Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.8
      1  1.1      cgd /*
      2  1.8      cgd  * Copyright (c) 1982, 1986, 1989, 1993
      3  1.8      cgd  *	The Regents of the University of California.  All rights reserved.
      4  1.1      cgd  *
      5  1.1      cgd  * Redistribution and use in source and binary forms, with or without
      6  1.1      cgd  * modification, are permitted provided that the following conditions
      7  1.1      cgd  * are met:
      8  1.1      cgd  * 1. Redistributions of source code must retain the above copyright
      9  1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     10  1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     11  1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     12  1.1      cgd  *    documentation and/or other materials provided with the distribution.
     13  1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     14  1.1      cgd  *    must display the following acknowledgement:
     15  1.1      cgd  *	This product includes software developed by the University of
     16  1.1      cgd  *	California, Berkeley and its contributors.
     17  1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     18  1.1      cgd  *    may be used to endorse or promote products derived from this software
     19  1.1      cgd  *    without specific prior written permission.
     20  1.1      cgd  *
     21  1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  1.1      cgd  * SUCH DAMAGE.
     32  1.1      cgd  *
     33  1.8      cgd  *	from: @(#)kern_time.c	8.1 (Berkeley) 6/10/93
     34  1.8      cgd  *	$Id: kern_time.c,v 1.8 1994/05/20 07:24:51 cgd Exp $
     35  1.1      cgd  */
     36  1.1      cgd 
     37  1.5  mycroft #include <sys/param.h>
     38  1.5  mycroft #include <sys/resourcevar.h>
     39  1.5  mycroft #include <sys/kernel.h>
     40  1.8      cgd #include <sys/systm.h>
     41  1.5  mycroft #include <sys/proc.h>
     42  1.8      cgd #include <sys/vnode.h>
     43  1.1      cgd 
     44  1.5  mycroft #include <machine/cpu.h>
     45  1.1      cgd 
     46  1.1      cgd /*
     47  1.1      cgd  * Time of day and interval timer support.
     48  1.1      cgd  *
     49  1.1      cgd  * These routines provide the kernel entry points to get and set
     50  1.1      cgd  * the time-of-day and per-process interval timers.  Subroutines
     51  1.1      cgd  * here provide support for adding and subtracting timeval structures
     52  1.1      cgd  * and decrementing interval timers, optionally reloading the interval
     53  1.1      cgd  * timers when they expire.
     54  1.1      cgd  */
     55  1.1      cgd 
     56  1.4      cgd struct gettimeofday_args {
     57  1.4      cgd 	struct	timeval *tp;
     58  1.4      cgd 	struct	timezone *tzp;
     59  1.4      cgd };
     60  1.1      cgd /* ARGSUSED */
     61  1.3   andrew int
     62  1.1      cgd gettimeofday(p, uap, retval)
     63  1.1      cgd 	struct proc *p;
     64  1.4      cgd 	register struct gettimeofday_args *uap;
     65  1.1      cgd 	int *retval;
     66  1.1      cgd {
     67  1.1      cgd 	struct timeval atv;
     68  1.1      cgd 	int error = 0;
     69  1.1      cgd 
     70  1.1      cgd 	if (uap->tp) {
     71  1.1      cgd 		microtime(&atv);
     72  1.1      cgd 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
     73  1.1      cgd 		    sizeof (atv)))
     74  1.1      cgd 			return (error);
     75  1.1      cgd 	}
     76  1.1      cgd 	if (uap->tzp)
     77  1.1      cgd 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
     78  1.1      cgd 		    sizeof (tz));
     79  1.1      cgd 	return (error);
     80  1.1      cgd }
     81  1.1      cgd 
     82  1.4      cgd struct settimeofday_args {
     83  1.4      cgd 	struct	timeval *tv;
     84  1.4      cgd 	struct	timezone *tzp;
     85  1.4      cgd };
     86  1.1      cgd /* ARGSUSED */
     87  1.3   andrew int
     88  1.1      cgd settimeofday(p, uap, retval)
     89  1.1      cgd 	struct proc *p;
     90  1.4      cgd 	struct settimeofday_args *uap;
     91  1.1      cgd 	int *retval;
     92  1.1      cgd {
     93  1.8      cgd 	struct timeval atv, delta;
     94  1.1      cgd 	struct timezone atz;
     95  1.1      cgd 	int error, s;
     96  1.1      cgd 
     97  1.1      cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
     98  1.1      cgd 		return (error);
     99  1.8      cgd 	/* Verify all parameters before changing time. */
    100  1.8      cgd 	if (uap->tv &&
    101  1.8      cgd 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
