kern_time.c revision 1.95 1 1.95 cube /* $NetBSD: kern_time.c,v 1.95 2005/10/23 00:09:14 cube Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.95 cube __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.95 2005/10/23 00:09:14 cube Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.63 thorpej #include <sys/malloc.h>
82 1.5 mycroft #include <sys/proc.h>
83 1.63 thorpej #include <sys/sa.h>
84 1.63 thorpej #include <sys/savar.h>
85 1.8 cgd #include <sys/vnode.h>
86 1.17 christos #include <sys/signalvar.h>
87 1.25 perry #include <sys/syslog.h>
88 1.95 cube #include <sys/timevar.h>
89 1.1 cgd
90 1.11 cgd #include <sys/mount.h>
91 1.11 cgd #include <sys/syscallargs.h>
92 1.19 christos
93 1.37 thorpej #include <uvm/uvm_extern.h>
94 1.37 thorpej
95 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
96 1.20 fvdl #include <nfs/rpcv2.h>
97 1.20 fvdl #include <nfs/nfsproto.h>
98 1.93 jmmv #include <nfs/nfs.h>
99 1.19 christos #include <nfs/nfs_var.h>
100 1.19 christos #endif
101 1.17 christos
102 1.5 mycroft #include <machine/cpu.h>
103 1.23 cgd
104 1.63 thorpej static void timerupcall(struct lwp *, void *);
105 1.63 thorpej
106 1.63 thorpej /* Time of day and interval timer support.
107 1.1 cgd *
108 1.1 cgd * These routines provide the kernel entry points to get and set
109 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
110 1.1 cgd * here provide support for adding and subtracting timeval structures
111 1.1 cgd * and decrementing interval timers, optionally reloading the interval
112 1.1 cgd * timers when they expire.
113 1.1 cgd */
114 1.1 cgd
115 1.22 jtc /* This function is used by clock_settime and settimeofday */
116 1.39 tron int
117 1.63 thorpej settime(struct timeval *tv)
118 1.22 jtc {
119 1.22 jtc struct timeval delta;
120 1.47 thorpej struct cpu_info *ci;
121 1.22 jtc int s;
122 1.22 jtc
123 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
124 1.22 jtc s = splclock();
125 1.22 jtc timersub(tv, &time, &delta);
126 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
127 1.55 tron splx(s);
128 1.29 tls return (EPERM);
129 1.55 tron }
130 1.29 tls #ifdef notyet
131 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
132 1.55 tron splx(s);
133 1.29 tls return (EPERM);
134 1.55 tron }
135 1.29 tls #endif
136 1.22 jtc time = *tv;
137 1.38 thorpej (void) spllowersoftclock();
138 1.22 jtc timeradd(&boottime, &delta, &boottime);
139 1.47 thorpej /*
140 1.47 thorpej * XXXSMP
141 1.47 thorpej * This is wrong. We should traverse a list of all
142 1.47 thorpej * CPUs and add the delta to the runtime of those
143 1.47 thorpej * CPUs which have a process on them.
144 1.47 thorpej */
145 1.47 thorpej ci = curcpu();
146 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
147 1.47 thorpej &ci->ci_schedstate.spc_runtime);
148 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
149 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
150 1.22 jtc # endif
151 1.22 jtc splx(s);
152 1.22 jtc resettodr();
153 1.29 tls return (0);
154 1.22 jtc }
155 1.22 jtc
156 1.22 jtc /* ARGSUSED */
157 1.22 jtc int
158 1.63 thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
159 1.22 jtc {
160 1.45 augustss struct sys_clock_gettime_args /* {
161 1.22 jtc syscallarg(clockid_t) clock_id;
162 1.23 cgd syscallarg(struct timespec *) tp;
163 1.23 cgd } */ *uap = v;
164 1.22 jtc clockid_t clock_id;
165 1.22 jtc struct timeval atv;
166 1.22 jtc struct timespec ats;
167 1.61 simonb int s;
168 1.22 jtc
169 1.22 jtc clock_id = SCARG(uap, clock_id);
170 1.61 simonb switch (clock_id) {
171 1.61 simonb case CLOCK_REALTIME:
172 1.61 simonb microtime(&atv);
173 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
174 1.61 simonb break;
175 1.61 simonb case CLOCK_MONOTONIC:
176 1.61 simonb /* XXX "hz" granularity */
177 1.63 thorpej s = splclock();
178 1.61 simonb atv = mono_time;
179 1.61 simonb splx(s);
180 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
181 1.61 simonb break;
182 1.61 simonb default:
183 1.22 jtc return (EINVAL);
184 1.61 simonb }
185 1.22 jtc
186 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
187 1.22 jtc }
188 1.22 jtc
189 1.22 jtc /* ARGSUSED */
190 1.22 jtc int
191 1.90 thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
192 1.22 jtc {
193 1.45 augustss struct sys_clock_settime_args /* {
194 1.22 jtc syscallarg(clockid_t) clock_id;
195 1.23 cgd syscallarg(const struct timespec *) tp;
196 1.23 cgd } */ *uap = v;
197 1.63 thorpej struct proc *p = l->l_proc;
198 1.22 jtc int error;
199 1.22 jtc
200 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
201 1.22 jtc return (error);
202 1.22 jtc
203 1.60 manu return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
204 1.56 manu }
205 1.56 manu
206 1.56 manu
207 1.56 manu int
208 1.90 thorpej clock_settime1(clockid_t clock_id, const struct timespec *tp)
209 1.56 manu {
210 1.60 manu struct timespec ats;
211 1.56 manu struct timeval atv;
212 1.56 manu int error;
213 1.56 manu
214 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
215 1.60 manu return (error);
216 1.60 manu
217 1.61 simonb switch (clock_id) {
218 1.61 simonb case CLOCK_REALTIME:
219 1.61 simonb TIMESPEC_TO_TIMEVAL(&atv, &ats);
220 1.61 simonb if ((error = settime(&atv)) != 0)
221 1.61 simonb return (error);
222 1.61 simonb break;
223 1.61 simonb case CLOCK_MONOTONIC:
224 1.61 simonb return (EINVAL); /* read-only clock */
225 1.61 simonb default:
226 1.56 manu return (EINVAL);
227 1.61 simonb }
