kern_time.c revision 1.98 1 1.98 christos /* $NetBSD: kern_time.c,v 1.98 2005/12/05 00:16:34 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.98 christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.98 2005/12/05 00:16:34 christos Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.5 mycroft #include <sys/proc.h>
82 1.63 thorpej #include <sys/sa.h>
83 1.63 thorpej #include <sys/savar.h>
84 1.8 cgd #include <sys/vnode.h>
85 1.17 christos #include <sys/signalvar.h>
86 1.25 perry #include <sys/syslog.h>
87 1.95 cube #include <sys/timevar.h>
88 1.1 cgd
89 1.11 cgd #include <sys/mount.h>
90 1.11 cgd #include <sys/syscallargs.h>
91 1.19 christos
92 1.37 thorpej #include <uvm/uvm_extern.h>
93 1.37 thorpej
94 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
95 1.20 fvdl #include <nfs/rpcv2.h>
96 1.20 fvdl #include <nfs/nfsproto.h>
97 1.93 jmmv #include <nfs/nfs.h>
98 1.19 christos #include <nfs/nfs_var.h>
99 1.19 christos #endif
100 1.17 christos
101 1.5 mycroft #include <machine/cpu.h>
102 1.23 cgd
103 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
104 1.97 simonb &pool_allocator_nointr);
105 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
106 1.97 simonb &pool_allocator_nointr);
107 1.97 simonb
108 1.63 thorpej static void timerupcall(struct lwp *, void *);
109 1.63 thorpej
110 1.63 thorpej /* Time of day and interval timer support.
111 1.1 cgd *
112 1.1 cgd * These routines provide the kernel entry points to get and set
113 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
114 1.1 cgd * here provide support for adding and subtracting timeval structures
115 1.1 cgd * and decrementing interval timers, optionally reloading the interval
116 1.1 cgd * timers when they expire.
117 1.1 cgd */
118 1.1 cgd
119 1.22 jtc /* This function is used by clock_settime and settimeofday */
120 1.39 tron int
121 1.98 christos settime(struct proc *p, struct timespec *ts)
122 1.22 jtc {
123 1.98 christos struct timeval delta, tv;
124 1.47 thorpej struct cpu_info *ci;
125 1.22 jtc int s;
126 1.22 jtc
127 1.98 christos /*
128 1.98 christos * Don't allow the time to be set forward so far it will wrap
129 1.98 christos * and become negative, thus allowing an attacker to bypass
130 1.98 christos * the next check below. The cutoff is 1 year before rollover
131 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
132 1.98 christos * the time past the cutoff, it will take a very long time
133 1.98 christos * to get to the wrap point.
134 1.98 christos *
135 1.98 christos * XXX: we check against INT_MAX since on 64-bit
136 1.98 christos * platforms, sizeof(int) != sizeof(long) and
137 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
138 1.98 christos */
139 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
140 1.98 christos struct proc *pp = p->p_pptr;
141 1.98 christos log(LOG_WARNING, "pid %d (%s) "
142 1.98 christos "invoked by uid %d ppid %d (%s) "
143 1.98 christos "tried to set clock forward to %ld\n",
144 1.98 christos p->p_pid, p->p_comm, pp->p_ucred->cr_uid,
145 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
146 1.98 christos return (EPERM);
147 1.98 christos }
148 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
149 1.98 christos
150 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
151 1.22 jtc s = splclock();
152 1.98 christos timersub(&tv, &time, &delta);
153 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
154 1.55 tron splx(s);
155 1.29 tls return (EPERM);
156 1.55 tron }
157 1.29 tls #ifdef notyet
158 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
159 1.55 tron splx(s);
160 1.29 tls return (EPERM);
161 1.55 tron }
162 1.29 tls #endif
163 1.98 christos time = tv;
164 1.38 thorpej (void) spllowersoftclock();
165 1.22 jtc timeradd(&boottime, &delta, &boottime);
166 1.47 thorpej /*
167 1.47 thorpej * XXXSMP
168 1.47 thorpej * This is wrong. We should traverse a list of all
169 1.47 thorpej * CPUs and add the delta to the runtime of those
170 1.47 thorpej * CPUs which have a process on them.
