &&
1001 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1002 1.1 cgd return (error);
1003 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1004 1.30 mycroft SCARG(&getargs, which) = which;
1005 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1006 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1007 1.21 cgd return (error);
1008 1.21 cgd }
1009 1.1 cgd if (itvp == 0)
1010 1.1 cgd return (0);
1011 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1012 1.1 cgd return (EINVAL);
1013 1.63 thorpej
1014 1.63 thorpej /*
1015 1.63 thorpej * Don't bother allocating data structures if the process just
1016 1.63 thorpej * wants to clear the timer.
1017 1.63 thorpej */
1018 1.63 thorpej if (!timerisset(&aitv.it_value) &&
1019 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1020 1.63 thorpej return (0);
1021 1.63 thorpej
1022 1.63 thorpej if (p->p_timers == NULL)
1023 1.63 thorpej timers_alloc(p);
1024 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1025 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1026 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1027 1.63 thorpej pt->pt_overruns = 0;
1028 1.63 thorpej pt->pt_proc = p;
1029 1.63 thorpej pt->pt_type = which;
1030 1.64 nathanw pt->pt_entry = which;
1031 1.63 thorpej switch (which) {
1032 1.63 thorpej case ITIMER_REAL:
1033 1.63 thorpej callout_init(&pt->pt_ch);
1034 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1035 1.63 thorpej break;
1036 1.63 thorpej case ITIMER_VIRTUAL:
1037 1.63 thorpej pt->pt_active = 0;
1038 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1039 1.63 thorpej break;
1040 1.63 thorpej case ITIMER_PROF:
1041 1.63 thorpej pt->pt_active = 0;
1042 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1043 1.63 thorpej break;
1044 1.1 cgd }
1045 1.1 cgd } else
1046 1.63 thorpej pt = p->p_timers->pts_timers[which];
1047 1.63 thorpej
1048 1.63 thorpej pt->pt_time = aitv;
1049 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1050 1.63 thorpej
1051 1.63 thorpej s = splclock();
1052 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1053 1.67 nathanw /* Convert to absolute time */
1054 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1055 1.67 nathanw }
1056 1.63 thorpej timer_settime(pt);
1057 1.1 cgd splx(s);
1058 1.63 thorpej
1059 1.1 cgd return (0);
1060 1.1 cgd }
1061 1.1 cgd
1062 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1063 1.63 thorpej void
1064 1.63 thorpej timers_alloc(struct proc *p)
1065 1.63 thorpej {
1066 1.63 thorpej int i;
1067 1.63 thorpej struct ptimers *pts;
1068 1.63 thorpej
1069 1.63 thorpej pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1070 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1071 1.63 thorpej LIST_INIT(&pts->pts_prof);
1072 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1073 1.63 thorpej pts->pts_timers[i] = NULL;
1074 1.64 nathanw pts->pts_fired = 0;
1075 1.63 thorpej p->p_timers = pts;
1076 1.63 thorpej }
1077 1.63 thorpej
1078 1.1 cgd /*
1079 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1080 1.63 thorpej * then clean up all timers and free all the data structures. If
1081 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1082 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1083 1.63 thorpej * structure if none of those remain.
1084 1.1 cgd */
1085 1.3 andrew void
1086 1.63 thorpej timers_free(struct proc *p, int which)
1087 1.6 cgd {
1088 1.63 thorpej int i, s;
1089 1.63 thorpej struct ptimers *pts;
1090 1.63 thorpej struct ptimer *pt, *ptn;
1091 1.63 thorpej struct timeval tv;
1092 1.63 thorpej
1093 1.63 thorpej if (p->p_timers) {
1094 1.63 thorpej pts = p->p_timers;
1095 1.63 thorpej if (which == TIMERS_ALL)
1096 1.63 thorpej i = 0;
1097 1.63 thorpej else {
1098 1.63 thorpej s = splclock();
1099 1.63 thorpej timerclear(&tv);
1100 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1101 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1102 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1103 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1104 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1105 1.63 thorpej if (ptn) {
1106 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1107 1.63 thorpej &ptn->pt_time.it_value);
1108 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1109 1.63 thorpej ptn, pt_list);
1110 1.63 thorpej }
1111 1.63 thorpej
1112 1.63 thorpej timerclear(&tv);
1113 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1114 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1115 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1116 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1117 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1118 1.63 thorpej if (ptn) {
1119 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1120 1.63 thorpej &ptn->pt_time.it_value);
1121 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1122 1.63 thorpej pt_list);
1123 1.63 thorpej }
1124 1.1 cgd splx(s);
1125 1.63 thorpej i = 3;
1126 1.63 thorpej }
1127 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1128 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1129 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1130 1.63 thorpej callout_stop(&pt->pt_ch);
1131 1.63 thorpej pts->pts_timers[i] = NULL;
1132 1.63 thorpej pool_put(&ptimer_pool, pt);
1133 1.63 thorpej }
1134 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1135 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1136 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1137 1.63 thorpej p->p_timers = NULL;
1138 1.63 thorpej free(pts, M_SUBPROC);
1139 1.1 cgd }
1140 1.1 cgd }
1141 1.1 cgd }
1142 1.1 cgd
1143 1.1 cgd /*
1144 1.1 cgd * Check that a proposed value to load into the .it_value or
1145 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1146 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1147 1.1 cgd * than the resolution of the clock, round it up.)
