kern_time.c revision 1.91 1 1.91 cube /* $NetBSD: kern_time.c,v 1.91 2005/07/11 19:50:42 cube Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.91 cube __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.91 2005/07/11 19:50:42 cube Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.63 thorpej #include <sys/malloc.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.63 thorpej #include <sys/sa.h>
84 1.63 thorpej #include <sys/savar.h>
85 1.8 cgd #include <sys/vnode.h>
86 1.17 christos #include <sys/signalvar.h>
87 1.25 perry #include <sys/syslog.h>
88 1.1 cgd
89 1.11 cgd #include <sys/mount.h>
90 1.11 cgd #include <sys/syscallargs.h>
91 1.19 christos
92 1.37 thorpej #include <uvm/uvm_extern.h>
93 1.37 thorpej
94 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
95 1.20 fvdl #include <nfs/rpcv2.h>
96 1.20 fvdl #include <nfs/nfsproto.h>
97 1.19 christos #include <nfs/nfs_var.h>
98 1.19 christos #endif
99 1.17 christos
100 1.5 mycroft #include <machine/cpu.h>
101 1.23 cgd
102 1.63 thorpej static void timerupcall(struct lwp *, void *);
103 1.63 thorpej
104 1.63 thorpej
105 1.63 thorpej /* Time of day and interval timer support.
106 1.1 cgd *
107 1.1 cgd * These routines provide the kernel entry points to get and set
108 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
109 1.1 cgd * here provide support for adding and subtracting timeval structures
110 1.1 cgd * and decrementing interval timers, optionally reloading the interval
111 1.1 cgd * timers when they expire.
112 1.1 cgd */
113 1.1 cgd
114 1.22 jtc /* This function is used by clock_settime and settimeofday */
115 1.39 tron int
116 1.63 thorpej settime(struct timeval *tv)
117 1.22 jtc {
118 1.22 jtc struct timeval delta;
119 1.47 thorpej struct cpu_info *ci;
120 1.22 jtc int s;
121 1.22 jtc
122 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123 1.22 jtc s = splclock();
124 1.22 jtc timersub(tv, &time, &delta);
125 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126 1.55 tron splx(s);
127 1.29 tls return (EPERM);
128 1.55 tron }
129 1.29 tls #ifdef notyet
130 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
131 1.55 tron splx(s);
132 1.29 tls return (EPERM);
133 1.55 tron }
134 1.29 tls #endif
135 1.22 jtc time = *tv;
136 1.38 thorpej (void) spllowersoftclock();
137 1.22 jtc timeradd(&boottime, &delta, &boottime);
138 1.47 thorpej /*
139 1.47 thorpej * XXXSMP
140 1.47 thorpej * This is wrong. We should traverse a list of all
141 1.47 thorpej * CPUs and add the delta to the runtime of those
142 1.47 thorpej * CPUs which have a process on them.
143 1.47 thorpej */
144 1.47 thorpej ci = curcpu();
145 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146 1.47 thorpej &ci->ci_schedstate.spc_runtime);
147 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
149 1.22 jtc # endif
150 1.22 jtc splx(s);
151 1.22 jtc resettodr();
152 1.29 tls return (0);
153 1.22 jtc }
154 1.22 jtc
155 1.22 jtc /* ARGSUSED */
156 1.22 jtc int
157 1.63 thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158 1.22 jtc {
159 1.45 augustss struct sys_clock_gettime_args /* {
160 1.22 jtc syscallarg(clockid_t) clock_id;
161 1.23 cgd syscallarg(struct timespec *) tp;
162 1.23 cgd } */ *uap = v;
163 1.22 jtc clockid_t clock_id;
164 1.22 jtc struct timeval atv;
165 1.22 jtc struct timespec ats;
166 1.61 simonb int s;
167 1.22 jtc
168 1.22 jtc clock_id = SCARG(uap, clock_id);
169 1.61 simonb switch (clock_id) {
170 1.61 simonb case CLOCK_REALTIME:
171 1.61 simonb microtime(&atv);
172 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
173 1.61 simonb break;
174 1.61 simonb case CLOCK_MONOTONIC:
175 1.61 simonb /* XXX "hz" granularity */
176 1.63 thorpej s = splclock();
177 1.61 simonb atv = mono_time;
178 1.61 simonb splx(s);
179 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
180 1.61 simonb break;
181 1.61 simonb default:
182 1.22 jtc return (EINVAL);
183 1.61 simonb }
184 1.22 jtc
185 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186 1.22 jtc }
187 1.22 jtc
188 1.22 jtc /* ARGSUSED */
189 1.22 jtc int
190 1.90 thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
191 1.22 jtc {
192 1.45 augustss struct sys_clock_settime_args /* {
193 1.22 jtc syscallarg(clockid_t) clock_id;
194 1.23 cgd syscallarg(const struct timespec *) tp;
195 1.23 cgd } */ *uap = v;
196 1.63 thorpej struct proc *p = l->l_proc;
197 1.22 jtc int error;
198 1.22 jtc
199 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
200 1.22 jtc return (error);
201 1.22 jtc
202 1.60 manu return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
203 1.56 manu }
204 1.56 manu
205 1.56 manu
206 1.56 manu int
207 1.90 thorpej clock_settime1(clockid_t clock_id, const struct timespec *tp)
208 1.56 manu {
209 1.60 manu struct timespec ats;
210 1.56 manu struct timeval atv;
211 1.56 manu int error;
212 1.56 manu
213 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
214 1.60 manu return (error);
215 1.60 manu
216 1.61 simonb switch (clock_id) {
217 1.61 simonb case CLOCK_REALTIME:
218 1.61 simonb TIMESPEC_TO_TIMEVAL(&atv, &ats);
219 1.61 simonb if ((error = settime(&atv)) != 0)
220 1.61 simonb return (error);
221 1.61 simonb break;
222 1.61 simonb case CLOCK_MONOTONIC:
223 1.61 simonb return (EINVAL); /* read-only clock */
224 1.61 simonb default:
225 1.56 manu return (EINVAL);
226 1.61 simonb }
227 1.22 jtc
228 1.22 jtc return 0;
229 1.22 jtc }