228 1.22 jtc
229 1.22 jtc return 0;
230 1.22 jtc }
231 1.22 jtc
232 1.22 jtc int
233 1.63 thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
234 1.22 jtc {
235 1.45 augustss struct sys_clock_getres_args /* {
236 1.22 jtc syscallarg(clockid_t) clock_id;
237 1.23 cgd syscallarg(struct timespec *) tp;
238 1.23 cgd } */ *uap = v;
239 1.22 jtc clockid_t clock_id;
240 1.22 jtc struct timespec ts;
241 1.22 jtc int error = 0;
242 1.22 jtc
243 1.22 jtc clock_id = SCARG(uap, clock_id);
244 1.61 simonb switch (clock_id) {
245 1.61 simonb case CLOCK_REALTIME:
246 1.61 simonb case CLOCK_MONOTONIC:
247 1.22 jtc ts.tv_sec = 0;
248 1.22 jtc ts.tv_nsec = 1000000000 / hz;
249 1.61 simonb break;
250 1.61 simonb default:
251 1.61 simonb return (EINVAL);
252 1.61 simonb }
253 1.22 jtc
254 1.61 simonb if (SCARG(uap, tp))
255 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
256 1.22 jtc
257 1.22 jtc return error;
258 1.22 jtc }
259 1.22 jtc
260 1.27 jtc /* ARGSUSED */
261 1.27 jtc int
262 1.63 thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
263 1.27 jtc {
264 1.27 jtc static int nanowait;
265 1.45 augustss struct sys_nanosleep_args/* {
266 1.27 jtc syscallarg(struct timespec *) rqtp;
267 1.27 jtc syscallarg(struct timespec *) rmtp;
268 1.27 jtc } */ *uap = v;
269 1.27 jtc struct timespec rqt;
270 1.27 jtc struct timespec rmt;
271 1.27 jtc struct timeval atv, utv;
272 1.27 jtc int error, s, timo;
273 1.27 jtc
274 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
275 1.27 jtc if (error)
276 1.27 jtc return (error);
277 1.27 jtc
278 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
279 1.80 christos if (itimerfix(&atv))
280 1.27 jtc return (EINVAL);
281 1.27 jtc
282 1.27 jtc s = splclock();
283 1.27 jtc timeradd(&atv,&time,&atv);
284 1.27 jtc timo = hzto(&atv);
285 1.63 thorpej /*
286 1.27 jtc * Avoid inadvertantly sleeping forever
287 1.27 jtc */
288 1.27 jtc if (timo == 0)
289 1.27 jtc timo = 1;
290 1.27 jtc splx(s);
291 1.27 jtc
292 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
293 1.27 jtc if (error == ERESTART)
294 1.27 jtc error = EINTR;
295 1.27 jtc if (error == EWOULDBLOCK)
296 1.27 jtc error = 0;
297 1.27 jtc
298 1.27 jtc if (SCARG(uap, rmtp)) {
299 1.89 christos int error1;
300 1.28 jtc
301 1.27 jtc s = splclock();
302 1.27 jtc utv = time;
303 1.27 jtc splx(s);
304 1.27 jtc
305 1.27 jtc timersub(&atv, &utv, &utv);
306 1.27 jtc if (utv.tv_sec < 0)
307 1.27 jtc timerclear(&utv);
308 1.27 jtc
309 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
310 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
311 1.28 jtc sizeof(rmt));
312 1.89 christos if (error1)
313 1.89 christos return (error1);
314 1.27 jtc }
315 1.27 jtc
316 1.27 jtc return error;
317 1.27 jtc }
318 1.22 jtc
319 1.1 cgd /* ARGSUSED */
320 1.3 andrew int
321 1.63 thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
322 1.15 thorpej {
323 1.45 augustss struct sys_gettimeofday_args /* {
324 1.11 cgd syscallarg(struct timeval *) tp;
325 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
326 1.15 thorpej } */ *uap = v;
327 1.1 cgd struct timeval atv;
328 1.1 cgd int error = 0;
329 1.25 perry struct timezone tzfake;
330 1.1 cgd
331 1.11 cgd if (SCARG(uap, tp)) {
332 1.1 cgd microtime(&atv);
333 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
334 1.17 christos if (error)
335 1.1 cgd return (error);
336 1.1 cgd }
337 1.25 perry if (SCARG(uap, tzp)) {
338 1.25 perry /*
339 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
340 1.25 perry * fake up a timezone struct and return it if demanded.
341 1.25 perry */
342 1.25 perry tzfake.tz_minuteswest = 0;
343 1.25 perry tzfake.tz_dsttime = 0;
344 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
345 1.25 perry }
346 1.1 cgd return (error);
347 1.1 cgd }
348 1.1 cgd
349 1.1 cgd /* ARGSUSED */
350 1.3 andrew int
351 1.63 thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
352 1.15 thorpej {
353 1.16 mycroft struct sys_settimeofday_args /* {
354 1.24 cgd syscallarg(const struct timeval *) tv;
355 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
356 1.15 thorpej } */ *uap = v;
357 1.63 thorpej struct proc *p = l->l_proc;
358 1.60 manu int error;
359 1.60 manu
360 1.60 manu if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
361 1.60 manu return (error);
362 1.60 manu
363 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
364 1.60 manu }
365 1.60 manu
366 1.60 manu int
367 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
368 1.90 thorpej struct proc *p)
369 1.60 manu {
370 1.22 jtc struct timeval atv;
371 1.1 cgd struct timezone atz;
372 1.56 manu struct timeval *tv = NULL;
373 1.56 manu struct timezone *tzp = NULL;
374 1.22 jtc int error;
375 1.1 cgd
376 1.8 cgd /* Verify all parameters before changing time. */
377 1.60 manu if (utv) {
378 1.60 manu if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
379 1.56 manu return (error);
380 1.56 manu tv = &atv;
381 1.56 manu }
382 1.25 perry /* XXX since we don't use tz, probably no point in doing copyin. */
383 1.60 manu if (utzp) {
384 1.60 manu if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
385 1.56 manu return (error);
386 1.56 manu tzp = &atz;
387 1.56 manu }
388 1.56 manu
389 1.56 manu if (tv)
390 1.56 manu if ((error = settime(tv)) != 0)
391 1.29 tls return (error);
392 1.25 perry /*
393 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
394 1.25 perry * obsolete program would try to set it, so we log a warning.