171 1.47 thorpej */
172 1.47 thorpej ci = curcpu();
173 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
174 1.47 thorpej &ci->ci_schedstate.spc_runtime);
175 1.54 bjh21 # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
176 1.22 jtc nqnfs_lease_updatetime(delta.tv_sec);
177 1.22 jtc # endif
178 1.22 jtc splx(s);
179 1.22 jtc resettodr();
180 1.29 tls return (0);
181 1.22 jtc }
182 1.22 jtc
183 1.22 jtc /* ARGSUSED */
184 1.22 jtc int
185 1.63 thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
186 1.22 jtc {
187 1.45 augustss struct sys_clock_gettime_args /* {
188 1.22 jtc syscallarg(clockid_t) clock_id;
189 1.23 cgd syscallarg(struct timespec *) tp;
190 1.23 cgd } */ *uap = v;
191 1.22 jtc clockid_t clock_id;
192 1.22 jtc struct timeval atv;
193 1.22 jtc struct timespec ats;
194 1.61 simonb int s;
195 1.22 jtc
196 1.22 jtc clock_id = SCARG(uap, clock_id);
197 1.61 simonb switch (clock_id) {
198 1.61 simonb case CLOCK_REALTIME:
199 1.96 simonb nanotime(&ats);
200 1.61 simonb break;
201 1.61 simonb case CLOCK_MONOTONIC:
202 1.61 simonb /* XXX "hz" granularity */
203 1.63 thorpej s = splclock();
204 1.61 simonb atv = mono_time;
205 1.61 simonb splx(s);
206 1.61 simonb TIMEVAL_TO_TIMESPEC(&atv,&ats);
207 1.61 simonb break;
208 1.61 simonb default:
209 1.22 jtc return (EINVAL);
210 1.61 simonb }
211 1.22 jtc
212 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
213 1.22 jtc }
214 1.22 jtc
215 1.22 jtc /* ARGSUSED */
216 1.22 jtc int
217 1.90 thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
218 1.22 jtc {
219 1.45 augustss struct sys_clock_settime_args /* {
220 1.22 jtc syscallarg(clockid_t) clock_id;
221 1.23 cgd syscallarg(const struct timespec *) tp;
222 1.23 cgd } */ *uap = v;
223 1.63 thorpej struct proc *p = l->l_proc;
224 1.22 jtc int error;
225 1.22 jtc
226 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
227 1.22 jtc return (error);
228 1.22 jtc
229 1.98 christos return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
230 1.56 manu }
231 1.56 manu
232 1.56 manu
233 1.56 manu int
234 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
235 1.56 manu {
236 1.60 manu struct timespec ats;
237 1.56 manu int error;
238 1.56 manu
239 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
240 1.60 manu return (error);
241 1.60 manu
242 1.61 simonb switch (clock_id) {
243 1.61 simonb case CLOCK_REALTIME:
244 1.98 christos if ((error = settime(p, &ats)) != 0)
245 1.61 simonb return (error);
246 1.61 simonb break;
247 1.61 simonb case CLOCK_MONOTONIC:
248 1.61 simonb return (EINVAL); /* read-only clock */
249 1.61 simonb default:
250 1.56 manu return (EINVAL);
251 1.61 simonb }
252 1.22 jtc
253 1.22 jtc return 0;
254 1.22 jtc }
255 1.22 jtc
256 1.22 jtc int
257 1.63 thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
258 1.22 jtc {
259 1.45 augustss struct sys_clock_getres_args /* {
260 1.22 jtc syscallarg(clockid_t) clock_id;
261 1.23 cgd syscallarg(struct timespec *) tp;
262 1.23 cgd } */ *uap = v;
263 1.22 jtc clockid_t clock_id;
264 1.22 jtc struct timespec ts;
265 1.22 jtc int error = 0;
266 1.22 jtc
267 1.22 jtc clock_id = SCARG(uap, clock_id);
268 1.61 simonb switch (clock_id) {
269 1.61 simonb case CLOCK_REALTIME:
270 1.61 simonb case CLOCK_MONOTONIC:
271 1.22 jtc ts.tv_sec = 0;
272 1.22 jtc ts.tv_nsec = 1000000000 / hz;
273 1.61 simonb break;
274 1.61 simonb default:
275 1.61 simonb return (EINVAL);
276 1.61 simonb }
277 1.22 jtc
278 1.61 simonb if (SCARG(uap, tp))
279 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
280 1.22 jtc
281 1.22 jtc return error;
282 1.22 jtc }
283 1.22 jtc
284 1.27 jtc /* ARGSUSED */
285 1.27 jtc int
286 1.63 thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
287 1.27 jtc {
288 1.27 jtc static int nanowait;
289 1.45 augustss struct sys_nanosleep_args/* {
290 1.27 jtc syscallarg(struct timespec *) rqtp;
291 1.27 jtc syscallarg(struct timespec *) rmtp;
292 1.27 jtc } */ *uap = v;
293 1.27 jtc struct timespec rqt;
294 1.27 jtc struct timespec rmt;
295 1.27 jtc struct timeval atv, utv;
296 1.27 jtc int error, s, timo;
297 1.27 jtc
298 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
299 1.27 jtc if (error)
300 1.27 jtc return (error);
301 1.27 jtc
302 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
303 1.80 christos if (itimerfix(&atv))
304 1.27 jtc return (EINVAL);
305 1.27 jtc
306 1.27 jtc s = splclock();
307 1.27 jtc timeradd(&atv,&time,&atv);
308 1.27 jtc timo = hzto(&atv);
309 1.63 thorpej /*
310 1.27 jtc * Avoid inadvertantly sleeping forever
311 1.27 jtc */
312 1.27 jtc if (timo == 0)
313 1.27 jtc timo = 1;
314 1.27 jtc splx(s);
315 1.27 jtc
316 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
317 1.27 jtc if (error == ERESTART)
318 1.27 jtc error = EINTR;
319 1.27 jtc if (error == EWOULDBLOCK)
320 1.27 jtc error = 0;
321 1.27 jtc
322 1.27 jtc if (SCARG(uap, rmtp)) {
323 1.89 christos int error1;
324 1.28 jtc
325 1.27 jtc s = splclock();
326 1.27 jtc utv = time;
327 1.27 jtc splx(s);
328 1.27 jtc
329 1.27 jtc timersub(&atv, &utv, &utv);
330 1.27 jtc if (utv.tv_sec < 0)
331 1.27 jtc timerclear(&utv);
332 1.27 jtc
333 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
334 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
335 1.28 jtc sizeof(rmt));
336 1.89 christos if (error1)
337 1.89 christos return (error1);
338 1.27 jtc }
339 1.27 jtc
340 1.27 jtc return error;
341 1.27 jtc }
342 1.22 jtc
343 1.1 cgd /* ARGSUSED */
344 1.3 andrew int
345 1.63 thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
346 1.15 thorpej {
347 1.45 augustss struct sys_gettimeofday_args /* {
348 1.11 cgd syscallarg(struct timeval *) tp;
349 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
350 1.15 thorpej } */ *uap = v;
351 1.1 cgd struct timeval atv;
352 1.1 cgd int error = 0;
353 1.25 perry struct timezone tzfake;
354 1.1 cgd
355 1.11 cgd if (SCARG(uap, tp)) {
356 1.1 cgd microtime(&atv);
357 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
358 1.17 christos if (error)
359 1.1 cgd return (error);
360 1.1 cgd }
361 1.25 perry if (SCARG(uap, tzp)) {
362 1.25 perry /*
363 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
364 1.25 perry * fake up a timezone struct and return it if demanded.