230 1.22 jtc
231 1.22 jtc int
232 1.63 thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
233 1.22 jtc {
234 1.45 augustss struct sys_clock_getres_args /* {
235 1.22 jtc syscallarg(clockid_t) clock_id;
236 1.23 cgd syscallarg(struct timespec *) tp;
237 1.23 cgd } */ *uap = v;
238 1.22 jtc clockid_t clock_id;
239 1.22 jtc struct timespec ts;
240 1.22 jtc int error = 0;
241 1.22 jtc
242 1.22 jtc clock_id = SCARG(uap, clock_id);
243 1.61 simonb switch (clock_id) {
244 1.61 simonb case CLOCK_REALTIME:
245 1.61 simonb case CLOCK_MONOTONIC:
246 1.22 jtc ts.tv_sec = 0;
247 1.22 jtc ts.tv_nsec = 1000000000 / hz;
248 1.61 simonb break;
249 1.61 simonb default:
250 1.61 simonb return (EINVAL);
251 1.61 simonb }
252 1.22 jtc
253 1.61 simonb if (SCARG(uap, tp))
254 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
255 1.22 jtc
256 1.22 jtc return error;
257 1.22 jtc }
258 1.22 jtc
259 1.27 jtc /* ARGSUSED */
260 1.27 jtc int
261 1.63 thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
262 1.27 jtc {
263 1.27 jtc static int nanowait;
264 1.45 augustss struct sys_nanosleep_args/* {
265 1.27 jtc syscallarg(struct timespec *) rqtp;
266 1.27 jtc syscallarg(struct timespec *) rmtp;
267 1.27 jtc } */ *uap = v;
268 1.27 jtc struct timespec rqt;
269 1.27 jtc struct timespec rmt;
270 1.27 jtc struct timeval atv, utv;
271 1.27 jtc int error, s, timo;
272 1.27 jtc
273 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
274 1.27 jtc if (error)
275 1.27 jtc return (error);
276 1.27 jtc
277 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
278 1.80 christos if (itimerfix(&atv))
279 1.27 jtc return (EINVAL);
280 1.27 jtc
281 1.27 jtc s = splclock();
282 1.27 jtc timeradd(&atv,&time,&atv);
283 1.27 jtc timo = hzto(&atv);
284 1.63 thorpej /*
285 1.27 jtc * Avoid inadvertantly sleeping forever
286 1.27 jtc */
287 1.27 jtc if (timo == 0)
288 1.27 jtc timo = 1;
289 1.27 jtc splx(s);
290 1.27 jtc
291 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
292 1.27 jtc if (error == ERESTART)
293 1.27 jtc error = EINTR;
294 1.27 jtc if (error == EWOULDBLOCK)
295 1.27 jtc error = 0;
296 1.27 jtc
297 1.27 jtc if (SCARG(uap, rmtp)) {
298 1.89 christos int error1;
299 1.28 jtc
300 1.27 jtc s = splclock();
301 1.27 jtc utv = time;
302 1.27 jtc splx(s);
303 1.27 jtc
304 1.27 jtc timersub(&atv, &utv, &utv);
305 1.27 jtc if (utv.tv_sec < 0)
306 1.27 jtc timerclear(&utv);
307 1.27 jtc
308 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
309 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
310 1.28 jtc sizeof(rmt));
311 1.89 christos if (error1)
312 1.89 christos return (error1);
313 1.27 jtc }
314 1.27 jtc
315 1.27 jtc return error;
316 1.27 jtc }
317 1.22 jtc
318 1.1 cgd /* ARGSUSED */
319 1.3 andrew int
320 1.63 thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
321 1.15 thorpej {
322 1.45 augustss struct sys_gettimeofday_args /* {
323 1.11 cgd syscallarg(struct timeval *) tp;
324 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
325 1.15 thorpej } */ *uap = v;
326 1.1 cgd struct timeval atv;
327 1.1 cgd int error = 0;
328 1.25 perry struct timezone tzfake;
329 1.1 cgd
330 1.11 cgd if (SCARG(uap, tp)) {
331 1.1 cgd microtime(&atv);
332 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
333 1.17 christos if (error)
334 1.1 cgd return (error);
335 1.1 cgd }
336 1.25 perry if (SCARG(uap, tzp)) {
337 1.25 perry /*
338 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
339 1.25 perry * fake up a timezone struct and return it if demanded.
340 1.25 perry */
341 1.25 perry tzfake.tz_minuteswest = 0;
342 1.25 perry tzfake.tz_dsttime = 0;
343 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
344 1.25 perry }
345 1.1 cgd return (error);
346 1.1 cgd }
347 1.1 cgd
348 1.1 cgd /* ARGSUSED */
349 1.3 andrew int
350 1.63 thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
351 1.15 thorpej {
352 1.16 mycroft struct sys_settimeofday_args /* {
353 1.24 cgd syscallarg(const struct timeval *) tv;
354 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
355 1.15 thorpej } */ *uap = v;
356 1.63 thorpej struct proc *p = l->l_proc;
357 1.60 manu int error;
358 1.60 manu
359 1.60 manu if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
360 1.60 manu return (error);
361 1.60 manu
362 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
363 1.60 manu }
364 1.60 manu
365 1.60 manu int
366 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
367 1.90 thorpej struct proc *p)
368 1.60 manu {
369 1.22 jtc struct timeval atv;
370 1.1 cgd struct timezone atz;
371 1.56 manu struct timeval *tv = NULL;
372 1.56 manu struct timezone *tzp = NULL;
373 1.22 jtc int error;
374 1.1 cgd
375 1.8 cgd /* Verify all parameters before changing time. */
376 1.60 manu if (utv) {
377 1.60 manu if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
378 1.56 manu return (error);
379 1.56 manu tv = &atv;
380 1.56 manu }
381 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
382 1.60 manu if (utzp) {
383 1.60 manu if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
384 1.56 manu return (error);
385 1.56 manu tzp = &atz;
386 1.56 manu }
387 1.56 manu
388 1.56 manu if (tv)
389 1.56 manu if ((error = settime(tv)) != 0)
390 1.29 tls return (error);
391 1.25 perry /*
392 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
393 1.25 perry * obsolete program would try to set it, so we log a warning.