395 1.25 perry */
396 1.56 manu if (tzp)
397 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
398 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
399 1.8 cgd return (0);
400 1.1 cgd }
401 1.1 cgd
402 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
403 1.1 cgd long timedelta; /* unapplied time correction, us. */
404 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
405 1.68 dsl int time_adjusted; /* set if an adjustment is made */
406 1.1 cgd
407 1.1 cgd /* ARGSUSED */
408 1.3 andrew int
409 1.63 thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
410 1.15 thorpej {
411 1.45 augustss struct sys_adjtime_args /* {
412 1.24 cgd syscallarg(const struct timeval *) delta;
413 1.11 cgd syscallarg(struct timeval *) olddelta;
414 1.15 thorpej } */ *uap = v;
415 1.63 thorpej struct proc *p = l->l_proc;
416 1.56 manu int error;
417 1.1 cgd
418 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
419 1.1 cgd return (error);
420 1.17 christos
421 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
422 1.56 manu }
423 1.56 manu
424 1.56 manu int
425 1.90 thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
426 1.56 manu {
427 1.60 manu struct timeval atv;
428 1.56 manu long ndelta, ntickdelta, odelta;
429 1.60 manu int error;
430 1.56 manu int s;
431 1.8 cgd
432 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
433 1.60 manu if (error)
434 1.60 manu return (error);
435 1.60 manu
436 1.8 cgd /*
437 1.8 cgd * Compute the total correction and the rate at which to apply it.
438 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
439 1.8 cgd * delta, so that after some number of incremental changes in
440 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
441 1.8 cgd * overshoot and start taking us away from the desired final time.
442 1.8 cgd */
443 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
444 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
445 1.8 cgd ntickdelta = 10 * tickadj;
446 1.8 cgd else
447 1.8 cgd ntickdelta = tickadj;
448 1.8 cgd if (ndelta % ntickdelta)
449 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
450 1.8 cgd
451 1.8 cgd /*
452 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
453 1.8 cgd * if we want time to run slower; then hardclock can simply compute
454 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
455 1.8 cgd */
456 1.8 cgd if (ndelta < 0)
457 1.8 cgd ntickdelta = -ntickdelta;
458 1.68 dsl if (ndelta != 0)
459 1.68 dsl /* We need to save the system clock time during shutdown */
460 1.68 dsl time_adjusted |= 1;
461 1.1 cgd s = splclock();
462 1.8 cgd odelta = timedelta;
463 1.1 cgd timedelta = ndelta;
464 1.8 cgd tickdelta = ntickdelta;
465 1.1 cgd splx(s);
466 1.1 cgd
467 1.56 manu if (olddelta) {
468 1.60 manu atv.tv_sec = odelta / 1000000;
469 1.60 manu atv.tv_usec = odelta % 1000000;
470 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
471 1.8 cgd }
472 1.79 chs return error;
473 1.1 cgd }
474 1.1 cgd
475 1.1 cgd /*
476 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
477 1.63 thorpej * timer_*() family of routines are supported.
478 1.1 cgd *
479 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
480 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
481 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
482 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
483 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
484 1.63 thorpej * syscall.
485 1.1 cgd *
486 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
487 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
488 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
489 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
490 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
491 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
492 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
493 1.63 thorpej * given below), to be delayed in real time past when it is supposed
494 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
495 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
496 1.63 thorpej * compute the next time in absolute time the timer should go off. */
497 1.63 thorpej
498 1.63 thorpej /* Allocate a POSIX realtime timer. */
499 1.63 thorpej int
500 1.63 thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
501 1.63 thorpej {
502 1.63 thorpej struct sys_timer_create_args /* {
503 1.63 thorpej syscallarg(clockid_t) clock_id;
504 1.63 thorpej syscallarg(struct sigevent *) evp;
505 1.63 thorpej syscallarg(timer_t *) timerid;
506 1.63 thorpej } */ *uap = v;
507 1.92 cube
508 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
509 1.92 cube SCARG(uap, evp), copyin, l->l_proc);
510 1.92 cube }
511 1.92 cube
512 1.92 cube int
513 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
514 1.95 cube copyin_t fetch_event, struct proc *p)
515 1.92 cube {
516 1.92 cube int error;
517 1.92 cube timer_t timerid;
518 1.63 thorpej struct ptimer *pt;
519 1.63 thorpej
520 1.63 thorpej if (id < CLOCK_REALTIME ||
521 1.63 thorpej id > CLOCK_PROF)
522 1.63 thorpej return (EINVAL);
523 1.63 thorpej
524 1.63 thorpej if (p->p_timers == NULL)
525 1.63 thorpej timers_alloc(p);
526 1.63 thorpej
527 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
528 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
529 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
530 1.63 thorpej break;
531 1.63 thorpej
532 1.63 thorpej if (timerid == TIMER_MAX)
533 1.63 thorpej return EAGAIN;
534 1.63 thorpej
535 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
536 1.63 thorpej if (evp) {
537 1.63 thorpej if (((error =
538 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
539 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
540 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
541 1.63 thorpej pool_put(&ptimer_pool, pt);
542 1.63 thorpej return (error ? error : EINVAL);
543 1.63 thorpej }
