kern_time.c revision 1.8 1 1.1 cgd /*
2 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
3 1.8 cgd * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.8 cgd * from: @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 1.8 cgd * $Id: kern_time.c,v 1.8 1994/05/20 07:24:51 cgd Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.5 mycroft #include <sys/param.h>
38 1.5 mycroft #include <sys/resourcevar.h>
39 1.5 mycroft #include <sys/kernel.h>
40 1.8 cgd #include <sys/systm.h>
41 1.5 mycroft #include <sys/proc.h>
42 1.8 cgd #include <sys/vnode.h>
43 1.1 cgd
44 1.5 mycroft #include <machine/cpu.h>
45 1.1 cgd
46 1.1 cgd /*
47 1.1 cgd * Time of day and interval timer support.
48 1.1 cgd *
49 1.1 cgd * These routines provide the kernel entry points to get and set
50 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
51 1.1 cgd * here provide support for adding and subtracting timeval structures
52 1.1 cgd * and decrementing interval timers, optionally reloading the interval
53 1.1 cgd * timers when they expire.
54 1.1 cgd */
55 1.1 cgd
56 1.4 cgd struct gettimeofday_args {
57 1.4 cgd struct timeval *tp;
58 1.4 cgd struct timezone *tzp;
59 1.4 cgd };
60 1.1 cgd /* ARGSUSED */
61 1.3 andrew int
62 1.1 cgd gettimeofday(p, uap, retval)
63 1.1 cgd struct proc *p;
64 1.4 cgd register struct gettimeofday_args *uap;
65 1.1 cgd int *retval;
66 1.1 cgd {
67 1.1 cgd struct timeval atv;
68 1.1 cgd int error = 0;
69 1.1 cgd
70 1.1 cgd if (uap->tp) {
71 1.1 cgd microtime(&atv);
72 1.1 cgd if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
73 1.1 cgd sizeof (atv)))
74 1.1 cgd return (error);
75 1.1 cgd }
76 1.1 cgd if (uap->tzp)
77 1.1 cgd error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
78 1.1 cgd sizeof (tz));
79 1.1 cgd return (error);
80 1.1 cgd }
81 1.1 cgd
82 1.4 cgd struct settimeofday_args {
83 1.4 cgd struct timeval *tv;
84 1.4 cgd struct timezone *tzp;
85 1.4 cgd };
86 1.1 cgd /* ARGSUSED */
87 1.3 andrew int
88 1.1 cgd settimeofday(p, uap, retval)
89 1.1 cgd struct proc *p;
90 1.4 cgd struct settimeofday_args *uap;
91 1.1 cgd int *retval;
92 1.1 cgd {
93 1.8 cgd struct timeval atv, delta;
94 1.1 cgd struct timezone atz;
95 1.1 cgd int error, s;
96 1.1 cgd
97 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
98 1.1 cgd return (error);
99 1.8 cgd /* Verify all parameters before changing time. */
100 1.8 cgd if (uap->tv &&
101 1.8 cgd (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
102 1.8 cgd return (error);
103 1.8 cgd if (uap->tzp &&
104 1.8 cgd (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
105 1.8 cgd return (error);
106 1.1 cgd if (uap->tv) {
107 1.1 cgd /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
108 1.8 cgd s = splclock();
109 1.8 cgd /* nb. delta.tv_usec may be < 0, but this is OK here */
110 1.8 cgd delta.tv_sec = atv.tv_sec - time.tv_sec;
111 1.8 cgd delta.tv_usec = atv.tv_usec - time.tv_usec;
112 1.8 cgd time = atv;
113 1.8 cgd (void) splsoftclock();
114 1.8 cgd timevaladd(&boottime, &delta);
115 1.8 cgd timevalfix(&boottime);
116 1.8 cgd timevaladd(&runtime, &delta);
117 1.8 cgd timevalfix(&runtime);
118 1.8 cgd LEASE_UPDATETIME(delta.tv_sec);
119 1.8 cgd splx(s);
120 1.1 cgd resettodr();
121 1.1 cgd }
122 1.8 cgd if (uap->tzp)
123 1.1 cgd tz = atz;
124 1.8 cgd return (0);
125 1.1 cgd }
126 1.1 cgd
127 1.1 cgd extern int tickadj; /* "standard" clock skew, us./tick */
128 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
129 1.1 cgd long timedelta; /* unapplied time correction, us. */
130 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
131 1.1 cgd
132 1.4 cgd struct adjtime_args {
133 1.4 cgd struct timeval *delta;
134 1.4 cgd struct timeval *olddelta;
135 1.4 cgd };
136 1.1 cgd /* ARGSUSED */
137 1.3 andrew int
138 1.1 cgd adjtime(p, uap, retval)
139 1.1 cgd struct proc *p;
140 1.4 cgd register struct adjtime_args *uap;
141 1.1 cgd int *retval;
142 1.1 cgd {
143 1.8 cgd struct timeval atv;
144 1.8 cgd register long ndelta, ntickdelta, odelta;
145 1.1 cgd int s, error;
146 1.1 cgd
147 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
148 1.1 cgd return (error);
149 1.1 cgd if (error =
150 1.8 cgd copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
151 1.1 cgd return (error);
152 1.8 cgd
153 1.8 cgd /*
154 1.8 cgd * Compute the total correction and the rate at which to apply it.