394 1.25 perry */
395 1.56 manu if (tzp)
396 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
397 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
398 1.8 cgd return (0);
399 1.1 cgd }
400 1.1 cgd
401 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
402 1.1 cgd long timedelta; /* unapplied time correction, us. */
403 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
404 1.68 dsl int time_adjusted; /* set if an adjustment is made */
405 1.1 cgd
406 1.1 cgd /* ARGSUSED */
407 1.3 andrew int
408 1.63 thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
409 1.15 thorpej {
410 1.45 augustss struct sys_adjtime_args /* {
411 1.24 cgd syscallarg(const struct timeval *) delta;
412 1.11 cgd syscallarg(struct timeval *) olddelta;
413 1.15 thorpej } */ *uap = v;
414 1.63 thorpej struct proc *p = l->l_proc;
415 1.56 manu int error;
416 1.1 cgd
417 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
418 1.1 cgd return (error);
419 1.17 christos
420 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
421 1.56 manu }
422 1.56 manu
423 1.56 manu int
424 1.90 thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
425 1.56 manu {
426 1.60 manu struct timeval atv;
427 1.56 manu long ndelta, ntickdelta, odelta;
428 1.60 manu int error;
429 1.56 manu int s;
430 1.8 cgd
431 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
432 1.60 manu if (error)
433 1.60 manu return (error);
434 1.60 manu
435 1.8 cgd /*
436 1.8 cgd * Compute the total correction and the rate at which to apply it.
437 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
438 1.8 cgd * delta, so that after some number of incremental changes in
439 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
440 1.8 cgd * overshoot and start taking us away from the desired final time.
441 1.8 cgd */
442 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
443 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
444 1.8 cgd ntickdelta = 10 * tickadj;
445 1.8 cgd else
446 1.8 cgd ntickdelta = tickadj;
447 1.8 cgd if (ndelta % ntickdelta)
448 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
449 1.8 cgd
450 1.8 cgd /*
451 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
452 1.8 cgd * if we want time to run slower; then hardclock can simply compute
453 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
454 1.8 cgd */
455 1.8 cgd if (ndelta < 0)
456 1.8 cgd ntickdelta = -ntickdelta;
457 1.68 dsl if (ndelta != 0)
458 1.68 dsl /* We need to save the system clock time during shutdown */
459 1.68 dsl time_adjusted |= 1;
460 1.1 cgd s = splclock();
461 1.8 cgd odelta = timedelta;
462 1.1 cgd timedelta = ndelta;
463 1.8 cgd tickdelta = ntickdelta;
464 1.1 cgd splx(s);
465 1.1 cgd
466 1.56 manu if (olddelta) {
467 1.60 manu atv.tv_sec = odelta / 1000000;
468 1.60 manu atv.tv_usec = odelta % 1000000;
469 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
470 1.8 cgd }
471 1.79 chs return error;
472 1.1 cgd }
473 1.1 cgd
474 1.1 cgd /*
475 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
476 1.63 thorpej * timer_*() family of routines are supported.
477 1.1 cgd *
478 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
479 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
480 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
481 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
482 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
483 1.63 thorpej * syscall.
484 1.1 cgd *
485 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
486 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
487 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
488 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
489 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
490 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
491 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
492 1.63 thorpej * given below), to be delayed in real time past when it is supposed
493 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
494 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
495 1.63 thorpej * compute the next time in absolute time the timer should go off. */
496 1.63 thorpej
497 1.63 thorpej /* Allocate a POSIX realtime timer. */
498 1.63 thorpej int
499 1.63 thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
500 1.63 thorpej {
501 1.63 thorpej struct sys_timer_create_args /* {
502 1.63 thorpej syscallarg(clockid_t) clock_id;
503 1.63 thorpej syscallarg(struct sigevent *) evp;
504 1.63 thorpej syscallarg(timer_t *) timerid;
505 1.63 thorpej } */ *uap = v;
506 1.63 thorpej struct proc *p = l->l_proc;
507 1.63 thorpej clockid_t id;
508 1.63 thorpej struct sigevent *evp;
509 1.63 thorpej struct ptimer *pt;
510 1.65 jdolecek timer_t timerid;
511 1.65 jdolecek int error;
512 1.63 thorpej
513 1.63 thorpej id = SCARG(uap, clock_id);
514 1.63 thorpej if (id < CLOCK_REALTIME ||
515 1.63 thorpej id > CLOCK_PROF)
516 1.63 thorpej return (EINVAL);
517 1.63 thorpej
518 1.63 thorpej if (p->p_timers == NULL)
519 1.63 thorpej timers_alloc(p);
520 1.63 thorpej
521 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
522 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
523 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
524 1.63 thorpej break;
525 1.63 thorpej
526 1.63 thorpej if (timerid == TIMER_MAX)
527 1.63 thorpej return EAGAIN;
528 1.63 thorpej
529 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
530 1.63 thorpej evp = SCARG(uap, evp);
531 1.63 thorpej if (evp) {
532 1.63 thorpej if (((error =
533 1.63 thorpej copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
534 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
535 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
536 1.63 thorpej pool_put(&ptimer_pool, pt);
537 1.63 thorpej return (error ? error : EINVAL);
538 1.63 thorpej }
539 1.63 thorpej } else {
540 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
541 1.63 thorpej switch (id) {
542 1.63 thorpej case CLOCK_REALTIME:
543 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
544 1.63 thorpej break;
545 1.63 thorpej case CLOCK_VIRTUAL:
546 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
547 1.63 thorpej break;
548 1.63 thorpej case CLOCK_PROF:
549 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
550 1.63 thorpej break;
551 1.63 thorpej }
552 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
553 1.63 thorpej }
554 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
555 1.73 christos pt->pt_info.ksi_errno = 0;
556 1.73 christos pt->pt_info.ksi_code = 0;
557 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
558 1.73 christos pt->pt_info.ksi_uid = p->p_cred->p_ruid;
559 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
560 1.63 thorpej
561 1.63 thorpej pt->pt_type = id;
562 1.63 thorpej pt->pt_proc = p;
563 1.63 thorpej pt->pt_overruns = 0;
564 1.63 thorpej pt->pt_poverruns = 0;
565 1.64 nathanw pt->pt_entry = timerid;
566 1.63 thorpej timerclear(&pt->pt_time.it_value);
567 1.63 thorpej if (id == CLOCK_REALTIME)
568 1.63 thorpej callout_init(&pt->pt_ch);
569 1.63 thorpej else
570 1.63 thorpej pt->pt_active = 0;
571 1.63 thorpej
572 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
573 1.63 thorpej
574 1.63 thorpej return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