544 1.63 thorpej } else {
545 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
546 1.63 thorpej switch (id) {
547 1.63 thorpej case CLOCK_REALTIME:
548 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
549 1.63 thorpej break;
550 1.63 thorpej case CLOCK_VIRTUAL:
551 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
552 1.63 thorpej break;
553 1.63 thorpej case CLOCK_PROF:
554 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
555 1.63 thorpej break;
556 1.63 thorpej }
557 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
558 1.63 thorpej }
559 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
560 1.73 christos pt->pt_info.ksi_errno = 0;
561 1.73 christos pt->pt_info.ksi_code = 0;
562 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
563 1.73 christos pt->pt_info.ksi_uid = p->p_cred->p_ruid;
564 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
565 1.63 thorpej
566 1.63 thorpej pt->pt_type = id;
567 1.63 thorpej pt->pt_proc = p;
568 1.63 thorpej pt->pt_overruns = 0;
569 1.63 thorpej pt->pt_poverruns = 0;
570 1.64 nathanw pt->pt_entry = timerid;
571 1.63 thorpej timerclear(&pt->pt_time.it_value);
572 1.63 thorpej if (id == CLOCK_REALTIME)
573 1.63 thorpej callout_init(&pt->pt_ch);
574 1.63 thorpej else
575 1.63 thorpej pt->pt_active = 0;
576 1.63 thorpej
577 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
578 1.63 thorpej
579 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
580 1.63 thorpej }
581 1.63 thorpej
582 1.63 thorpej /* Delete a POSIX realtime timer */
583 1.3 andrew int
584 1.63 thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
585 1.15 thorpej {
586 1.63 thorpej struct sys_timer_delete_args /* {
587 1.63 thorpej syscallarg(timer_t) timerid;
588 1.15 thorpej } */ *uap = v;
589 1.63 thorpej struct proc *p = l->l_proc;
590 1.65 jdolecek timer_t timerid;
591 1.63 thorpej struct ptimer *pt, *ptn;
592 1.1 cgd int s;
593 1.1 cgd
594 1.63 thorpej timerid = SCARG(uap, timerid);
595 1.63 thorpej
596 1.63 thorpej if ((p->p_timers == NULL) ||
597 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
598 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
599 1.1 cgd return (EINVAL);
600 1.63 thorpej
601 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
602 1.63 thorpej callout_stop(&pt->pt_ch);
603 1.63 thorpej else if (pt->pt_active) {
604 1.63 thorpej s = splclock();
605 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
606 1.63 thorpej LIST_REMOVE(pt, pt_list);
607 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
608 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
609 1.63 thorpej &ptn->pt_time.it_value);
610 1.63 thorpej splx(s);
611 1.63 thorpej }
612 1.63 thorpej
613 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
614 1.63 thorpej pool_put(&ptimer_pool, pt);
615 1.63 thorpej
616 1.63 thorpej return (0);
617 1.63 thorpej }
618 1.63 thorpej
619 1.63 thorpej /*
620 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
621 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
622 1.67 nathanw * time for virtual timers.
623 1.63 thorpej * Must be called at splclock().
624 1.63 thorpej */
625 1.63 thorpej void
626 1.63 thorpej timer_settime(struct ptimer *pt)
627 1.63 thorpej {
628 1.63 thorpej struct ptimer *ptn, *pptn;
629 1.63 thorpej struct ptlist *ptl;
630 1.63 thorpej
631 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
632 1.63 thorpej callout_stop(&pt->pt_ch);
633 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
634 1.63 thorpej /*
635 1.63 thorpej * Don't need to check hzto() return value, here.
636 1.63 thorpej * callout_reset() does it for us.
637 1.63 thorpej */
638 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
639 1.63 thorpej realtimerexpire, pt);
640 1.63 thorpej }
641 1.63 thorpej } else {
642 1.63 thorpej if (pt->pt_active) {
643 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
644 1.63 thorpej LIST_REMOVE(pt, pt_list);
645 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
646 1.63 thorpej timeradd(&pt->pt_time.it_value,
647 1.63 thorpej &ptn->pt_time.it_value,
648 1.63 thorpej &ptn->pt_time.it_value);
649 1.63 thorpej }
650 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
651 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
652 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
653 1.63 thorpej else
654 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
655 1.63 thorpej
656 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
657 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
658 1.63 thorpej &ptn->pt_time.it_value, >);
659 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
660 1.63 thorpej timersub(&pt->pt_time.it_value,
661 1.63 thorpej &ptn->pt_time.it_value,
662 1.63 thorpej &pt->pt_time.it_value);
663 1.63 thorpej
664 1.63 thorpej if (pptn)
665 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
666 1.63 thorpej else
667 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
668 1.63 thorpej
669 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
670 1.63 thorpej timersub(&ptn->pt_time.it_value,
671 1.63 thorpej &pt->pt_time.it_value,
672 1.63 thorpej &ptn->pt_time.it_value);
673 1.63 thorpej
674 1.63 thorpej pt->pt_active = 1;
675 1.63 thorpej } else
676 1.63 thorpej pt->pt_active = 0;
677 1.63 thorpej }
678 1.63 thorpej }
679 1.63 thorpej
680 1.63 thorpej void
681 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
682 1.63 thorpej {
683 1.63 thorpej struct ptimer *ptn;
684 1.63 thorpej
685 1.63 thorpej *aitv = pt->pt_time;
686 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
687 1.1 cgd /*
688 1.12 mycroft * Convert from absolute to relative time in .it_value
689 1.63 thorpej * part of real time timer. If time for real time
690 1.63 thorpej * timer has passed return 0, else return difference
691 1.63 thorpej * between current time and time for the timer to go
692 1.63 thorpej * off.