155 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
156 1.8 cgd * delta, so that after some number of incremental changes in
157 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
158 1.8 cgd * overshoot and start taking us away from the desired final time.
159 1.8 cgd */
160 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
161 1.8 cgd if (ndelta > bigadj)
162 1.8 cgd ntickdelta = 10 * tickadj;
163 1.8 cgd else
164 1.8 cgd ntickdelta = tickadj;
165 1.8 cgd if (ndelta % ntickdelta)
166 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
167 1.8 cgd
168 1.8 cgd /*
169 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
170 1.8 cgd * if we want time to run slower; then hardclock can simply compute
171 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
172 1.8 cgd */
173 1.8 cgd if (ndelta < 0)
174 1.8 cgd ntickdelta = -ntickdelta;
175 1.1 cgd s = splclock();
176 1.8 cgd odelta = timedelta;
177 1.1 cgd timedelta = ndelta;
178 1.8 cgd tickdelta = ntickdelta;
179 1.1 cgd splx(s);
180 1.1 cgd
181 1.8 cgd if (uap->olddelta) {
182 1.8 cgd atv.tv_sec = odelta / 1000000;
183 1.8 cgd atv.tv_usec = odelta % 1000000;
184 1.8 cgd (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
185 1.8 cgd sizeof(struct timeval));
186 1.8 cgd }
187 1.1 cgd return (0);
188 1.1 cgd }
189 1.1 cgd
190 1.1 cgd /*
191 1.1 cgd * Get value of an interval timer. The process virtual and
192 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
193 1.1 cgd * they can be swapped out. These are kept internally in the
194 1.1 cgd * way they are specified externally: in time until they expire.
195 1.1 cgd *
196 1.1 cgd * The real time interval timer is kept in the process table slot
197 1.1 cgd * for the process, and its value (it_value) is kept as an
198 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
199 1.1 cgd * periodic real-time signals from drifting.
200 1.1 cgd *
201 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
202 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
203 1.1 cgd * routine, called from the softclock() routine. Since a callout
204 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
205 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
206 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
207 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
208 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
209 1.1 cgd * absolute time the timer should go off.
210 1.1 cgd */
211 1.4 cgd struct getitimer_args {
212 1.4 cgd u_int which;
213 1.4 cgd struct itimerval *itv;
214 1.4 cgd };
215 1.1 cgd /* ARGSUSED */
216 1.3 andrew int
217 1.1 cgd getitimer(p, uap, retval)
218 1.1 cgd struct proc *p;
219 1.4 cgd register struct getitimer_args *uap;
220 1.1 cgd int *retval;
221 1.1 cgd {
222 1.1 cgd struct itimerval aitv;
223 1.1 cgd int s;
224 1.1 cgd
225 1.1 cgd if (uap->which > ITIMER_PROF)
226 1.1 cgd return (EINVAL);
227 1.1 cgd s = splclock();
228 1.1 cgd if (uap->which == ITIMER_REAL) {
229 1.1 cgd /*
230 1.1 cgd * Convert from absoulte to relative time in .it_value
231 1.1 cgd * part of real time timer. If time for real time timer
232 1.1 cgd * has passed return 0, else return difference between
233 1.1 cgd * current time and time for the timer to go off.