365 1.25 perry */
366 1.25 perry tzfake.tz_minuteswest = 0;
367 1.25 perry tzfake.tz_dsttime = 0;
368 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
369 1.25 perry }
370 1.1 cgd return (error);
371 1.1 cgd }
372 1.1 cgd
373 1.1 cgd /* ARGSUSED */
374 1.3 andrew int
375 1.63 thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
376 1.15 thorpej {
377 1.16 mycroft struct sys_settimeofday_args /* {
378 1.24 cgd syscallarg(const struct timeval *) tv;
379 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
380 1.15 thorpej } */ *uap = v;
381 1.63 thorpej struct proc *p = l->l_proc;
382 1.60 manu int error;
383 1.60 manu
384 1.60 manu if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
385 1.60 manu return (error);
386 1.60 manu
387 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
388 1.60 manu }
389 1.60 manu
390 1.60 manu int
391 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
392 1.90 thorpej struct proc *p)
393 1.60 manu {
394 1.22 jtc struct timeval atv;
395 1.98 christos struct timespec ts;
396 1.22 jtc int error;
397 1.1 cgd
398 1.8 cgd /* Verify all parameters before changing time. */
399 1.25 perry /*
400 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
401 1.25 perry * obsolete program would try to set it, so we log a warning.
402 1.25 perry */
403 1.98 christos if (utzp)
404 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
405 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
406 1.98 christos
407 1.98 christos if (utv == NULL)
408 1.98 christos return 0;
409 1.98 christos
410 1.98 christos if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
411 1.98 christos return error;
412 1.98 christos TIMEVAL_TO_TIMESPEC(&atv, &ts);
413 1.98 christos return settime(p, &ts);
414 1.1 cgd }
415 1.1 cgd
416 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
417 1.1 cgd long timedelta; /* unapplied time correction, us. */
418 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
419 1.68 dsl int time_adjusted; /* set if an adjustment is made */
420 1.1 cgd
421 1.1 cgd /* ARGSUSED */
422 1.3 andrew int
423 1.63 thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
424 1.15 thorpej {
425 1.45 augustss struct sys_adjtime_args /* {
426 1.24 cgd syscallarg(const struct timeval *) delta;
427 1.11 cgd syscallarg(struct timeval *) olddelta;
428 1.15 thorpej } */ *uap = v;
429 1.63 thorpej struct proc *p = l->l_proc;
430 1.56 manu int error;
431 1.1 cgd
432 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
433 1.1 cgd return (error);
434 1.17 christos
435 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
436 1.56 manu }
437 1.56 manu
438 1.56 manu int
439 1.90 thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
440 1.56 manu {
441 1.60 manu struct timeval atv;
442 1.56 manu long ndelta, ntickdelta, odelta;
443 1.60 manu int error;
444 1.56 manu int s;
445 1.8 cgd
446 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
447 1.60 manu if (error)
448 1.60 manu return (error);
449 1.60 manu
450 1.8 cgd /*
451 1.8 cgd * Compute the total correction and the rate at which to apply it.
452 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
453 1.8 cgd * delta, so that after some number of incremental changes in
454 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
455 1.8 cgd * overshoot and start taking us away from the desired final time.
456 1.8 cgd */
457 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
458 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
459 1.8 cgd ntickdelta = 10 * tickadj;
460 1.8 cgd else
461 1.8 cgd ntickdelta = tickadj;
462 1.8 cgd if (ndelta % ntickdelta)
463 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
464 1.8 cgd
465 1.8 cgd /*
466 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
467 1.8 cgd * if we want time to run slower; then hardclock can simply compute
468 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
469 1.8 cgd */
470 1.8 cgd if (ndelta < 0)
471 1.8 cgd ntickdelta = -ntickdelta;
472 1.68 dsl if (ndelta != 0)
473 1.68 dsl /* We need to save the system clock time during shutdown */
474 1.68 dsl time_adjusted |= 1;
475 1.1 cgd s = splclock();
476 1.8 cgd odelta = timedelta;
477 1.1 cgd timedelta = ndelta;
478 1.8 cgd tickdelta = ntickdelta;
479 1.1 cgd splx(s);
480 1.1 cgd
481 1.56 manu if (olddelta) {
482 1.60 manu atv.tv_sec = odelta / 1000000;
483 1.60 manu atv.tv_usec = odelta % 1000000;
484 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
485 1.8 cgd }
486 1.79 chs return error;
487 1.1 cgd }
488 1.1 cgd
489 1.1 cgd /*
490 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
491 1.63 thorpej * timer_*() family of routines are supported.
492 1.1 cgd *
493 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
494 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
495 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
496 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
497 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
498 1.63 thorpej * syscall.