    102  1.8      cgd 		return (error);
    103  1.8      cgd 	if (uap->tzp &&
    104  1.8      cgd 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
    105  1.8      cgd 		return (error);
    106  1.1      cgd 	if (uap->tv) {
    107  1.1      cgd 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    108  1.8      cgd 		s = splclock();
    109  1.8      cgd 		/* nb. delta.tv_usec may be < 0, but this is OK here */
    110  1.8      cgd 		delta.tv_sec = atv.tv_sec - time.tv_sec;
    111  1.8      cgd 		delta.tv_usec = atv.tv_usec - time.tv_usec;
    112  1.8      cgd 		time = atv;
    113  1.8      cgd 		(void) splsoftclock();
    114  1.8      cgd 		timevaladd(&boottime, &delta);
    115  1.8      cgd 		timevalfix(&boottime);
    116  1.8      cgd 		timevaladd(&runtime, &delta);
    117  1.8      cgd 		timevalfix(&runtime);
    118  1.8      cgd 		LEASE_UPDATETIME(delta.tv_sec);
    119  1.8      cgd 		splx(s);
    120  1.1      cgd 		resettodr();
    121  1.1      cgd 	}
    122  1.8      cgd 	if (uap->tzp)
    123  1.1      cgd 		tz = atz;
    124  1.8      cgd 	return (0);
    125  1.1      cgd }
    126  1.1      cgd 
    127  1.1      cgd extern	int tickadj;			/* "standard" clock skew, us./tick */
    128  1.1      cgd int	tickdelta;			/* current clock skew, us. per tick */
    129  1.1      cgd long	timedelta;			/* unapplied time correction, us. */
    130  1.1      cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    131  1.1      cgd 
    132  1.4      cgd struct adjtime_args {
    133  1.4      cgd 	struct timeval *delta;
    134  1.4      cgd 	struct timeval *olddelta;
    135  1.4      cgd };
    136  1.1      cgd /* ARGSUSED */
    137  1.3   andrew int
    138  1.1      cgd adjtime(p, uap, retval)
    139  1.1      cgd 	struct proc *p;
    140  1.4      cgd 	register struct adjtime_args *uap;
    141  1.1      cgd 	int *retval;
    142  1.1      cgd {
    143  1.8      cgd 	struct timeval atv;
    144  1.8      cgd 	register long ndelta, ntickdelta, odelta;
    145  1.1      cgd 	int s, error;
    146  1.1      cgd 
    147  1.1      cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
    148  1.1      cgd 		return (error);
    149  1.1      cgd 	if (error =
    150  1.8      cgd 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
    151  1.1      cgd 		return (error);
    152  1.8      cgd 
    153  1.8      cgd 	/*
    154  1.8      cgd 	 * Compute the total correction and the rate at which to apply it.
    155  1.8      cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    156  1.8      cgd 	 * delta, so that after some number of incremental changes in
    157  1.8      cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    158  1.8      cgd 	 * overshoot and start taking us away from the desired final time.
    159  1.8      cgd 	 */
    160  1.1      cgd 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    161  1.8      cgd 	if (ndelta > bigadj)
    162  1.8      cgd 		ntickdelta = 10 * tickadj;
    163  1.8      cgd 	else
    164  1.8      cgd 		ntickdelta = tickadj;
    165  1.8      cgd 	if (ndelta % ntickdelta)
    166  1.8      cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    167  1.8      cgd 
    168  1.8      cgd 	/*
    169  1.8      cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    170  1.8      cgd 	 * if we want time to run slower; then hardclock can simply compute
    171  1.8      cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    172  1.8      cgd 	 */
    173  1.8      cgd 	if (ndelta < 0)
    174  1.8      cgd 		ntickdelta = -ntickdelta;
    175  1.1      cgd 	s = splclock();
    176  1.8      cgd 	odelta = timedelta;
    177  1.1      cgd 	timedelta = ndelta;
    178  1.8      cgd 	tickdelta = ntickdelta;
    179  1.1      cgd 	splx(s);
    180  1.1      cgd 
    181  1.8      cgd 	if (uap->olddelta) {
    182  1.8      cgd 		atv.tv_sec = odelta / 1000000;
    183  1.8      cgd 		atv.tv_usec = odelta % 1000000;
    184  1.8      cgd 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
    185  1.8      cgd 		    sizeof(struct timeval));
    186  1.8      cgd 	}
    187  1.1      cgd 	return (0);
    188  1.1      cgd }
    189  1.1      cgd 
    190  1.1      cgd /*
    191  1.1      cgd  * Get value of an interval timer.  The process virtual and
    192  1.1      cgd  * profiling virtual time timers are kept in the p_stats area, since
    193  1.1      cgd  * they can be swapped out.  These are kept internally in the
    194  1.1      cgd  * way they are specified externally: in time until they expire.