693 1.1 cgd */
694 1.63 thorpej if (timerisset(&aitv->it_value)) {
695 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
696 1.63 thorpej timerclear(&aitv->it_value);
697 1.1 cgd else
698 1.63 thorpej timersub(&aitv->it_value, &time,
699 1.63 thorpej &aitv->it_value);
700 1.36 thorpej }
701 1.63 thorpej } else if (pt->pt_active) {
702 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
703 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
704 1.63 thorpej else
705 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
706 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
707 1.63 thorpej timeradd(&aitv->it_value,
708 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
709 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
710 1.1 cgd } else
711 1.63 thorpej timerclear(&aitv->it_value);
712 1.63 thorpej }
713 1.63 thorpej
714 1.63 thorpej
715 1.63 thorpej
716 1.63 thorpej /* Set and arm a POSIX realtime timer */
717 1.63 thorpej int
718 1.63 thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
719 1.63 thorpej {
720 1.63 thorpej struct sys_timer_settime_args /* {
721 1.63 thorpej syscallarg(timer_t) timerid;
722 1.63 thorpej syscallarg(int) flags;
723 1.63 thorpej syscallarg(const struct itimerspec *) value;
724 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
725 1.63 thorpej } */ *uap = v;
726 1.92 cube int error;
727 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
728 1.92 cube
729 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
730 1.92 cube sizeof(struct itimerspec))) != 0)
731 1.92 cube return (error);
732 1.92 cube
733 1.92 cube if (SCARG(uap, ovalue))
734 1.92 cube ovp = &ovalue;
735 1.92 cube
736 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
737 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
738 1.92 cube return error;
739 1.92 cube
740 1.92 cube if (ovp)
741 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
742 1.92 cube sizeof(struct itimerspec));
743 1.92 cube return 0;
744 1.92 cube }
745 1.92 cube
746 1.92 cube int
747 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
748 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
749 1.92 cube {
750 1.92 cube int s;
751 1.63 thorpej struct itimerval val, oval;
752 1.63 thorpej struct ptimer *pt;
753 1.63 thorpej
754 1.63 thorpej if ((p->p_timers == NULL) ||
755 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
756 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
757 1.63 thorpej return (EINVAL);
758 1.63 thorpej
759 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
760 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
761 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
762 1.63 thorpej return (EINVAL);
763 1.63 thorpej
764 1.63 thorpej oval = pt->pt_time;
765 1.63 thorpej pt->pt_time = val;
766 1.63 thorpej
767 1.63 thorpej s = splclock();
768 1.67 nathanw /*
769 1.67 nathanw * If we've been passed a relative time for a realtime timer,
770 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
771 1.67 nathanw * timer, convert it to relative and make sure we don't set it
772 1.67 nathanw * to zero, which would cancel the timer, or let it go
773 1.67 nathanw * negative, which would confuse the comparison tests.
774 1.67 nathanw */
775 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
776 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
777 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
778 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
779 1.67 nathanw &pt->pt_time.it_value);
780 1.67 nathanw } else {
781 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
782 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
783 1.67 nathanw &pt->pt_time.it_value);
784 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
785 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
786 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
787 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
788 1.67 nathanw }
789 1.67 nathanw }
790 1.67 nathanw }
791 1.67 nathanw }
792 1.67 nathanw
793 1.63 thorpej timer_settime(pt);
794 1.63 thorpej splx(s);
795 1.63 thorpej
796 1.92 cube if (ovalue) {
797 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
798 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
799 1.63 thorpej }
800 1.63 thorpej
801 1.63 thorpej return (0);
802 1.63 thorpej }
803 1.63 thorpej
804 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
805 1.63 thorpej int
806 1.63 thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
807 1.63 thorpej {
808 1.63 thorpej struct sys_timer_gettime_args /* {
809 1.63 thorpej syscallarg(timer_t) timerid;
810 1.63 thorpej syscallarg(struct itimerspec *) value;
811 1.63 thorpej } */ *uap = v;
812 1.63 thorpej struct itimerspec its;
813 1.92 cube int error;
814 1.92 cube
815 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
816 1.92 cube &its)) != 0)
817 1.92 cube return error;
818 1.92 cube
819 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
820 1.92 cube }
821 1.92 cube
822 1.92 cube int
823 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
824 1.92 cube {
825 1.92 cube int s;
826 1.63 thorpej struct ptimer *pt;
827 1.92 cube struct itimerval aitv;
828 1.63 thorpej
829 1.63 thorpej if ((p->p_timers == NULL) ||
830 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
831 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
832 1.63 thorpej return (EINVAL);
833 1.63 thorpej
834 1.63 thorpej s = splclock();
835 1.63 thorpej timer_gettime(pt, &aitv);
836 1.1 cgd splx(s);
837 1.63 thorpej
838 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
839 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
840 1.63 thorpej
841 1.92 cube return 0;
842 1.63 thorpej }
843 1.63 thorpej
844 1.63 thorpej /*
845 1.63 thorpej * Return the count of the number of times a periodic timer expired
846 1.63 thorpej * while a notification was already pending. The counter is reset when
847 1.63 thorpej * a timer expires and a notification can be posted.
848 1.63 thorpej */
849 1.63 thorpej int
850 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
851 1.63 thorpej {
852 1.63 thorpej struct sys_timer_getoverrun_args /* {
853 1.63 thorpej syscallarg(timer_t) timerid;
854 1.63 thorpej } */ *uap = v;
855 1.63 thorpej struct proc *p = l->l_proc;
856 1.63 thorpej int timerid;
857 1.63 thorpej struct ptimer *pt;
858 1.63 thorpej
859 1.63 thorpej timerid = SCARG(uap, timerid);
860 1.63 thorpej
861 1.63 thorpej if ((p->p_timers == NULL) ||
862 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
863 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
864 1.63 thorpej return (EINVAL);
865 1.63 thorpej
866 1.63 thorpej *retval = pt->pt_poverruns;
867 1.63 thorpej
868 1.63 thorpej return (0);
869 1.63 thorpej }
870 1.63 thorpej
871 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
872 1.63 thorpej static void
873 1.63 thorpej timerupcall(struct lwp *l, void *arg)
874 1.63 thorpej {
875 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
876 1.64 nathanw unsigned int i, fired, done;
877 1.74 cl
878 1.81 cl KDASSERT(l->l_proc->p_sa);
879 1.81 cl /* Bail out if we do not own the virtual processor */
880 1.82 cl if (l->l_savp->savp_lwp != l)
881 1.81 cl return ;
882 1.87 perry
883 1.63 thorpej KERNEL_PROC_LOCK(l);
884 1.71 fvdl
885 1.64 nathanw fired = pt->pts_fired;
886 1.64 nathanw done = 0;
887 1.64 nathanw while ((i = ffs(fired)) != 0) {
888 1.74 cl siginfo_t *si;
889 1.73 christos int mask = 1 << --i;
890 1.74 cl int f;
891 1.73 christos
892 1.74 cl f = l->l_flag & L_SA;
893 1.74 cl l->l_flag &= ~L_SA;
894 1.94 chs si = siginfo_alloc(PR_WAITOK);
895 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
896 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
897 1.94 chs sizeof(*si), si, siginfo_free) != 0) {
898 1.94 chs siginfo_free(si);
899 1.86 mycroft /* XXX What do we do here?? */
900 1.86 mycroft } else
901 1.73 christos done |= mask;
902 1.73 christos fired &= ~mask;
903 1.74 cl l->l_flag |= f;
904 1.64 nathanw }
905 1.64 nathanw pt->pts_fired &= ~done;
906 1.64 nathanw if (pt->pts_fired == 0)
907 1.63 thorpej l->l_proc->p_userret = NULL;
908 1.63 thorpej
909 1.63 thorpej KERNEL_PROC_UNLOCK(l);
910 1.63 thorpej }
911 1.63 thorpej
912 1.63 thorpej
913 1.63 thorpej /*
914 1.63 thorpej * Real interval timer expired:
915 1.63 thorpej * send process whose timer expired an alarm signal.