499 1.1 cgd *
500 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
501 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
502 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
503 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
504 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
505 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
506 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
507 1.63 thorpej * given below), to be delayed in real time past when it is supposed
508 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
509 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
510 1.63 thorpej * compute the next time in absolute time the timer should go off. */
511 1.63 thorpej
512 1.63 thorpej /* Allocate a POSIX realtime timer. */
513 1.63 thorpej int
514 1.63 thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
515 1.63 thorpej {
516 1.63 thorpej struct sys_timer_create_args /* {
517 1.63 thorpej syscallarg(clockid_t) clock_id;
518 1.63 thorpej syscallarg(struct sigevent *) evp;
519 1.63 thorpej syscallarg(timer_t *) timerid;
520 1.63 thorpej } */ *uap = v;
521 1.92 cube
522 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
523 1.92 cube SCARG(uap, evp), copyin, l->l_proc);
524 1.92 cube }
525 1.92 cube
526 1.92 cube int
527 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
528 1.95 cube copyin_t fetch_event, struct proc *p)
529 1.92 cube {
530 1.92 cube int error;
531 1.92 cube timer_t timerid;
532 1.63 thorpej struct ptimer *pt;
533 1.63 thorpej
534 1.63 thorpej if (id < CLOCK_REALTIME ||
535 1.63 thorpej id > CLOCK_PROF)
536 1.63 thorpej return (EINVAL);
537 1.63 thorpej
538 1.63 thorpej if (p->p_timers == NULL)
539 1.63 thorpej timers_alloc(p);
540 1.63 thorpej
541 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
542 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
543 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
544 1.63 thorpej break;
545 1.63 thorpej
546 1.63 thorpej if (timerid == TIMER_MAX)
547 1.63 thorpej return EAGAIN;
548 1.63 thorpej
549 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
550 1.63 thorpej if (evp) {
551 1.63 thorpej if (((error =
552 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
553 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
554 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
555 1.63 thorpej pool_put(&ptimer_pool, pt);
556 1.63 thorpej return (error ? error : EINVAL);
557 1.63 thorpej }
558 1.63 thorpej } else {
559 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
560 1.63 thorpej switch (id) {
561 1.63 thorpej case CLOCK_REALTIME:
562 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
563 1.63 thorpej break;
564 1.63 thorpej case CLOCK_VIRTUAL:
565 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
566 1.63 thorpej break;
567 1.63 thorpej case CLOCK_PROF:
568 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
569 1.63 thorpej break;
570 1.63 thorpej }
571 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
572 1.63 thorpej }
573 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
574 1.73 christos pt->pt_info.ksi_errno = 0;
575 1.73 christos pt->pt_info.ksi_code = 0;
576 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
577 1.73 christos pt->pt_info.ksi_uid = p->p_cred->p_ruid;
578 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
579 1.63 thorpej
580 1.63 thorpej pt->pt_type = id;
581 1.63 thorpej pt->pt_proc = p;
582 1.63 thorpej pt->pt_overruns = 0;
583 1.63 thorpej pt->pt_poverruns = 0;
584 1.64 nathanw pt->pt_entry = timerid;
585 1.63 thorpej timerclear(&pt->pt_time.it_value);
586 1.63 thorpej if (id == CLOCK_REALTIME)
587 1.63 thorpej callout_init(&pt->pt_ch);
588 1.63 thorpej else
589 1.63 thorpej pt->pt_active = 0;
590 1.63 thorpej
591 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
592 1.63 thorpej
593 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
594 1.63 thorpej }
595 1.63 thorpej
596 1.63 thorpej /* Delete a POSIX realtime timer */
597 1.3 andrew int
598 1.63 thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
599 1.15 thorpej {
600 1.63 thorpej struct sys_timer_delete_args /* {
601 1.63 thorpej syscallarg(timer_t) timerid;
602 1.15 thorpej } */ *uap = v;
603 1.63 thorpej struct proc *p = l->l_proc;
604 1.65 jdolecek timer_t timerid;
605 1.63 thorpej struct ptimer *pt, *ptn;
606 1.1 cgd int s;
607 1.1 cgd
608 1.63 thorpej timerid = SCARG(uap, timerid);
609 1.63 thorpej
610 1.63 thorpej if ((p->p_timers == NULL) ||
611 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
612 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
613 1.1 cgd return (EINVAL);
614 1.63 thorpej
615 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
616 1.63 thorpej callout_stop(&pt->pt_ch);
617 1.63 thorpej else if (pt->pt_active) {
618 1.63 thorpej s = splclock();
619 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
620 1.63 thorpej LIST_REMOVE(pt, pt_list);
621 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
622 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
623 1.63 thorpej &ptn->pt_time.it_value);
624 1.63 thorpej splx(s);
625 1.63 thorpej }
626 1.63 thorpej
627 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
628 1.63 thorpej pool_put(&ptimer_pool, pt);
629 1.63 thorpej
630 1.63 thorpej return (0);
631 1.63 thorpej }
632 1.63 thorpej
633 1.63 thorpej /*
634 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
635 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
636 1.67 nathanw * time for virtual timers.
637 1.63 thorpej * Must be called at splclock().
638 1.63 thorpej */
639 1.63 thorpej void
640 1.63 thorpej timer_settime(struct ptimer *pt)
641 1.63 thorpej {
642 1.63 thorpej struct ptimer *ptn, *pptn;
643 1.63 thorpej struct ptlist *ptl;
644 1.63 thorpej
645 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
646 1.63 thorpej callout_stop(&pt->pt_ch);
647 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
648 1.63 thorpej /*
649 1.63 thorpej * Don't need to check hzto() return value, here.