    195  1.1      cgd  *
    196  1.1      cgd  * The real time interval timer is kept in the process table slot
    197  1.1      cgd  * for the process, and its value (it_value) is kept as an
    198  1.1      cgd  * absolute time rather than as a delta, so that it is easy to keep
    199  1.1      cgd  * periodic real-time signals from drifting.
    200  1.1      cgd  *
    201  1.1      cgd  * Virtual time timers are processed in the hardclock() routine of
    202  1.1      cgd  * kern_clock.c.  The real time timer is processed by a timeout
    203  1.1      cgd  * routine, called from the softclock() routine.  Since a callout
    204  1.1      cgd  * may be delayed in real time due to interrupt processing in the system,
    205  1.1      cgd  * it is possible for the real time timeout routine (realitexpire, given below),
    206  1.1      cgd  * to be delayed in real time past when it is supposed to occur.  It
    207  1.1      cgd  * does not suffice, therefore, to reload the real timer .it_value from the
    208  1.1      cgd  * real time timers .it_interval.  Rather, we compute the next time in
    209  1.1      cgd  * absolute time the timer should go off.
    210  1.1      cgd  */
    211  1.4      cgd struct getitimer_args {
    212  1.4      cgd 	u_int	which;
    213  1.4      cgd 	struct	itimerval *itv;
    214  1.4      cgd };
    215  1.1      cgd /* ARGSUSED */
    216  1.3   andrew int
    217  1.1      cgd getitimer(p, uap, retval)
    218  1.1      cgd 	struct proc *p;
    219  1.4      cgd 	register struct getitimer_args *uap;
    220  1.1      cgd 	int *retval;
    221  1.1      cgd {
    222  1.1      cgd 	struct itimerval aitv;
    223  1.1      cgd 	int s;
    224  1.1      cgd 
    225  1.1      cgd 	if (uap->which > ITIMER_PROF)
    226  1.1      cgd 		return (EINVAL);
    227  1.1      cgd 	s = splclock();
    228  1.1      cgd 	if (uap->which == ITIMER_REAL) {
    229  1.1      cgd 		/*
    230  1.1      cgd 		 * Convert from absoulte to relative time in .it_value
    231  1.1      cgd 		 * part of real time timer.  If time for real time timer
    232  1.1      cgd 		 * has passed return 0, else return difference between
    233  1.1      cgd 		 * current time and time for the timer to go off.
    234  1.1      cgd 		 */
    235  1.1      cgd 		aitv = p->p_realtimer;
    236  1.1      cgd 		if (timerisset(&aitv.it_value))
    237  1.1      cgd 			if (timercmp(&aitv.it_value, &time, <))
    238  1.1      cgd 				timerclear(&aitv.it_value);
    239  1.1      cgd 			else
    240  1.6      cgd 				timevalsub(&aitv.it_value,
    241  1.6      cgd 				    (struct timeval *)&time);
    242  1.1      cgd 	} else
    243  1.1      cgd 		aitv = p->p_stats->p_timer[uap->which];
    244  1.1      cgd 	splx(s);
    245  1.1      cgd 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
    246  1.1      cgd 	    sizeof (struct itimerval)));
    247  1.1      cgd }
    248  1.1      cgd 
    249  1.4      cgd struct setitimer_args {
    250  1.4      cgd 	u_int	which;
    251  1.4      cgd 	struct	itimerval *itv, *oitv;
    252  1.4      cgd };
    253  1.1      cgd /* ARGSUSED */
    254  1.3   andrew int
    255  1.1      cgd setitimer(p, uap, retval)
    256  1.1      cgd 	struct proc *p;
    257  1.4      cgd 	register struct setitimer_args *uap;
    258  1.1      cgd 	int *retval;
    259  1.1      cgd {
    260  1.1      cgd 	struct itimerval aitv;
    261  1.1      cgd 	register struct itimerval *itvp;
    262  1.1      cgd 	int s, error;
    263  1.1      cgd 
    264  1.1      cgd 	if (uap->which > ITIMER_PROF)
    265  1.1      cgd 		return (EINVAL);
    266  1.1      cgd 	itvp = uap->itv;
    267  1.1      cgd 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    268  1.1      cgd 	    sizeof(struct itimerval))))
    269  1.1      cgd 		return (error);
    270  1.1      cgd 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
    271  1.1      cgd 		return (error);