916 1.63 thorpej * If time is not set up to reload, then just return.
917 1.63 thorpej * Else compute next time timer should go off which is > current time.
918 1.63 thorpej * This is where delay in processing this timeout causes multiple
919 1.63 thorpej * SIGALRM calls to be compressed into one.
920 1.63 thorpej */
921 1.63 thorpej void
922 1.63 thorpej realtimerexpire(void *arg)
923 1.63 thorpej {
924 1.63 thorpej struct ptimer *pt;
925 1.63 thorpej int s;
926 1.63 thorpej
927 1.63 thorpej pt = (struct ptimer *)arg;
928 1.63 thorpej
929 1.63 thorpej itimerfire(pt);
930 1.63 thorpej
931 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
932 1.63 thorpej timerclear(&pt->pt_time.it_value);
933 1.63 thorpej return;
934 1.63 thorpej }
935 1.63 thorpej for (;;) {
936 1.63 thorpej s = splclock();
937 1.63 thorpej timeradd(&pt->pt_time.it_value,
938 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
939 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
940 1.63 thorpej /*
941 1.63 thorpej * Don't need to check hzto() return value, here.
942 1.63 thorpej * callout_reset() does it for us.
943 1.63 thorpej */
944 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
945 1.63 thorpej realtimerexpire, pt);
946 1.63 thorpej splx(s);
947 1.63 thorpej return;
948 1.63 thorpej }
949 1.63 thorpej splx(s);
950 1.63 thorpej pt->pt_overruns++;
951 1.63 thorpej }
952 1.63 thorpej }
953 1.63 thorpej
954 1.63 thorpej /* BSD routine to get the value of an interval timer. */
955 1.63 thorpej /* ARGSUSED */
956 1.63 thorpej int
957 1.63 thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
958 1.63 thorpej {
959 1.63 thorpej struct sys_getitimer_args /* {
960 1.63 thorpej syscallarg(int) which;
961 1.63 thorpej syscallarg(struct itimerval *) itv;
962 1.63 thorpej } */ *uap = v;
963 1.63 thorpej struct proc *p = l->l_proc;
964 1.63 thorpej struct itimerval aitv;
965 1.91 cube int error;
966 1.91 cube
967 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
968 1.91 cube if (error)
969 1.91 cube return error;
970 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
971 1.91 cube }
972 1.63 thorpej
973 1.91 cube int
974 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
975 1.91 cube {
976 1.91 cube int s;
977 1.63 thorpej
978 1.63 thorpej if ((u_int)which > ITIMER_PROF)
979 1.63 thorpej return (EINVAL);
980 1.63 thorpej
981 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
982 1.91 cube timerclear(&itvp->it_value);
983 1.91 cube timerclear(&itvp->it_interval);
984 1.63 thorpej } else {
985 1.63 thorpej s = splclock();
986 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
987 1.63 thorpej splx(s);
988 1.63 thorpej }
989 1.63 thorpej
990 1.91 cube return 0;
991 1.1 cgd }
992 1.1 cgd
993 1.63 thorpej /* BSD routine to set/arm an interval timer. */
994 1.1 cgd /* ARGSUSED */
995 1.3 andrew int
996 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
997 1.15 thorpej {
998 1.45 augustss struct sys_setitimer_args /* {
999 1.30 mycroft syscallarg(int) which;
1000 1.24 cgd syscallarg(const struct itimerval *) itv;
1001 1.11 cgd syscallarg(struct itimerval *) oitv;
1002 1.15 thorpej } */ *uap = v;
1003 1.63 thorpej struct proc *p = l->l_proc;
1004 1.30 mycroft int which = SCARG(uap, which);
1005 1.21 cgd struct sys_getitimer_args getargs;
1006 1.91 cube const struct itimerval *itvp;
1007 1.1 cgd struct itimerval aitv;
1008 1.91 cube int error;
1009 1.1 cgd
1010 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1011 1.1 cgd return (EINVAL);
1012 1.11 cgd itvp = SCARG(uap, itv);
1013 1.63 thorpej if (itvp &&
1014 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1015 1.1 cgd return (error);
1016 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1017 1.30 mycroft SCARG(&getargs, which) = which;
1018 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1019 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1020 1.21 cgd return (error);
1021 1.21 cgd }
1022 1.1 cgd if (itvp == 0)
1023 1.1 cgd return (0);
1024 1.91 cube
1025 1.91 cube return dosetitimer(p, which, &aitv);
1026 1.91 cube }
1027 1.91 cube
1028 1.91 cube int
1029 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1030 1.91 cube {
1031 1.91 cube struct ptimer *pt;
1032 1.91 cube int s;
1033 1.91 cube
1034 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1035 1.1 cgd return (EINVAL);
1036 1.63 thorpej
1037 1.63 thorpej /*
1038 1.63 thorpej * Don't bother allocating data structures if the process just
1039 1.63 thorpej * wants to clear the timer.