575 1.63 thorpej }
576 1.63 thorpej
577 1.63 thorpej
578 1.63 thorpej /* Delete a POSIX realtime timer */
579 1.3 andrew int
580 1.63 thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
581 1.15 thorpej {
582 1.63 thorpej struct sys_timer_delete_args /* {
583 1.63 thorpej syscallarg(timer_t) timerid;
584 1.15 thorpej } */ *uap = v;
585 1.63 thorpej struct proc *p = l->l_proc;
586 1.65 jdolecek timer_t timerid;
587 1.63 thorpej struct ptimer *pt, *ptn;
588 1.1 cgd int s;
589 1.1 cgd
590 1.63 thorpej timerid = SCARG(uap, timerid);
591 1.63 thorpej
592 1.63 thorpej if ((p->p_timers == NULL) ||
593 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
594 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
595 1.1 cgd return (EINVAL);
596 1.63 thorpej
597 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
598 1.63 thorpej callout_stop(&pt->pt_ch);
599 1.63 thorpej else if (pt->pt_active) {
600 1.63 thorpej s = splclock();
601 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
602 1.63 thorpej LIST_REMOVE(pt, pt_list);
603 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
604 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
605 1.63 thorpej &ptn->pt_time.it_value);
606 1.63 thorpej splx(s);
607 1.63 thorpej }
608 1.63 thorpej
609 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
610 1.63 thorpej pool_put(&ptimer_pool, pt);
611 1.63 thorpej
612 1.63 thorpej return (0);
613 1.63 thorpej }
614 1.63 thorpej
615 1.63 thorpej /*
616 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
617 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
618 1.67 nathanw * time for virtual timers.
619 1.63 thorpej * Must be called at splclock().
620 1.63 thorpej */
621 1.63 thorpej void
622 1.63 thorpej timer_settime(struct ptimer *pt)
623 1.63 thorpej {
624 1.63 thorpej struct ptimer *ptn, *pptn;
625 1.63 thorpej struct ptlist *ptl;
626 1.63 thorpej
627 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
628 1.63 thorpej callout_stop(&pt->pt_ch);
629 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
630 1.63 thorpej /*
631 1.63 thorpej * Don't need to check hzto() return value, here.
632 1.63 thorpej * callout_reset() does it for us.
633 1.63 thorpej */
634 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
635 1.63 thorpej realtimerexpire, pt);
636 1.63 thorpej }
637 1.63 thorpej } else {
638 1.63 thorpej if (pt->pt_active) {
639 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
640 1.63 thorpej LIST_REMOVE(pt, pt_list);
641 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
642 1.63 thorpej timeradd(&pt->pt_time.it_value,
643 1.63 thorpej &ptn->pt_time.it_value,
644 1.63 thorpej &ptn->pt_time.it_value);
645 1.63 thorpej }
646 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
647 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
648 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
649 1.63 thorpej else
650 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
651 1.63 thorpej
652 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
653 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
654 1.63 thorpej &ptn->pt_time.it_value, >);
655 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
656 1.63 thorpej timersub(&pt->pt_time.it_value,
657 1.63 thorpej &ptn->pt_time.it_value,
658 1.63 thorpej &pt->pt_time.it_value);
659 1.63 thorpej
660 1.63 thorpej if (pptn)
661 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
662 1.63 thorpej else
663 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
664 1.63 thorpej
665 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
666 1.63 thorpej timersub(&ptn->pt_time.it_value,
667 1.63 thorpej &pt->pt_time.it_value,
668 1.63 thorpej &ptn->pt_time.it_value);
669 1.63 thorpej
670 1.63 thorpej pt->pt_active = 1;
671 1.63 thorpej } else
672 1.63 thorpej pt->pt_active = 0;
673 1.63 thorpej }
674 1.63 thorpej }
675 1.63 thorpej
676 1.63 thorpej void
677 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
678 1.63 thorpej {
679 1.63 thorpej struct ptimer *ptn;
680 1.63 thorpej
681 1.63 thorpej *aitv = pt->pt_time;
682 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
683 1.1 cgd /*
684 1.12 mycroft * Convert from absolute to relative time in .it_value
685 1.63 thorpej * part of real time timer. If time for real time
686 1.63 thorpej * timer has passed return 0, else return difference
687 1.63 thorpej * between current time and time for the timer to go
688 1.63 thorpej * off.
689 1.1 cgd */
690 1.63 thorpej if (timerisset(&aitv->it_value)) {
691 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
692 1.63 thorpej timerclear(&aitv->it_value);
693 1.1 cgd else
694 1.63 thorpej timersub(&aitv->it_value, &time,
695 1.63 thorpej &aitv->it_value);
696 1.36 thorpej }
697 1.63 thorpej } else if (pt->pt_active) {
698 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
699 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
700 1.63 thorpej else
701 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
702 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
703 1.63 thorpej timeradd(&aitv->it_value,
704 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
705 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
706 1.1 cgd } else
707 1.63 thorpej timerclear(&aitv->it_value);
708 1.63 thorpej }
709 1.63 thorpej
710 1.63 thorpej
711 1.63 thorpej
712 1.63 thorpej /* Set and arm a POSIX realtime timer */
713 1.63 thorpej int
714 1.63 thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
715 1.63 thorpej {
716 1.63 thorpej struct sys_timer_settime_args /* {
717 1.63 thorpej syscallarg(timer_t) timerid;
718 1.63 thorpej syscallarg(int) flags;
719 1.63 thorpej syscallarg(const struct itimerspec *) value;
720 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
721 1.63 thorpej } */ *uap = v;
722 1.63 thorpej struct proc *p = l->l_proc;
723 1.63 thorpej int error, s, timerid;
724 1.63 thorpej struct itimerval val, oval;
725 1.63 thorpej struct itimerspec value, ovalue;
726 1.63 thorpej struct ptimer *pt;
727 1.63 thorpej
728 1.63 thorpej timerid = SCARG(uap, timerid);
729 1.63 thorpej
730 1.63 thorpej if ((p->p_timers == NULL) ||
731 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
732 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
733 1.63 thorpej return (EINVAL);
734 1.63 thorpej
735 1.63 thorpej if ((error = copyin(SCARG(uap, value), &value,
736 1.63 thorpej sizeof(struct itimerspec))) != 0)
737 1.63 thorpej return (error);
738 1.63 thorpej
739 1.63 thorpej TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
740 1.63 thorpej TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
741 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
742 1.63 thorpej return (EINVAL);
743 1.63 thorpej
744 1.63 thorpej oval = pt->pt_time;
745 1.63 thorpej pt->pt_time = val;
746 1.63 thorpej
747 1.63 thorpej s = splclock();
748 1.67 nathanw /*
749 1.67 nathanw * If we've been passed a relative time for a realtime timer,
750 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
751 1.67 nathanw * timer, convert it to relative and make sure we don't set it
752 1.67 nathanw * to zero, which would cancel the timer, or let it go
753 1.67 nathanw * negative, which would confuse the comparison tests.