1148 1.1 cgd */
1149 1.3 andrew int
1150 1.63 thorpej itimerfix(struct timeval *tv)
1151 1.1 cgd {
1152 1.1 cgd
1153 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1154 1.1 cgd return (EINVAL);
1155 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1156 1.1 cgd tv->tv_usec = tick;
1157 1.1 cgd return (0);
1158 1.1 cgd }
1159 1.1 cgd
1160 1.1 cgd /*
1161 1.1 cgd * Decrement an interval timer by a specified number
1162 1.1 cgd * of microseconds, which must be less than a second,
1163 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1164 1.1 cgd * it. In this case, carry over (usec - old value) to
1165 1.8 cgd * reduce the value reloaded into the timer so that
1166 1.1 cgd * the timer does not drift. This routine assumes
1167 1.1 cgd * that it is called in a context where the timers
1168 1.1 cgd * on which it is operating cannot change in value.
1169 1.1 cgd */
1170 1.3 andrew int
1171 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1172 1.63 thorpej {
1173 1.45 augustss struct itimerval *itp;
1174 1.1 cgd
1175 1.63 thorpej itp = &pt->pt_time;
1176 1.1 cgd if (itp->it_value.tv_usec < usec) {
1177 1.1 cgd if (itp->it_value.tv_sec == 0) {
1178 1.1 cgd /* expired, and already in next interval */
1179 1.1 cgd usec -= itp->it_value.tv_usec;
1180 1.1 cgd goto expire;
1181 1.1 cgd }
1182 1.1 cgd itp->it_value.tv_usec += 1000000;
1183 1.1 cgd itp->it_value.tv_sec--;
1184 1.1 cgd }
1185 1.1 cgd itp->it_value.tv_usec -= usec;
1186 1.1 cgd usec = 0;
1187 1.1 cgd if (timerisset(&itp->it_value))
1188 1.1 cgd return (1);
1189 1.1 cgd /* expired, exactly at end of interval */
1190 1.1 cgd expire:
1191 1.1 cgd if (timerisset(&itp->it_interval)) {
1192 1.1 cgd itp->it_value = itp->it_interval;
1193 1.1 cgd itp->it_value.tv_usec -= usec;
1194 1.1 cgd if (itp->it_value.tv_usec < 0) {
1195 1.1 cgd itp->it_value.tv_usec += 1000000;
1196 1.1 cgd itp->it_value.tv_sec--;
1197 1.1 cgd }
1198 1.63 thorpej timer_settime(pt);
1199 1.1 cgd } else
1200 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1201 1.1 cgd return (0);
1202 1.42 cgd }
1203 1.42 cgd
1204 1.63 thorpej void
1205 1.63 thorpej itimerfire(struct ptimer *pt)
1206 1.63 thorpej {
1207 1.63 thorpej struct proc *p = pt->pt_proc;
1208 1.71 fvdl #if 0
1209 1.64 nathanw int s;
1210 1.71 fvdl #endif
1211 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1212 1.63 thorpej /*
1213 1.63 thorpej * No RT signal infrastructure exists at this time;
1214 1.63 thorpej * just post the signal number and throw away the
1215 1.63 thorpej * value.
1216 1.63 thorpej */
1217 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1218 1.63 thorpej pt->pt_overruns++;
1219 1.63 thorpej else {
1220 1.75 christos ksiginfo_t ksi;
1221 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1222 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1223 1.75 christos ksi.ksi_code = SI_TIMER;
1224 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1225 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1226 1.63 thorpej pt->pt_overruns = 0;
1227 1.75 christos kpsignal(p, &ksi, NULL);
1228 1.63 thorpej }
1229 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1230 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1231 1.63 thorpej struct sadata *sa = p->p_sa;
1232 1.64 nathanw unsigned int i;
1233 1.63 thorpej
1234 1.63 thorpej if (p->p_userret == NULL) {
1235 1.70 nathanw /*
1236 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1237 1.70 nathanw * which can be inside sa_yield's inner loop, which
1238 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1239 1.70 nathanw * determine if we really should call setrunnable.