1040 1.63 thorpej */
1041 1.91 cube if (!timerisset(&itvp->it_value) &&
1042 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1043 1.63 thorpej return (0);
1044 1.63 thorpej
1045 1.63 thorpej if (p->p_timers == NULL)
1046 1.63 thorpej timers_alloc(p);
1047 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1048 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1049 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1050 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1051 1.63 thorpej pt->pt_overruns = 0;
1052 1.63 thorpej pt->pt_proc = p;
1053 1.63 thorpej pt->pt_type = which;
1054 1.64 nathanw pt->pt_entry = which;
1055 1.63 thorpej switch (which) {
1056 1.63 thorpej case ITIMER_REAL:
1057 1.63 thorpej callout_init(&pt->pt_ch);
1058 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1059 1.63 thorpej break;
1060 1.63 thorpej case ITIMER_VIRTUAL:
1061 1.63 thorpej pt->pt_active = 0;
1062 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1063 1.63 thorpej break;
1064 1.63 thorpej case ITIMER_PROF:
1065 1.63 thorpej pt->pt_active = 0;
1066 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1067 1.63 thorpej break;
1068 1.1 cgd }
1069 1.1 cgd } else
1070 1.63 thorpej pt = p->p_timers->pts_timers[which];
1071 1.63 thorpej
1072 1.91 cube pt->pt_time = *itvp;
1073 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1074 1.63 thorpej
1075 1.63 thorpej s = splclock();
1076 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1077 1.67 nathanw /* Convert to absolute time */
1078 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1079 1.67 nathanw }
1080 1.63 thorpej timer_settime(pt);
1081 1.1 cgd splx(s);
1082 1.63 thorpej
1083 1.1 cgd return (0);
1084 1.1 cgd }
1085 1.1 cgd
1086 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1087 1.63 thorpej void
1088 1.63 thorpej timers_alloc(struct proc *p)
1089 1.63 thorpej {
1090 1.63 thorpej int i;
1091 1.63 thorpej struct ptimers *pts;
1092 1.63 thorpej
1093 1.63 thorpej pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1094 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1095 1.63 thorpej LIST_INIT(&pts->pts_prof);
1096 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1097 1.63 thorpej pts->pts_timers[i] = NULL;
1098 1.64 nathanw pts->pts_fired = 0;
1099 1.63 thorpej p->p_timers = pts;
1100 1.63 thorpej }
1101 1.63 thorpej
1102 1.1 cgd /*
1103 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1104 1.63 thorpej * then clean up all timers and free all the data structures. If
1105 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1106 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1107 1.63 thorpej * structure if none of those remain.
1108 1.1 cgd */
1109 1.3 andrew void
1110 1.63 thorpej timers_free(struct proc *p, int which)
1111 1.6 cgd {
1112 1.63 thorpej int i, s;
1113 1.63 thorpej struct ptimers *pts;
1114 1.63 thorpej struct ptimer *pt, *ptn;
1115 1.63 thorpej struct timeval tv;
1116 1.63 thorpej
1117 1.63 thorpej if (p->p_timers) {
1118 1.63 thorpej pts = p->p_timers;
1119 1.63 thorpej if (which == TIMERS_ALL)
1120 1.63 thorpej i = 0;
1121 1.63 thorpej else {
1122 1.63 thorpej s = splclock();
1123 1.63 thorpej timerclear(&tv);
1124 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1125 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1126 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1127 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1128 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1129 1.63 thorpej if (ptn) {
1130 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1131 1.63 thorpej &ptn->pt_time.it_value);
1132 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1133 1.63 thorpej ptn, pt_list);
1134 1.63 thorpej }
1135 1.63 thorpej
1136 1.63 thorpej timerclear(&tv);
1137 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1138 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1139 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1140 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1141 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1142 1.63 thorpej if (ptn) {
1143 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1144 1.63 thorpej &ptn->pt_time.it_value);
1145 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1146 1.63 thorpej pt_list);
1147 1.63 thorpej }
1148 1.1 cgd splx(s);
1149 1.63 thorpej i = 3;
1150 1.63 thorpej }
1151 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1152 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1153 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1154 1.63 thorpej callout_stop(&pt->pt_ch);
1155 1.63 thorpej pts->pts_timers[i] = NULL;
1156 1.63 thorpej pool_put(&ptimer_pool, pt);
1157 1.63 thorpej }
1158 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1159 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1160 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1161 1.63 thorpej p->p_timers = NULL;
1162 1.63 thorpej free(pts, M_SUBPROC);
1163 1.1 cgd }
1164 1.1 cgd }
1165 1.1 cgd }
1166 1.1 cgd
1167 1.1 cgd /*
1168 1.1 cgd * Check that a proposed value to load into the .it_value or
1169 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1170 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1171 1.1 cgd * than the resolution of the clock, round it up.)
1172 1.1 cgd */
1173 1.3 andrew int
1174 1.63 thorpej itimerfix(struct timeval *tv)
1175 1.1 cgd {
1176 1.1 cgd
1177 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1178 1.1 cgd return (EINVAL);
1179 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1180 1.1 cgd tv->tv_usec = tick;
1181 1.1 cgd return (0);
1182 1.1 cgd }
1183 1.1 cgd
1184 1.1 cgd /*
1185 1.1 cgd * Decrement an interval timer by a specified number
1186 1.1 cgd * of microseconds, which must be less than a second,
1187 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1188 1.1 cgd * it. In this case, carry over (usec - old value) to
1189 1.8 cgd * reduce the value reloaded into the timer so that
1190 1.1 cgd * the timer does not drift. This routine assumes
1191 1.1 cgd * that it is called in a context where the timers
1192 1.1 cgd * on which it is operating cannot change in value.
1193 1.1 cgd */
1194 1.3 andrew int
1195 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1196 1.63 thorpej {
1197 1.45 augustss struct itimerval *itp;
1198 1.1 cgd
1199 1.63 thorpej itp = &pt->pt_time;
1200 1.1 cgd if (itp->it_value.tv_usec < usec) {
1201 1.1 cgd if (itp->it_value.tv_sec == 0) {
1202 1.1 cgd /* expired, and already in next interval */
1203 1.1 cgd usec -= itp->it_value.tv_usec;
1204 1.1 cgd goto expire;
1205 1.1 cgd }
1206 1.1 cgd itp->it_value.tv_usec += 1000000;
1207 1.1 cgd itp->it_value.tv_sec--;
1208 1.1 cgd }
1209 1.1 cgd itp->it_value.tv_usec -= usec;
1210 1.1 cgd usec = 0;
1211 1.1 cgd if (timerisset(&itp->it_value))
1212 1.1 cgd return (1);
1213 1.1 cgd /* expired, exactly at end of interval */
1214 1.1 cgd expire:
1215 1.1 cgd if (timerisset(&itp->it_interval)) {
1216 1.1 cgd itp->it_value = itp->it_interval;
1217 1.1 cgd itp->it_value.tv_usec -= usec;
1218 1.1 cgd if (itp->it_value.tv_usec < 0) {
1219 1.1 cgd itp->it_value.tv_usec += 1000000;
1220 1.1 cgd itp->it_value.tv_sec--;
1221 1.1 cgd }
1222 1.63 thorpej timer_settime(pt);
1223 1.1 cgd } else
1224 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1225 1.1 cgd return (0);
1226 1.42 cgd }
1227 1.42 cgd
1228 1.63 thorpej void
1229 1.63 thorpej itimerfire(struct ptimer *pt)
1230 1.63 thorpej {
1231 1.63 thorpej struct proc *p = pt->pt_proc;
1232 1.82 cl struct sadata_vp *vp;
1233 1.64 nathanw int s;
1234 1.82 cl unsigned int i;
1235 1.78 cl
1236 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1237 1.63 thorpej /*
1238 1.63 thorpej * No RT signal infrastructure exists at this time;
1239 1.63 thorpej * just post the signal number and throw away the
1240 1.63 thorpej * value.