754 1.67 nathanw */
755 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
756 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
757 1.67 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
758 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
759 1.67 nathanw &pt->pt_time.it_value);
760 1.67 nathanw } else {
761 1.67 nathanw if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
762 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
763 1.67 nathanw &pt->pt_time.it_value);
764 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
765 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
766 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
767 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
768 1.67 nathanw }
769 1.67 nathanw }
770 1.67 nathanw }
771 1.67 nathanw }
772 1.67 nathanw
773 1.63 thorpej timer_settime(pt);
774 1.63 thorpej splx(s);
775 1.63 thorpej
776 1.63 thorpej if (SCARG(uap, ovalue)) {
777 1.63 thorpej TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
778 1.63 thorpej TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
779 1.63 thorpej return copyout(&ovalue, SCARG(uap, ovalue),
780 1.63 thorpej sizeof(struct itimerspec));
781 1.63 thorpej }
782 1.63 thorpej
783 1.63 thorpej return (0);
784 1.63 thorpej }
785 1.63 thorpej
786 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
787 1.63 thorpej int
788 1.63 thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
789 1.63 thorpej {
790 1.63 thorpej struct sys_timer_gettime_args /* {
791 1.63 thorpej syscallarg(timer_t) timerid;
792 1.63 thorpej syscallarg(struct itimerspec *) value;
793 1.63 thorpej } */ *uap = v;
794 1.63 thorpej struct itimerval aitv;
795 1.63 thorpej struct itimerspec its;
796 1.63 thorpej struct proc *p = l->l_proc;
797 1.63 thorpej int s, timerid;
798 1.63 thorpej struct ptimer *pt;
799 1.63 thorpej
800 1.63 thorpej timerid = SCARG(uap, timerid);
801 1.63 thorpej
802 1.63 thorpej if ((p->p_timers == NULL) ||
803 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
804 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
805 1.63 thorpej return (EINVAL);
806 1.63 thorpej
807 1.63 thorpej s = splclock();
808 1.63 thorpej timer_gettime(pt, &aitv);
809 1.1 cgd splx(s);
810 1.63 thorpej
811 1.63 thorpej TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
812 1.63 thorpej TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
813 1.63 thorpej
814 1.63 thorpej return copyout(&its, SCARG(uap, value), sizeof(its));
815 1.63 thorpej }
816 1.63 thorpej
817 1.63 thorpej /*
818 1.63 thorpej * Return the count of the number of times a periodic timer expired
819 1.63 thorpej * while a notification was already pending. The counter is reset when
820 1.63 thorpej * a timer expires and a notification can be posted.
821 1.63 thorpej */
822 1.63 thorpej int
823 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
824 1.63 thorpej {
825 1.63 thorpej struct sys_timer_getoverrun_args /* {
826 1.63 thorpej syscallarg(timer_t) timerid;
827 1.63 thorpej } */ *uap = v;
828 1.63 thorpej struct proc *p = l->l_proc;
829 1.63 thorpej int timerid;
830 1.63 thorpej struct ptimer *pt;
831 1.63 thorpej
832 1.63 thorpej timerid = SCARG(uap, timerid);
833 1.63 thorpej
834 1.63 thorpej if ((p->p_timers == NULL) ||
835 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
836 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
837 1.63 thorpej return (EINVAL);
838 1.63 thorpej
839 1.63 thorpej *retval = pt->pt_poverruns;
840 1.63 thorpej
841 1.63 thorpej return (0);
842 1.63 thorpej }
843 1.63 thorpej
844 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
845 1.63 thorpej static void
846 1.63 thorpej timerupcall(struct lwp *l, void *arg)
847 1.63 thorpej {
848 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
849 1.64 nathanw unsigned int i, fired, done;
850 1.74 cl extern struct pool siginfo_pool; /* XXX Ew. */
851 1.74 cl
852 1.81 cl KDASSERT(l->l_proc->p_sa);
853 1.81 cl /* Bail out if we do not own the virtual processor */
854 1.82 cl if (l->l_savp->savp_lwp != l)
855 1.81 cl return ;
856 1.87 perry
857 1.63 thorpej KERNEL_PROC_LOCK(l);
858 1.71 fvdl
859 1.64 nathanw fired = pt->pts_fired;
860 1.64 nathanw done = 0;
861 1.64 nathanw while ((i = ffs(fired)) != 0) {
862 1.74 cl siginfo_t *si;
863 1.73 christos int mask = 1 << --i;
864 1.74 cl int f;
865 1.73 christos
866 1.74 cl f = l->l_flag & L_SA;
867 1.74 cl l->l_flag &= ~L_SA;
868 1.74 cl si = pool_get(&siginfo_pool, PR_WAITOK);
869 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
870 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
871 1.86 mycroft sizeof(*si), si) != 0) {
872 1.86 mycroft pool_put(&siginfo_pool, si);
873 1.86 mycroft /* XXX What do we do here?? */
874 1.86 mycroft } else
875 1.73 christos done |= mask;
876 1.73 christos fired &= ~mask;
877 1.74 cl l->l_flag |= f;
878 1.64 nathanw }
879 1.64 nathanw pt->pts_fired &= ~done;
880 1.64 nathanw if (pt->pts_fired == 0)
881 1.63 thorpej l->l_proc->p_userret = NULL;
882 1.63 thorpej
883 1.63 thorpej KERNEL_PROC_UNLOCK(l);
884 1.63 thorpej }
885 1.63 thorpej
886 1.63 thorpej
887 1.63 thorpej /*
888 1.63 thorpej * Real interval timer expired:
889 1.63 thorpej * send process whose timer expired an alarm signal.