650 1.63 thorpej * callout_reset() does it for us.
651 1.63 thorpej */
652 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
653 1.63 thorpej realtimerexpire, pt);
654 1.63 thorpej }
655 1.63 thorpej } else {
656 1.63 thorpej if (pt->pt_active) {
657 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
658 1.63 thorpej LIST_REMOVE(pt, pt_list);
659 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
660 1.63 thorpej timeradd(&pt->pt_time.it_value,
661 1.63 thorpej &ptn->pt_time.it_value,
662 1.63 thorpej &ptn->pt_time.it_value);
663 1.63 thorpej }
664 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
665 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
666 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
667 1.63 thorpej else
668 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
669 1.63 thorpej
670 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
671 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
672 1.63 thorpej &ptn->pt_time.it_value, >);
673 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
674 1.63 thorpej timersub(&pt->pt_time.it_value,
675 1.63 thorpej &ptn->pt_time.it_value,
676 1.63 thorpej &pt->pt_time.it_value);
677 1.63 thorpej
678 1.63 thorpej if (pptn)
679 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
680 1.63 thorpej else
681 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
682 1.63 thorpej
683 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
684 1.63 thorpej timersub(&ptn->pt_time.it_value,
685 1.63 thorpej &pt->pt_time.it_value,
686 1.63 thorpej &ptn->pt_time.it_value);
687 1.63 thorpej
688 1.63 thorpej pt->pt_active = 1;
689 1.63 thorpej } else
690 1.63 thorpej pt->pt_active = 0;
691 1.63 thorpej }
692 1.63 thorpej }
693 1.63 thorpej
694 1.63 thorpej void
695 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
696 1.63 thorpej {
697 1.63 thorpej struct ptimer *ptn;
698 1.63 thorpej
699 1.63 thorpej *aitv = pt->pt_time;
700 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
701 1.1 cgd /*
702 1.12 mycroft * Convert from absolute to relative time in .it_value
703 1.63 thorpej * part of real time timer. If time for real time
704 1.63 thorpej * timer has passed return 0, else return difference
705 1.63 thorpej * between current time and time for the timer to go
706 1.63 thorpej * off.
707 1.1 cgd */
708 1.63 thorpej if (timerisset(&aitv->it_value)) {
709 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
710 1.63 thorpej timerclear(&aitv->it_value);
711 1.1 cgd else
712 1.63 thorpej timersub(&aitv->it_value, &time,
713 1.63 thorpej &aitv->it_value);
714 1.36 thorpej }
715 1.63 thorpej } else if (pt->pt_active) {
716 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
717 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
718 1.63 thorpej else
719 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
720 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
721 1.63 thorpej timeradd(&aitv->it_value,
722 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
723 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
724 1.1 cgd } else
725 1.63 thorpej timerclear(&aitv->it_value);
726 1.63 thorpej }
727 1.63 thorpej
728 1.63 thorpej
729 1.63 thorpej
730 1.63 thorpej /* Set and arm a POSIX realtime timer */
731 1.63 thorpej int
732 1.63 thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
733 1.63 thorpej {
734 1.63 thorpej struct sys_timer_settime_args /* {
735 1.63 thorpej syscallarg(timer_t) timerid;
736 1.63 thorpej syscallarg(int) flags;
737 1.63 thorpej syscallarg(const struct itimerspec *) value;
738 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
739 1.63 thorpej } */ *uap = v;
740 1.92 cube int error;
741 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
742 1.92 cube
743 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
744 1.92 cube sizeof(struct itimerspec))) != 0)
745 1.92 cube return (error);
746 1.92 cube
747 1.92 cube if (SCARG(uap, ovalue))
748 1.92 cube ovp = &ovalue;
749 1.92 cube
750 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
751 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
752 1.92 cube return error;
753 1.92 cube
754 1.92 cube if (ovp)
755 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
756 1.92 cube sizeof(struct itimerspec));
757 1.92 cube return 0;
758 1.92 cube }
759 1.92 cube
760 1.92 cube int
761 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
762 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
763 1.92 cube {
764 1.92 cube int s;
765 1.63 thorpej struct itimerval val, oval;
766 1.63 thorpej struct ptimer *pt;
767 1.63 thorpej
768 1.63 thorpej if ((p->p_timers == NULL) ||
769 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
770 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
771 1.63 thorpej return (EINVAL);
772 1.63 thorpej
773 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
774 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
775 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
776 1.63 thorpej return (EINVAL);
777 1.63 thorpej
778 1.63 thorpej oval = pt->pt_time;
779 1.63 thorpej pt->pt_time = val;
780 1.63 thorpej
781 1.63 thorpej s = splclock();
782 1.67 nathanw /*
783 1.67 nathanw * If we've been passed a relative time for a realtime timer,
784 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
785 1.67 nathanw * timer, convert it to relative and make sure we don't set it
786 1.67 nathanw * to zero, which would cancel the timer, or let it go
787 1.67 nathanw * negative, which would confuse the comparison tests.