1240 1.70 nathanw */
1241 1.71 fvdl #if 0
1242 1.71 fvdl
1243 1.70 nathanw if ((sa->sa_idle) && (p->p_stat != SSTOP)) {
1244 1.64 nathanw SCHED_LOCK(s);
1245 1.64 nathanw setrunnable(sa->sa_idle);
1246 1.64 nathanw SCHED_UNLOCK(s);
1247 1.64 nathanw }
1248 1.71 fvdl #endif
1249 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1250 1.63 thorpej pt->pt_overruns = 0;
1251 1.64 nathanw i = 1 << pt->pt_entry;
1252 1.64 nathanw p->p_timers->pts_fired = i;
1253 1.63 thorpej p->p_userret = timerupcall;
1254 1.64 nathanw p->p_userret_arg = p->p_timers;
1255 1.71 fvdl
1256 1.71 fvdl if (sa->sa_idle)
1257 1.71 fvdl wakeup(sa->sa_idle);
1258 1.71 fvdl
1259 1.64 nathanw } else if (p->p_userret == timerupcall) {
1260 1.64 nathanw i = 1 << pt->pt_entry;
1261 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1262 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1263 1.64 nathanw pt->pt_overruns = 0;
1264 1.66 jdolecek p->p_timers->pts_fired |= i;
1265 1.64 nathanw } else
1266 1.64 nathanw pt->pt_overruns++;
1267 1.64 nathanw } else {
1268 1.63 thorpej pt->pt_overruns++;
1269 1.64 nathanw printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1270 1.64 nathanw p->p_pid, pt->pt_overruns,
1271 1.64 nathanw pt->pt_ev.sigev_value.sival_int,
1272 1.64 nathanw p->p_userret);
1273 1.64 nathanw }
1274 1.63 thorpej }
1275 1.63 thorpej
1276 1.63 thorpej }
1277 1.63 thorpej
1278 1.42 cgd /*
1279 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1280 1.42 cgd * for usage and rationale.
1281 1.42 cgd */
1282 1.42 cgd int
1283 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1284 1.42 cgd {
1285 1.49 itojun struct timeval tv, delta;
1286 1.42 cgd int s, rv = 0;
1287 1.42 cgd
1288 1.63 thorpej s = splclock();
1289 1.49 itojun tv = mono_time;
1290 1.49 itojun splx(s);
1291 1.49 itojun
1292 1.49 itojun timersub(&tv, lasttime, &delta);
1293 1.42 cgd
1294 1.42 cgd /*
1295 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1296 1.42 cgd * even if interval is huge.
1297 1.42 cgd */
1298 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1299 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1300 1.49 itojun *lasttime = tv;
1301 1.42 cgd rv = 1;
1302 1.42 cgd }
1303 1.50 itojun
1304 1.50 itojun return (rv);
1305 1.50 itojun }
1306 1.50 itojun
1307 1.50 itojun /*
1308 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1309 1.50 itojun */
1310 1.50 itojun int
1311 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1312 1.50 itojun {
1313 1.50 itojun struct timeval tv, delta;
1314 1.50 itojun int s, rv;
1315 1.50 itojun
1316 1.63 thorpej s = splclock();
1317 1.50 itojun tv = mono_time;
1318 1.50 itojun splx(s);
1319 1.50 itojun
1320 1.50 itojun timersub(&tv, lasttime, &delta);
1321 1.50 itojun
1322 1.50 itojun /*
1323 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1324 1.50 itojun * if more than one second have passed since the last update of
1325 1.50 itojun * lasttime, reset the counter.
1326 1.50 itojun *
1327 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1328 1.50 itojun * try to use *curpps for stat purposes as well.
1329 1.50 itojun */
1330 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1331 1.50 itojun delta.tv_sec >= 1) {
1332 1.50 itojun *lasttime = tv;
1333 1.50 itojun *curpps = 0;
1334 1.69 dyoung }
1335 1.69 dyoung if (maxpps < 0)
1336 1.53 itojun rv = 1;
1337 1.53 itojun else if (*curpps < maxpps)
1338 1.50 itojun rv = 1;
1339 1.50 itojun else
1340 1.50 itojun rv = 0;
1341 1.50 itojun
1342 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1343 1.50 itojun /* be careful about wrap-around */
1344 1.50 itojun if (*curpps + 1 > *curpps)
1345 1.50 itojun *curpps = *curpps + 1;
1346 1.50 itojun #else
1347 1.50 itojun /*
1348 1.50 itojun * assume that there's not too many calls to this function.
1349 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1350 1.50 itojun * behavior, not the behavior of this function.
1351 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1352 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1353 1.50 itojun */
1354 1.50 itojun *curpps = *curpps + 1;
1355 1.50 itojun #endif
1356 1.42 cgd
1357 1.42 cgd return (rv);
1358 1.1 cgd }
1359