890 1.63 thorpej * If time is not set up to reload, then just return.
891 1.63 thorpej * Else compute next time timer should go off which is > current time.
892 1.63 thorpej * This is where delay in processing this timeout causes multiple
893 1.63 thorpej * SIGALRM calls to be compressed into one.
894 1.63 thorpej */
895 1.63 thorpej void
896 1.63 thorpej realtimerexpire(void *arg)
897 1.63 thorpej {
898 1.63 thorpej struct ptimer *pt;
899 1.63 thorpej int s;
900 1.63 thorpej
901 1.63 thorpej pt = (struct ptimer *)arg;
902 1.63 thorpej
903 1.63 thorpej itimerfire(pt);
904 1.63 thorpej
905 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
906 1.63 thorpej timerclear(&pt->pt_time.it_value);
907 1.63 thorpej return;
908 1.63 thorpej }
909 1.63 thorpej for (;;) {
910 1.63 thorpej s = splclock();
911 1.63 thorpej timeradd(&pt->pt_time.it_value,
912 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
913 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
914 1.63 thorpej /*
915 1.63 thorpej * Don't need to check hzto() return value, here.
916 1.63 thorpej * callout_reset() does it for us.
917 1.63 thorpej */
918 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
919 1.63 thorpej realtimerexpire, pt);
920 1.63 thorpej splx(s);
921 1.63 thorpej return;
922 1.63 thorpej }
923 1.63 thorpej splx(s);
924 1.63 thorpej pt->pt_overruns++;
925 1.63 thorpej }
926 1.63 thorpej }
927 1.63 thorpej
928 1.63 thorpej /* BSD routine to get the value of an interval timer. */
929 1.63 thorpej /* ARGSUSED */
930 1.63 thorpej int
931 1.63 thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
932 1.63 thorpej {
933 1.63 thorpej struct sys_getitimer_args /* {
934 1.63 thorpej syscallarg(int) which;
935 1.63 thorpej syscallarg(struct itimerval *) itv;
936 1.63 thorpej } */ *uap = v;
937 1.63 thorpej struct proc *p = l->l_proc;
938 1.63 thorpej struct itimerval aitv;
939 1.91 cube int error;
940 1.91 cube
941 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
942 1.91 cube if (error)
943 1.91 cube return error;
944 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
945 1.91 cube }
946 1.63 thorpej
947 1.91 cube int
948 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
949 1.91 cube {
950 1.91 cube int s;
951 1.63 thorpej
952 1.63 thorpej if ((u_int)which > ITIMER_PROF)
953 1.63 thorpej return (EINVAL);
954 1.63 thorpej
955 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
956 1.91 cube timerclear(&itvp->it_value);
957 1.91 cube timerclear(&itvp->it_interval);
958 1.63 thorpej } else {
959 1.63 thorpej s = splclock();
960 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
961 1.63 thorpej splx(s);
962 1.63 thorpej }
963 1.63 thorpej
964 1.91 cube return 0;
965 1.1 cgd }
966 1.1 cgd
967 1.63 thorpej /* BSD routine to set/arm an interval timer. */
968 1.1 cgd /* ARGSUSED */
969 1.3 andrew int
970 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
971 1.15 thorpej {
972 1.45 augustss struct sys_setitimer_args /* {
973 1.30 mycroft syscallarg(int) which;
974 1.24 cgd syscallarg(const struct itimerval *) itv;
975 1.11 cgd syscallarg(struct itimerval *) oitv;
976 1.15 thorpej } */ *uap = v;
977 1.63 thorpej struct proc *p = l->l_proc;
978 1.30 mycroft int which = SCARG(uap, which);
979 1.21 cgd struct sys_getitimer_args getargs;
980 1.91 cube const struct itimerval *itvp;
981 1.1 cgd struct itimerval aitv;
982 1.91 cube int error;
983 1.1 cgd
984 1.30 mycroft if ((u_int)which > ITIMER_PROF)
985 1.1 cgd return (EINVAL);
986 1.11 cgd itvp = SCARG(uap, itv);
987 1.63 thorpej if (itvp &&
988 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
989 1.1 cgd return (error);
990 1.21 cgd if (SCARG(uap, oitv) != NULL) {
991 1.30 mycroft SCARG(&getargs, which) = which;
992 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
993 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
994 1.21 cgd return (error);
995 1.21 cgd }
996 1.1 cgd if (itvp == 0)
997 1.1 cgd return (0);
998 1.91 cube
999 1.91 cube return dosetitimer(p, which, &aitv);
1000 1.91 cube }
1001 1.91 cube
1002 1.91 cube int
1003 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1004 1.91 cube {
1005 1.91 cube struct ptimer *pt;
1006 1.91 cube int s;
1007 1.91 cube
1008 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1009 1.1 cgd return (EINVAL);
1010 1.63 thorpej
1011 1.63 thorpej /*
1012 1.63 thorpej * Don't bother allocating data structures if the process just
1013 1.63 thorpej * wants to clear the timer.