788 1.67 nathanw */
789 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
790 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
791 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
792 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
793 1.67 nathanw &pt->pt_time.it_value);
794 1.67 nathanw } else {
795 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
796 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
797 1.67 nathanw &pt->pt_time.it_value);
798 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
799 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
800 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
801 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
802 1.67 nathanw }
803 1.67 nathanw }
804 1.67 nathanw }
805 1.67 nathanw }
806 1.67 nathanw
807 1.63 thorpej timer_settime(pt);
808 1.63 thorpej splx(s);
809 1.63 thorpej
810 1.92 cube if (ovalue) {
811 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
812 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
813 1.63 thorpej }
814 1.63 thorpej
815 1.63 thorpej return (0);
816 1.63 thorpej }
817 1.63 thorpej
818 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
819 1.63 thorpej int
820 1.63 thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
821 1.63 thorpej {
822 1.63 thorpej struct sys_timer_gettime_args /* {
823 1.63 thorpej syscallarg(timer_t) timerid;
824 1.63 thorpej syscallarg(struct itimerspec *) value;
825 1.63 thorpej } */ *uap = v;
826 1.63 thorpej struct itimerspec its;
827 1.92 cube int error;
828 1.92 cube
829 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
830 1.92 cube &its)) != 0)
831 1.92 cube return error;
832 1.92 cube
833 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
834 1.92 cube }
835 1.92 cube
836 1.92 cube int
837 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
838 1.92 cube {
839 1.92 cube int s;
840 1.63 thorpej struct ptimer *pt;
841 1.92 cube struct itimerval aitv;
842 1.63 thorpej
843 1.63 thorpej if ((p->p_timers == NULL) ||
844 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
845 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
846 1.63 thorpej return (EINVAL);
847 1.63 thorpej
848 1.63 thorpej s = splclock();
849 1.63 thorpej timer_gettime(pt, &aitv);
850 1.1 cgd splx(s);
851 1.63 thorpej
852 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
853 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
854 1.63 thorpej
855 1.92 cube return 0;
856 1.63 thorpej }
857 1.63 thorpej
858 1.63 thorpej /*
859 1.63 thorpej * Return the count of the number of times a periodic timer expired
860 1.63 thorpej * while a notification was already pending. The counter is reset when
861 1.63 thorpej * a timer expires and a notification can be posted.
862 1.63 thorpej */
863 1.63 thorpej int
864 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
865 1.63 thorpej {
866 1.63 thorpej struct sys_timer_getoverrun_args /* {
867 1.63 thorpej syscallarg(timer_t) timerid;
868 1.63 thorpej } */ *uap = v;
869 1.63 thorpej struct proc *p = l->l_proc;
870 1.63 thorpej int timerid;
871 1.63 thorpej struct ptimer *pt;
872 1.63 thorpej
873 1.63 thorpej timerid = SCARG(uap, timerid);
874 1.63 thorpej
875 1.63 thorpej if ((p->p_timers == NULL) ||
876 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
877 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
878 1.63 thorpej return (EINVAL);
879 1.63 thorpej
880 1.63 thorpej *retval = pt->pt_poverruns;
881 1.63 thorpej
882 1.63 thorpej return (0);
883 1.63 thorpej }
884 1.63 thorpej
885 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
886 1.63 thorpej static void
887 1.63 thorpej timerupcall(struct lwp *l, void *arg)
888 1.63 thorpej {
889 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
890 1.64 nathanw unsigned int i, fired, done;
891 1.74 cl
892 1.81 cl KDASSERT(l->l_proc->p_sa);
893 1.81 cl /* Bail out if we do not own the virtual processor */
894 1.82 cl if (l->l_savp->savp_lwp != l)
895 1.81 cl return ;
896 1.87 perry
897 1.63 thorpej KERNEL_PROC_LOCK(l);
898 1.71 fvdl
899 1.64 nathanw fired = pt->pts_fired;
900 1.64 nathanw done = 0;
901 1.64 nathanw while ((i = ffs(fired)) != 0) {
902 1.74 cl siginfo_t *si;
903 1.73 christos int mask = 1 << --i;
904 1.74 cl int f;
905 1.73 christos
906 1.74 cl f = l->l_flag & L_SA;
907 1.74 cl l->l_flag &= ~L_SA;
908 1.94 chs si = siginfo_alloc(PR_WAITOK);
909 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
910 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
911 1.94 chs sizeof(*si), si, siginfo_free) != 0) {
912 1.94 chs siginfo_free(si);
913 1.86 mycroft /* XXX What do we do here?? */
914 1.86 mycroft } else
915 1.73 christos done |= mask;
916 1.73 christos fired &= ~mask;
917 1.74 cl l->l_flag |= f;
918 1.64 nathanw }
919 1.64 nathanw pt->pts_fired &= ~done;
920 1.64 nathanw if (pt->pts_fired == 0)
921 1.63 thorpej l->l_proc->p_userret = NULL;
922 1.63 thorpej
923 1.63 thorpej KERNEL_PROC_UNLOCK(l);
924 1.63 thorpej }
925 1.63 thorpej
926 1.63 thorpej
927 1.63 thorpej /*
928 1.63 thorpej * Real interval timer expired:
929 1.63 thorpej * send process whose timer expired an alarm signal.
930 1.63 thorpej * If time is not set up to reload, then just return.
931 1.63 thorpej * Else compute next time timer should go off which is > current time.
932 1.63 thorpej * This is where delay in processing this timeout causes multiple
933 1.63 thorpej * SIGALRM calls to be compressed into one.