234 1.1 cgd */
235 1.1 cgd aitv = p->p_realtimer;
236 1.1 cgd if (timerisset(&aitv.it_value))
237 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
238 1.1 cgd timerclear(&aitv.it_value);
239 1.1 cgd else
240 1.6 cgd timevalsub(&aitv.it_value,
241 1.6 cgd (struct timeval *)&time);
242 1.1 cgd } else
243 1.1 cgd aitv = p->p_stats->p_timer[uap->which];
244 1.1 cgd splx(s);
245 1.1 cgd return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
246 1.1 cgd sizeof (struct itimerval)));
247 1.1 cgd }
248 1.1 cgd
249 1.4 cgd struct setitimer_args {
250 1.4 cgd u_int which;
251 1.4 cgd struct itimerval *itv, *oitv;
252 1.4 cgd };
253 1.1 cgd /* ARGSUSED */
254 1.3 andrew int
255 1.1 cgd setitimer(p, uap, retval)
256 1.1 cgd struct proc *p;
257 1.4 cgd register struct setitimer_args *uap;
258 1.1 cgd int *retval;
259 1.1 cgd {
260 1.1 cgd struct itimerval aitv;
261 1.1 cgd register struct itimerval *itvp;
262 1.1 cgd int s, error;
263 1.1 cgd
264 1.1 cgd if (uap->which > ITIMER_PROF)
265 1.1 cgd return (EINVAL);
266 1.1 cgd itvp = uap->itv;
267 1.1 cgd if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
268 1.1 cgd sizeof(struct itimerval))))
269 1.1 cgd return (error);
270 1.1 cgd if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
271 1.1 cgd return (error);
272 1.1 cgd if (itvp == 0)
273 1.1 cgd return (0);
274 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
275 1.1 cgd return (EINVAL);
276 1.1 cgd s = splclock();
277 1.1 cgd if (uap->which == ITIMER_REAL) {
278 1.7 mycroft untimeout(realitexpire, p);
279 1.1 cgd if (timerisset(&aitv.it_value)) {
280 1.6 cgd timevaladd(&aitv.it_value, (struct timeval *)&time);
281 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
282 1.1 cgd }
283 1.1 cgd p->p_realtimer = aitv;
284 1.1 cgd } else
285 1.1 cgd p->p_stats->p_timer[uap->which] = aitv;
286 1.1 cgd splx(s);
287 1.1 cgd return (0);
288 1.1 cgd }
289 1.1 cgd
290 1.1 cgd /*
291 1.1 cgd * Real interval timer expired:
292 1.1 cgd * send process whose timer expired an alarm signal.
293 1.1 cgd * If time is not set up to reload, then just return.
294 1.1 cgd * Else compute next time timer should go off which is > current time.
295 1.1 cgd * This is where delay in processing this timeout causes multiple
296 1.1 cgd * SIGALRM calls to be compressed into one.
297 1.1 cgd */
298 1.3 andrew void
299 1.6 cgd realitexpire(arg)
300 1.6 cgd void *arg;
301 1.6 cgd {
302 1.1 cgd register struct proc *p;
303 1.1 cgd int s;
304 1.1 cgd
305 1.6 cgd p = (struct proc *)arg;
306 1.1 cgd psignal(p, SIGALRM);
307 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
308 1.1 cgd timerclear(&p->p_realtimer.it_value);
309 1.1 cgd return;
310 1.1 cgd }
311 1.1 cgd for (;;) {
312 1.1 cgd s = splclock();
313 1.1 cgd timevaladd(&p->p_realtimer.it_value,
314 1.1 cgd &p->p_realtimer.it_interval);
315 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
316 1.7 mycroft timeout(realitexpire, p,
317 1.1 cgd hzto(&p->p_realtimer.it_value));
318 1.1 cgd splx(s);
319 1.1 cgd return;
320 1.1 cgd }
321 1.1 cgd splx(s);
322 1.1 cgd }
323 1.1 cgd }
324 1.1 cgd
325 1.1 cgd /*
326 1.1 cgd * Check that a proposed value to load into the .it_value or
327 1.1 cgd * .it_interval part of an interval timer is acceptable, and
328 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
329 1.1 cgd * than the resolution of the clock, round it up.)