1014 1.63 thorpej */
1015 1.91 cube if (!timerisset(&itvp->it_value) &&
1016 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1017 1.63 thorpej return (0);
1018 1.63 thorpej
1019 1.63 thorpej if (p->p_timers == NULL)
1020 1.63 thorpej timers_alloc(p);
1021 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1022 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1023 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1024 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1025 1.63 thorpej pt->pt_overruns = 0;
1026 1.63 thorpej pt->pt_proc = p;
1027 1.63 thorpej pt->pt_type = which;
1028 1.64 nathanw pt->pt_entry = which;
1029 1.63 thorpej switch (which) {
1030 1.63 thorpej case ITIMER_REAL:
1031 1.63 thorpej callout_init(&pt->pt_ch);
1032 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1033 1.63 thorpej break;
1034 1.63 thorpej case ITIMER_VIRTUAL:
1035 1.63 thorpej pt->pt_active = 0;
1036 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1037 1.63 thorpej break;
1038 1.63 thorpej case ITIMER_PROF:
1039 1.63 thorpej pt->pt_active = 0;
1040 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1041 1.63 thorpej break;
1042 1.1 cgd }
1043 1.1 cgd } else
1044 1.63 thorpej pt = p->p_timers->pts_timers[which];
1045 1.63 thorpej
1046 1.91 cube pt->pt_time = *itvp;
1047 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1048 1.63 thorpej
1049 1.63 thorpej s = splclock();
1050 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1051 1.67 nathanw /* Convert to absolute time */
1052 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1053 1.67 nathanw }
1054 1.63 thorpej timer_settime(pt);
1055 1.1 cgd splx(s);
1056 1.63 thorpej
1057 1.1 cgd return (0);
1058 1.1 cgd }
1059 1.1 cgd
1060 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1061 1.63 thorpej void
1062 1.63 thorpej timers_alloc(struct proc *p)
1063 1.63 thorpej {
1064 1.63 thorpej int i;
1065 1.63 thorpej struct ptimers *pts;
1066 1.63 thorpej
1067 1.63 thorpej pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1068 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1069 1.63 thorpej LIST_INIT(&pts->pts_prof);
1070 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1071 1.63 thorpej pts->pts_timers[i] = NULL;
1072 1.64 nathanw pts->pts_fired = 0;
1073 1.63 thorpej p->p_timers = pts;
1074 1.63 thorpej }
1075 1.63 thorpej
1076 1.1 cgd /*
1077 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1078 1.63 thorpej * then clean up all timers and free all the data structures. If
1079 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1080 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1081 1.63 thorpej * structure if none of those remain.
1082 1.1 cgd */
1083 1.3 andrew void
1084 1.63 thorpej timers_free(struct proc *p, int which)
1085 1.6 cgd {
1086 1.63 thorpej int i, s;
1087 1.63 thorpej struct ptimers *pts;
1088 1.63 thorpej struct ptimer *pt, *ptn;
1089 1.63 thorpej struct timeval tv;
1090 1.63 thorpej
1091 1.63 thorpej if (p->p_timers) {
1092 1.63 thorpej pts = p->p_timers;
1093 1.63 thorpej if (which == TIMERS_ALL)
1094 1.63 thorpej i = 0;
1095 1.63 thorpej else {
1096 1.63 thorpej s = splclock();
1097 1.63 thorpej timerclear(&tv);
1098 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1099 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1100 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1101 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1102 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1103 1.63 thorpej if (ptn) {
1104 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1105 1.63 thorpej &ptn->pt_time.it_value);
1106 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1107 1.63 thorpej ptn, pt_list);
1108 1.63 thorpej }
1109 1.63 thorpej
1110 1.63 thorpej timerclear(&tv);
1111 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1112 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1113 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1114 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1115 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1116 1.63 thorpej if (ptn) {
1117 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1118 1.63 thorpej &ptn->pt_time.it_value);
1119 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1120 1.63 thorpej pt_list);
1121 1.63 thorpej }
1122 1.1 cgd splx(s);
1123 1.63 thorpej i = 3;
1124 1.63 thorpej }
1125 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1126 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1127 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1128 1.63 thorpej callout_stop(&pt->pt_ch);
1129 1.63 thorpej pts->pts_timers[i] = NULL;
1130 1.63 thorpej pool_put(&ptimer_pool, pt);
1131 1.63 thorpej }
1132 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1133 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1134 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1135 1.63 thorpej p->p_timers = NULL;
1136 1.63 thorpej free(pts, M_SUBPROC);
1137 1.1 cgd }
1138 1.1 cgd }
1139 1.1 cgd }
1140 1.1 cgd
1141 1.1 cgd /*
1142 1.1 cgd * Check that a proposed value to load into the .it_value or
1143 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1144 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1145 1.1 cgd * than the resolution of the clock, round it up.)
1146 1.1 cgd */
1147 1.3 andrew int
1148 1.63 thorpej itimerfix(struct timeval *tv)
1149 1.1 cgd {
1150 1.1 cgd
1151 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1152 1.1 cgd return (EINVAL);
1153 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1154 1.1 cgd tv->tv_usec = tick;
1155 1.1 cgd return (0);
1156 1.1 cgd }
1157 1.1 cgd
1158 1.1 cgd /*
1159 1.1 cgd * Decrement an interval timer by a specified number
1160 1.1 cgd * of microseconds, which must be less than a second,
1161 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1162 1.1 cgd * it. In this case, carry over (usec - old value) to
1163 1.8 cgd * reduce the value reloaded into the timer so that
1164 1.1 cgd * the timer does not drift. This routine assumes
1165 1.1 cgd * that it is called in a context where the timers
1166 1.1 cgd * on which it is operating cannot change in value.
1167 1.1 cgd */
1168 1.3 andrew int
1169 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1170 1.63 thorpej {
1171 1.45 augustss struct itimerval *itp;
1172 1.1 cgd
1173 1.63 thorpej itp = &pt->pt_time;
1174 1.1 cgd if (itp->it_value.tv_usec < usec) {
1175 1.1 cgd if (itp->it_value.tv_sec == 0) {
1176 1.1 cgd /* expired, and already in next interval */
1177 1.1 cgd usec -= itp->it_value.tv_usec;
1178 1.1 cgd goto expire;
1179 1.1 cgd }
1180 1.1 cgd itp->it_value.tv_usec += 1000000;
1181 1.1 cgd itp->it_value.tv_sec--;
1182 1.1 cgd }
1183 1.1 cgd itp->it_value.tv_usec -= usec;
1184 1.1 cgd usec = 0;
1185 1.1 cgd if (timerisset(&itp->it_value))
1186 1.1 cgd return (1);
1187 1.1 cgd /* expired, exactly at end of interval */
1188 1.1 cgd expire:
1189 1.1 cgd if (timerisset(&itp->it_interval)) {
1190 1.1 cgd itp->it_value = itp->it_interval;
1191 1.1 cgd itp->it_value.tv_usec -= usec;
1192 1.1 cgd if (itp->it_value.tv_usec < 0) {
1193 1.1 cgd itp->it_value.tv_usec += 1000000;
1194 1.1 cgd itp->it_value.tv_sec--;
1195 1.1 cgd }
1196 1.63 thorpej timer_settime(pt);
1197 1.1 cgd } else
1198 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1199 1.1 cgd return (0);
1200 1.42 cgd }
1201 1.42 cgd
1202 1.63 thorpej void
1203 1.63 thorpej itimerfire(struct ptimer *pt)
1204 1.63 thorpej {
1205 1.63 thorpej struct proc *p = pt->pt_proc;
1206 1.82 cl struct sadata_vp *vp;
1207 1.64 nathanw int s;
1208 1.82 cl unsigned int i;
1209 1.78 cl
1210 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1211 1.63 thorpej /*
1212 1.63 thorpej * No RT signal infrastructure exists at this time;
1213 1.63 thorpej * just post the signal number and throw away the
1214 1.63 thorpej * value.