1241 1.63 thorpej */
1242 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1243 1.63 thorpej pt->pt_overruns++;
1244 1.63 thorpej else {
1245 1.75 christos ksiginfo_t ksi;
1246 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1247 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1248 1.75 christos ksi.ksi_code = SI_TIMER;
1249 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1250 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1251 1.63 thorpej pt->pt_overruns = 0;
1252 1.75 christos kpsignal(p, &ksi, NULL);
1253 1.63 thorpej }
1254 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1255 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1256 1.63 thorpej
1257 1.63 thorpej if (p->p_userret == NULL) {
1258 1.70 nathanw /*
1259 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1260 1.70 nathanw * which can be inside sa_yield's inner loop, which
1261 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1262 1.70 nathanw * determine if we really should call setrunnable.
1263 1.70 nathanw */
1264 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1265 1.63 thorpej pt->pt_overruns = 0;
1266 1.64 nathanw i = 1 << pt->pt_entry;
1267 1.64 nathanw p->p_timers->pts_fired = i;
1268 1.63 thorpej p->p_userret = timerupcall;
1269 1.64 nathanw p->p_userret_arg = p->p_timers;
1270 1.87 perry
1271 1.78 cl SCHED_LOCK(s);
1272 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1273 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1274 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1275 1.82 cl sched_wakeup(vp->savp_lwp);
1276 1.82 cl break;
1277 1.82 cl }
1278 1.78 cl }
1279 1.78 cl SCHED_UNLOCK(s);
1280 1.64 nathanw } else if (p->p_userret == timerupcall) {
1281 1.64 nathanw i = 1 << pt->pt_entry;
1282 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1283 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1284 1.64 nathanw pt->pt_overruns = 0;
1285 1.66 jdolecek p->p_timers->pts_fired |= i;
1286 1.64 nathanw } else
1287 1.64 nathanw pt->pt_overruns++;
1288 1.64 nathanw } else {
1289 1.63 thorpej pt->pt_overruns++;
1290 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1291 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1292 1.78 cl p->p_pid, pt->pt_overruns,
1293 1.78 cl pt->pt_ev.sigev_value.sival_int,
1294 1.78 cl p->p_userret);
1295 1.64 nathanw }
1296 1.63 thorpej }
1297 1.63 thorpej
1298 1.63 thorpej }
1299 1.63 thorpej
1300 1.42 cgd /*
1301 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1302 1.42 cgd * for usage and rationale.
1303 1.42 cgd */
1304 1.42 cgd int
1305 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1306 1.42 cgd {
1307 1.49 itojun struct timeval tv, delta;
1308 1.42 cgd int s, rv = 0;
1309 1.42 cgd
1310 1.63 thorpej s = splclock();
1311 1.49 itojun tv = mono_time;
1312 1.49 itojun splx(s);
1313 1.49 itojun
1314 1.49 itojun timersub(&tv, lasttime, &delta);
1315 1.42 cgd
1316 1.42 cgd /*
1317 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1318 1.42 cgd * even if interval is huge.
1319 1.42 cgd */
1320 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1321 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1322 1.49 itojun *lasttime = tv;
1323 1.42 cgd rv = 1;
1324 1.42 cgd }
1325 1.50 itojun
1326 1.50 itojun return (rv);
1327 1.50 itojun }
1328 1.50 itojun
1329 1.50 itojun /*
1330 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1331 1.50 itojun */
1332 1.50 itojun int
1333 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1334 1.50 itojun {
1335 1.50 itojun struct timeval tv, delta;
1336 1.50 itojun int s, rv;
1337 1.50 itojun
1338 1.63 thorpej s = splclock();
1339 1.50 itojun tv = mono_time;
1340 1.50 itojun splx(s);
1341 1.50 itojun
1342 1.50 itojun timersub(&tv, lasttime, &delta);
1343 1.50 itojun
1344 1.50 itojun /*
1345 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1346 1.50 itojun * if more than one second have passed since the last update of
1347 1.50 itojun * lasttime, reset the counter.
1348 1.50 itojun *
1349 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1350 1.50 itojun * try to use *curpps for stat purposes as well.
1351 1.50 itojun */
1352 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1353 1.50 itojun delta.tv_sec >= 1) {
1354 1.50 itojun *lasttime = tv;
1355 1.50 itojun *curpps = 0;
1356 1.69 dyoung }
1357 1.69 dyoung if (maxpps < 0)
1358 1.53 itojun rv = 1;
1359 1.53 itojun else if (*curpps < maxpps)
1360 1.50 itojun rv = 1;
1361 1.50 itojun else
1362 1.50 itojun rv = 0;
1363 1.50 itojun
1364 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1365 1.50 itojun /* be careful about wrap-around */
1366 1.50 itojun if (*curpps + 1 > *curpps)
1367 1.50 itojun *curpps = *curpps + 1;
1368 1.50 itojun #else
1369 1.50 itojun /*
1370 1.50 itojun * assume that there's not too many calls to this function.
1371 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1372 1.50 itojun * behavior, not the behavior of this function.
1373 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1374 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1375 1.50 itojun */
1376 1.50 itojun *curpps = *curpps + 1;
1377 1.50 itojun #endif
1378 1.42 cgd
1379 1.42 cgd return (rv);
1380 1.1 cgd }
1381