330 1.1 cgd */
331 1.3 andrew int
332 1.1 cgd itimerfix(tv)
333 1.1 cgd struct timeval *tv;
334 1.1 cgd {
335 1.1 cgd
336 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
337 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
338 1.1 cgd return (EINVAL);
339 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
340 1.1 cgd tv->tv_usec = tick;
341 1.1 cgd return (0);
342 1.1 cgd }
343 1.1 cgd
344 1.1 cgd /*
345 1.1 cgd * Decrement an interval timer by a specified number
346 1.1 cgd * of microseconds, which must be less than a second,
347 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
348 1.1 cgd * it. In this case, carry over (usec - old value) to
349 1.8 cgd * reduce the value reloaded into the timer so that
350 1.1 cgd * the timer does not drift. This routine assumes
351 1.1 cgd * that it is called in a context where the timers
352 1.1 cgd * on which it is operating cannot change in value.
353 1.1 cgd */
354 1.3 andrew int
355 1.1 cgd itimerdecr(itp, usec)
356 1.1 cgd register struct itimerval *itp;
357 1.1 cgd int usec;
358 1.1 cgd {
359 1.1 cgd
360 1.1 cgd if (itp->it_value.tv_usec < usec) {
361 1.1 cgd if (itp->it_value.tv_sec == 0) {
362 1.1 cgd /* expired, and already in next interval */
363 1.1 cgd usec -= itp->it_value.tv_usec;
364 1.1 cgd goto expire;
365 1.1 cgd }
366 1.1 cgd itp->it_value.tv_usec += 1000000;
367 1.1 cgd itp->it_value.tv_sec--;
368 1.1 cgd }
369 1.1 cgd itp->it_value.tv_usec -= usec;
370 1.1 cgd usec = 0;
371 1.1 cgd if (timerisset(&itp->it_value))
372 1.1 cgd return (1);
373 1.1 cgd /* expired, exactly at end of interval */
374 1.1 cgd expire:
375 1.1 cgd if (timerisset(&itp->it_interval)) {
376 1.1 cgd itp->it_value = itp->it_interval;
377 1.1 cgd itp->it_value.tv_usec -= usec;
378 1.1 cgd if (itp->it_value.tv_usec < 0) {
379 1.1 cgd itp->it_value.tv_usec += 1000000;
380 1.1 cgd itp->it_value.tv_sec--;
381 1.1 cgd }
382 1.1 cgd } else
383 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
384 1.1 cgd return (0);
385 1.1 cgd }
386 1.1 cgd
387 1.1 cgd /*
388 1.1 cgd * Add and subtract routines for timevals.
389 1.1 cgd * N.B.: subtract routine doesn't deal with
390 1.1 cgd * results which are before the beginning,
391 1.1 cgd * it just gets very confused in this case.
392 1.1 cgd * Caveat emptor.
393 1.1 cgd */
394 1.3 andrew void
395 1.1 cgd timevaladd(t1, t2)
396 1.1 cgd struct timeval *t1, *t2;
397 1.1 cgd {
398 1.1 cgd
399 1.1 cgd t1->tv_sec += t2->tv_sec;
400 1.1 cgd t1->tv_usec += t2->tv_usec;
401 1.1 cgd timevalfix(t1);
402 1.1 cgd }
403 1.1 cgd
404 1.3 andrew void
405 1.1 cgd timevalsub(t1, t2)
406 1.1 cgd struct timeval *t1, *t2;
407 1.1 cgd {
408 1.1 cgd
409 1.1 cgd t1->tv_sec -= t2->tv_sec;
410 1.1 cgd t1->tv_usec -= t2->tv_usec;
411 1.1 cgd timevalfix(t1);
412 1.1 cgd }
413 1.1 cgd
414 1.3 andrew void
415 1.1 cgd timevalfix(t1)
416 1.1 cgd struct timeval *t1;
417 1.1 cgd {
418 1.1 cgd
419 1.1 cgd if (t1->tv_usec < 0) {
420 1.1 cgd t1->tv_sec--;
421 1.1 cgd t1->tv_usec += 1000000;
422 1.1 cgd }
423 1.1 cgd if (t1->tv_usec >= 1000000) {
424 1.1 cgd t1->tv_sec++;
425 1.1 cgd t1->tv_usec -= 1000000;
426 1.1 cgd }
427 1.1 cgd }
428