934 1.63 thorpej */
935 1.63 thorpej void
936 1.63 thorpej realtimerexpire(void *arg)
937 1.63 thorpej {
938 1.63 thorpej struct ptimer *pt;
939 1.63 thorpej int s;
940 1.63 thorpej
941 1.63 thorpej pt = (struct ptimer *)arg;
942 1.63 thorpej
943 1.63 thorpej itimerfire(pt);
944 1.63 thorpej
945 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
946 1.63 thorpej timerclear(&pt->pt_time.it_value);
947 1.63 thorpej return;
948 1.63 thorpej }
949 1.63 thorpej for (;;) {
950 1.63 thorpej s = splclock();
951 1.63 thorpej timeradd(&pt->pt_time.it_value,
952 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
953 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
954 1.63 thorpej /*
955 1.63 thorpej * Don't need to check hzto() return value, here.
956 1.63 thorpej * callout_reset() does it for us.
957 1.63 thorpej */
958 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
959 1.63 thorpej realtimerexpire, pt);
960 1.63 thorpej splx(s);
961 1.63 thorpej return;
962 1.63 thorpej }
963 1.63 thorpej splx(s);
964 1.63 thorpej pt->pt_overruns++;
965 1.63 thorpej }
966 1.63 thorpej }
967 1.63 thorpej
968 1.63 thorpej /* BSD routine to get the value of an interval timer. */
969 1.63 thorpej /* ARGSUSED */
970 1.63 thorpej int
971 1.63 thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
972 1.63 thorpej {
973 1.63 thorpej struct sys_getitimer_args /* {
974 1.63 thorpej syscallarg(int) which;
975 1.63 thorpej syscallarg(struct itimerval *) itv;
976 1.63 thorpej } */ *uap = v;
977 1.63 thorpej struct proc *p = l->l_proc;
978 1.63 thorpej struct itimerval aitv;
979 1.91 cube int error;
980 1.91 cube
981 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
982 1.91 cube if (error)
983 1.91 cube return error;
984 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
985 1.91 cube }
986 1.63 thorpej
987 1.91 cube int
988 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
989 1.91 cube {
990 1.91 cube int s;
991 1.63 thorpej
992 1.63 thorpej if ((u_int)which > ITIMER_PROF)
993 1.63 thorpej return (EINVAL);
994 1.63 thorpej
995 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
996 1.91 cube timerclear(&itvp->it_value);
997 1.91 cube timerclear(&itvp->it_interval);
998 1.63 thorpej } else {
999 1.63 thorpej s = splclock();
1000 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1001 1.63 thorpej splx(s);
1002 1.63 thorpej }
1003 1.63 thorpej
1004 1.91 cube return 0;
1005 1.1 cgd }
1006 1.1 cgd
1007 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1008 1.1 cgd /* ARGSUSED */
1009 1.3 andrew int
1010 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1011 1.15 thorpej {
1012 1.45 augustss struct sys_setitimer_args /* {
1013 1.30 mycroft syscallarg(int) which;
1014 1.24 cgd syscallarg(const struct itimerval *) itv;
1015 1.11 cgd syscallarg(struct itimerval *) oitv;
1016 1.15 thorpej } */ *uap = v;
1017 1.63 thorpej struct proc *p = l->l_proc;
1018 1.30 mycroft int which = SCARG(uap, which);
1019 1.21 cgd struct sys_getitimer_args getargs;
1020 1.91 cube const struct itimerval *itvp;
1021 1.1 cgd struct itimerval aitv;
1022 1.91 cube int error;
1023 1.1 cgd
1024 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1025 1.1 cgd return (EINVAL);
1026 1.11 cgd itvp = SCARG(uap, itv);
1027 1.63 thorpej if (itvp &&
1028 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1029 1.1 cgd return (error);
1030 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1031 1.30 mycroft SCARG(&getargs, which) = which;
1032 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1033 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1034 1.21 cgd return (error);
1035 1.21 cgd }
1036 1.1 cgd if (itvp == 0)
1037 1.1 cgd return (0);
1038 1.91 cube
1039 1.91 cube return dosetitimer(p, which, &aitv);
1040 1.91 cube }
1041 1.91 cube
1042 1.91 cube int
1043 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1044 1.91 cube {
1045 1.91 cube struct ptimer *pt;
1046 1.91 cube int s;
1047 1.91 cube
1048 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1049 1.1 cgd return (EINVAL);
1050 1.63 thorpej
1051 1.63 thorpej /*
1052 1.63 thorpej * Don't bother allocating data structures if the process just
1053 1.63 thorpej * wants to clear the timer.
1054 1.63 thorpej */
1055 1.91 cube if (!timerisset(&itvp->it_value) &&
1056 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1057 1.63 thorpej return (0);
1058 1.63 thorpej
1059 1.63 thorpej if (p->p_timers == NULL)
1060 1.63 thorpej timers_alloc(p);
1061 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1062 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1063 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1064 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1065 1.63 thorpej pt->pt_overruns = 0;
1066 1.63 thorpej pt->pt_proc = p;
1067 1.63 thorpej pt->pt_type = which;
1068 1.64 nathanw pt->pt_entry = which;
1069 1.63 thorpej switch (which) {
1070 1.63 thorpej case ITIMER_REAL:
1071 1.63 thorpej callout_init(&pt->pt_ch);
1072 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1073 1.63 thorpej break;
1074 1.63 thorpej case ITIMER_VIRTUAL:
1075 1.63 thorpej pt->pt_active = 0;
1076 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1077 1.63 thorpej break;
1078 1.63 thorpej case ITIMER_PROF:
1079 1.63 thorpej pt->pt_active = 0;
1080 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1081 1.63 thorpej break;
1082 1.1 cgd }
1083 1.1 cgd } else
1084 1.63 thorpej pt = p->p_timers->pts_timers[which];
1085 1.63 thorpej
1086 1.91 cube pt->pt_time = *itvp;
1087 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1088 1.63 thorpej
1089 1.63 thorpej s = splclock();
1090 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1091 1.67 nathanw /* Convert to absolute time */
1092 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1093 1.67 nathanw }
1094 1.63 thorpej timer_settime(pt);
1095 1.1 cgd splx(s);
1096 1.63 thorpej
1097 1.1 cgd return (0);
1098 1.1 cgd }
1099 1.1 cgd
1100 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1101 1.63 thorpej void
1102 1.63 thorpej timers_alloc(struct proc *p)
1103 1.63 thorpej {
1104 1.63 thorpej int i;
1105 1.63 thorpej struct ptimers *pts;
1106 1.63 thorpej
1107 1.97 simonb pts = pool_get(&ptimers_pool, 0);
1108 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1109 1.63 thorpej LIST_INIT(&pts->pts_prof);
1110 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1111 1.63 thorpej pts->pts_timers[i] = NULL;
1112 1.64 nathanw pts->pts_fired = 0;
1113 1.63 thorpej p->p_timers = pts;
1114 1.63 thorpej }
1115 1.63 thorpej
1116 1.1 cgd /*
1117 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1118 1.63 thorpej * then clean up all timers and free all the data structures. If
1119 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1120 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1121 1.63 thorpej * structure if none of those remain.