    272  1.1      cgd 	if (itvp == 0)
    273  1.1      cgd 		return (0);
    274  1.1      cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    275  1.1      cgd 		return (EINVAL);
    276  1.1      cgd 	s = splclock();
    277  1.1      cgd 	if (uap->which == ITIMER_REAL) {
    278  1.7  mycroft 		untimeout(realitexpire, p);
    279  1.1      cgd 		if (timerisset(&aitv.it_value)) {
    280  1.6      cgd 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    281  1.7  mycroft 			timeout(realitexpire, p, hzto(&aitv.it_value));
    282  1.1      cgd 		}
    283  1.1      cgd 		p->p_realtimer = aitv;
    284  1.1      cgd 	} else
    285  1.1      cgd 		p->p_stats->p_timer[uap->which] = aitv;
    286  1.1      cgd 	splx(s);
    287  1.1      cgd 	return (0);
    288  1.1      cgd }
    289  1.1      cgd 
    290  1.1      cgd /*
    291  1.1      cgd  * Real interval timer expired:
    292  1.1      cgd  * send process whose timer expired an alarm signal.
    293  1.1      cgd  * If time is not set up to reload, then just return.
    294  1.1      cgd  * Else compute next time timer should go off which is > current time.
    295  1.1      cgd  * This is where delay in processing this timeout causes multiple
    296  1.1      cgd  * SIGALRM calls to be compressed into one.
    297  1.1      cgd  */
    298  1.3   andrew void
    299  1.6      cgd realitexpire(arg)
    300  1.6      cgd 	void *arg;
    301  1.6      cgd {
    302  1.1      cgd 	register struct proc *p;
    303  1.1      cgd 	int s;
    304  1.1      cgd 
    305  1.6      cgd 	p = (struct proc *)arg;
    306  1.1      cgd 	psignal(p, SIGALRM);
    307  1.1      cgd 	if (!timerisset(&p->p_realtimer.it_interval)) {
    308  1.1      cgd 		timerclear(&p->p_realtimer.it_value);
    309  1.1      cgd 		return;
    310  1.1      cgd 	}
    311  1.1      cgd 	for (;;) {
    312  1.1      cgd 		s = splclock();
    313  1.1      cgd 		timevaladd(&p->p_realtimer.it_value,
    314  1.1      cgd 		    &p->p_realtimer.it_interval);
    315  1.1      cgd 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    316  1.7  mycroft 			timeout(realitexpire, p,
    317  1.1      cgd 			    hzto(&p->p_realtimer.it_value));
    318  1.1      cgd 			splx(s);
    319  1.1      cgd 			return;
    320  1.1      cgd 		}
    321  1.1      cgd 		splx(s);
    322  1.1      cgd 	}
    323  1.1      cgd }
    324  1.1      cgd 
    325  1.1      cgd /*
    326  1.1      cgd  * Check that a proposed value to load into the .it_value or
    327  1.1      cgd  * .it_interval part of an interval timer is acceptable, and
    328  1.1      cgd  * fix it to have at least minimal value (i.e. if it is less
    329  1.1      cgd  * than the resolution of the clock, round it up.)
    330  1.1      cgd  */
    331  1.3   andrew int
    332  1.1      cgd itimerfix(tv)
    333  1.1      cgd 	struct timeval *tv;
    334  1.1      cgd {
    335  1.1      cgd 
    336  1.1      cgd 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    337  1.1      cgd 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    338  1.1      cgd 		return (EINVAL);
    339  1.1      cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    340  1.1      cgd 		tv->tv_usec = tick;
    341  1.1      cgd 	return (0);
    342  1.1      cgd }
    343  1.1      cgd 
    344  1.1      cgd /*
    345  1.1      cgd  * Decrement an interval timer by a specified number
    346  1.1      cgd  * of microseconds, which must be less than a second,
    347  1.1      cgd  * i.e. < 1000000.  If the timer expires, then reload
    348  1.1      cgd  * it.  In this case, carry over (usec - old value) to
    349  1.8      cgd  * reduce the value reloaded into the timer so that
    350  1.1      cgd  * the timer does not drift.  This routine assumes
    351  1.1      cgd  * that it is called in a context where the timers
    352  1.1      cgd  * on which it is operating cannot change in value.