1215 1.63 thorpej */
1216 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1217 1.63 thorpej pt->pt_overruns++;
1218 1.63 thorpej else {
1219 1.75 christos ksiginfo_t ksi;
1220 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1221 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1222 1.75 christos ksi.ksi_code = SI_TIMER;
1223 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1224 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1225 1.63 thorpej pt->pt_overruns = 0;
1226 1.75 christos kpsignal(p, &ksi, NULL);
1227 1.63 thorpej }
1228 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1229 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1230 1.63 thorpej
1231 1.63 thorpej if (p->p_userret == NULL) {
1232 1.70 nathanw /*
1233 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1234 1.70 nathanw * which can be inside sa_yield's inner loop, which
1235 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1236 1.70 nathanw * determine if we really should call setrunnable.
1237 1.70 nathanw */
1238 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1239 1.63 thorpej pt->pt_overruns = 0;
1240 1.64 nathanw i = 1 << pt->pt_entry;
1241 1.64 nathanw p->p_timers->pts_fired = i;
1242 1.63 thorpej p->p_userret = timerupcall;
1243 1.64 nathanw p->p_userret_arg = p->p_timers;
1244 1.87 perry
1245 1.78 cl SCHED_LOCK(s);
1246 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1247 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1248 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1249 1.82 cl sched_wakeup(vp->savp_lwp);
1250 1.82 cl break;
1251 1.82 cl }
1252 1.78 cl }
1253 1.78 cl SCHED_UNLOCK(s);
1254 1.64 nathanw } else if (p->p_userret == timerupcall) {
1255 1.64 nathanw i = 1 << pt->pt_entry;
1256 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1257 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1258 1.64 nathanw pt->pt_overruns = 0;
1259 1.66 jdolecek p->p_timers->pts_fired |= i;
1260 1.64 nathanw } else
1261 1.64 nathanw pt->pt_overruns++;
1262 1.64 nathanw } else {
1263 1.63 thorpej pt->pt_overruns++;
1264 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1265 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1266 1.78 cl p->p_pid, pt->pt_overruns,
1267 1.78 cl pt->pt_ev.sigev_value.sival_int,
1268 1.78 cl p->p_userret);
1269 1.64 nathanw }
1270 1.63 thorpej }
1271 1.63 thorpej
1272 1.63 thorpej }
1273 1.63 thorpej
1274 1.42 cgd /*
1275 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1276 1.42 cgd * for usage and rationale.
1277 1.42 cgd */
1278 1.42 cgd int
1279 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1280 1.42 cgd {
1281 1.49 itojun struct timeval tv, delta;
1282 1.42 cgd int s, rv = 0;
1283 1.42 cgd
1284 1.63 thorpej s = splclock();
1285 1.49 itojun tv = mono_time;
1286 1.49 itojun splx(s);
1287 1.49 itojun
1288 1.49 itojun timersub(&tv, lasttime, &delta);
1289 1.42 cgd
1290 1.42 cgd /*
1291 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1292 1.42 cgd * even if interval is huge.
1293 1.42 cgd */
1294 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1295 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1296 1.49 itojun *lasttime = tv;
1297 1.42 cgd rv = 1;
1298 1.42 cgd }
1299 1.50 itojun
1300 1.50 itojun return (rv);
1301 1.50 itojun }
1302 1.50 itojun
1303 1.50 itojun /*
1304 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1305 1.50 itojun */
1306 1.50 itojun int
1307 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1308 1.50 itojun {
1309 1.50 itojun struct timeval tv, delta;
1310 1.50 itojun int s, rv;
1311 1.50 itojun
1312 1.63 thorpej s = splclock();
1313 1.50 itojun tv = mono_time;
1314 1.50 itojun splx(s);
1315 1.50 itojun
1316 1.50 itojun timersub(&tv, lasttime, &delta);
1317 1.50 itojun
1318 1.50 itojun /*
1319 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1320 1.50 itojun * if more than one second have passed since the last update of
1321 1.50 itojun * lasttime, reset the counter.
1322 1.50 itojun *
1323 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1324 1.50 itojun * try to use *curpps for stat purposes as well.
1325 1.50 itojun */
1326 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1327 1.50 itojun delta.tv_sec >= 1) {
1328 1.50 itojun *lasttime = tv;
1329 1.50 itojun *curpps = 0;
1330 1.69 dyoung }
1331 1.69 dyoung if (maxpps < 0)
1332 1.53 itojun rv = 1;
1333 1.53 itojun else if (*curpps < maxpps)
1334 1.50 itojun rv = 1;
1335 1.50 itojun else
1336 1.50 itojun rv = 0;
1337 1.50 itojun
1338 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1339 1.50 itojun /* be careful about wrap-around */
1340 1.50 itojun if (*curpps + 1 > *curpps)
1341 1.50 itojun *curpps = *curpps + 1;
1342 1.50 itojun #else
1343 1.50 itojun /*
1344 1.50 itojun * assume that there's not too many calls to this function.
1345 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1346 1.50 itojun * behavior, not the behavior of this function.
1347 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1348 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1349 1.50 itojun */
1350 1.50 itojun *curpps = *curpps + 1;
1351 1.50 itojun #endif
1352 1.42 cgd
1353 1.42 cgd return (rv);
1354 1.1 cgd }
1355