    353  1.1      cgd  */
    354  1.3   andrew int
    355  1.1      cgd itimerdecr(itp, usec)
    356  1.1      cgd 	register struct itimerval *itp;
    357  1.1      cgd 	int usec;
    358  1.1      cgd {
    359  1.1      cgd 
    360  1.1      cgd 	if (itp->it_value.tv_usec < usec) {
    361  1.1      cgd 		if (itp->it_value.tv_sec == 0) {
    362  1.1      cgd 			/* expired, and already in next interval */
    363  1.1      cgd 			usec -= itp->it_value.tv_usec;
    364  1.1      cgd 			goto expire;
    365  1.1      cgd 		}
    366  1.1      cgd 		itp->it_value.tv_usec += 1000000;
    367  1.1      cgd 		itp->it_value.tv_sec--;
    368  1.1      cgd 	}
    369  1.1      cgd 	itp->it_value.tv_usec -= usec;
    370  1.1      cgd 	usec = 0;
    371  1.1      cgd 	if (timerisset(&itp->it_value))
    372  1.1      cgd 		return (1);
    373  1.1      cgd 	/* expired, exactly at end of interval */
    374  1.1      cgd expire:
    375  1.1      cgd 	if (timerisset(&itp->it_interval)) {
    376  1.1      cgd 		itp->it_value = itp->it_interval;
    377  1.1      cgd 		itp->it_value.tv_usec -= usec;
    378  1.1      cgd 		if (itp->it_value.tv_usec < 0) {
    379  1.1      cgd 			itp->it_value.tv_usec += 1000000;
    380  1.1      cgd 			itp->it_value.tv_sec--;
    381  1.1      cgd 		}
    382  1.1      cgd 	} else
    383  1.1      cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    384  1.1      cgd 	return (0);
    385  1.1      cgd }
    386  1.1      cgd 
    387  1.1      cgd /*
    388  1.1      cgd  * Add and subtract routines for timevals.
    389  1.1      cgd  * N.B.: subtract routine doesn't deal with
    390  1.1      cgd  * results which are before the beginning,
    391  1.1      cgd  * it just gets very confused in this case.
    392  1.1      cgd  * Caveat emptor.
    393  1.1      cgd  */
    394  1.3   andrew void
    395  1.1      cgd timevaladd(t1, t2)
    396  1.1      cgd 	struct timeval *t1, *t2;
    397  1.1      cgd {
    398  1.1      cgd 
    399  1.1      cgd 	t1->tv_sec += t2->tv_sec;
    400  1.1      cgd 	t1->tv_usec += t2->tv_usec;
    401  1.1      cgd 	timevalfix(t1);
    402  1.1      cgd }
    403  1.1      cgd 
    404  1.3   andrew void
    405  1.1      cgd timevalsub(t1, t2)
    406  1.1      cgd 	struct timeval *t1, *t2;
    407  1.1      cgd {
    408  1.1      cgd 
    409  1.1      cgd 	t1->tv_sec -= t2->tv_sec;
    410  1.1      cgd 	t1->tv_usec -= t2->tv_usec;
    411  1.1      cgd 	timevalfix(t1);
    412  1.1      cgd }
    413  1.1      cgd 
    414  1.3   andrew void
    415  1.1      cgd timevalfix(t1)
    416  1.1      cgd 	struct timeval *t1;
    417  1.1      cgd {
    418  1.1      cgd 
    419  1.1      cgd 	if (t1->tv_usec < 0) {
    420  1.1      cgd 		t1->tv_sec--;
    421  1.1      cgd 		t1->tv_usec += 1000000;
    422  1.1      cgd 	}
    423  1.1      cgd 	if (t1->tv_usec >= 1000000) {
    424  1.1      cgd 		t1->tv_sec++;
    425  1.1      cgd 		t1->tv_usec -= 1000000;
    426  1.1      cgd 	}
    427  1.1      cgd }
    428