1122 1.1 cgd */
1123 1.3 andrew void
1124 1.63 thorpej timers_free(struct proc *p, int which)
1125 1.6 cgd {
1126 1.63 thorpej int i, s;
1127 1.63 thorpej struct ptimers *pts;
1128 1.63 thorpej struct ptimer *pt, *ptn;
1129 1.63 thorpej struct timeval tv;
1130 1.63 thorpej
1131 1.63 thorpej if (p->p_timers) {
1132 1.63 thorpej pts = p->p_timers;
1133 1.63 thorpej if (which == TIMERS_ALL)
1134 1.63 thorpej i = 0;
1135 1.63 thorpej else {
1136 1.63 thorpej s = splclock();
1137 1.63 thorpej timerclear(&tv);
1138 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1139 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1140 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1141 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1142 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1143 1.63 thorpej if (ptn) {
1144 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1145 1.63 thorpej &ptn->pt_time.it_value);
1146 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1147 1.63 thorpej ptn, pt_list);
1148 1.63 thorpej }
1149 1.63 thorpej
1150 1.63 thorpej timerclear(&tv);
1151 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1152 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1153 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1154 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1155 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1156 1.63 thorpej if (ptn) {
1157 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1158 1.63 thorpej &ptn->pt_time.it_value);
1159 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1160 1.63 thorpej pt_list);
1161 1.63 thorpej }
1162 1.1 cgd splx(s);
1163 1.63 thorpej i = 3;
1164 1.63 thorpej }
1165 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1166 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1167 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1168 1.63 thorpej callout_stop(&pt->pt_ch);
1169 1.63 thorpej pts->pts_timers[i] = NULL;
1170 1.63 thorpej pool_put(&ptimer_pool, pt);
1171 1.63 thorpej }
1172 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1173 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1174 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1175 1.63 thorpej p->p_timers = NULL;
1176 1.97 simonb pool_put(&ptimers_pool, pts);
1177 1.1 cgd }
1178 1.1 cgd }
1179 1.1 cgd }
1180 1.1 cgd
1181 1.1 cgd /*
1182 1.1 cgd * Check that a proposed value to load into the .it_value or
1183 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1184 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1185 1.1 cgd * than the resolution of the clock, round it up.)
1186 1.1 cgd */
1187 1.3 andrew int
1188 1.63 thorpej itimerfix(struct timeval *tv)
1189 1.1 cgd {
1190 1.1 cgd
1191 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1192 1.1 cgd return (EINVAL);
1193 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1194 1.1 cgd tv->tv_usec = tick;
1195 1.1 cgd return (0);
1196 1.1 cgd }
1197 1.1 cgd
1198 1.1 cgd /*
1199 1.1 cgd * Decrement an interval timer by a specified number
1200 1.1 cgd * of microseconds, which must be less than a second,
1201 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1202 1.1 cgd * it. In this case, carry over (usec - old value) to
1203 1.8 cgd * reduce the value reloaded into the timer so that
1204 1.1 cgd * the timer does not drift. This routine assumes
1205 1.1 cgd * that it is called in a context where the timers
1206 1.1 cgd * on which it is operating cannot change in value.
1207 1.1 cgd */
1208 1.3 andrew int
1209 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1210 1.63 thorpej {
1211 1.45 augustss struct itimerval *itp;
1212 1.1 cgd
1213 1.63 thorpej itp = &pt->pt_time;
1214 1.1 cgd if (itp->it_value.tv_usec < usec) {
1215 1.1 cgd if (itp->it_value.tv_sec == 0) {
1216 1.1 cgd /* expired, and already in next interval */
1217 1.1 cgd usec -= itp->it_value.tv_usec;
1218 1.1 cgd goto expire;
1219 1.1 cgd }
1220 1.1 cgd itp->it_value.tv_usec += 1000000;
1221 1.1 cgd itp->it_value.tv_sec--;
1222 1.1 cgd }
1223 1.1 cgd itp->it_value.tv_usec -= usec;
1224 1.1 cgd usec = 0;
1225 1.1 cgd if (timerisset(&itp->it_value))
1226 1.1 cgd return (1);
1227 1.1 cgd /* expired, exactly at end of interval */
1228 1.1 cgd expire:
1229 1.1 cgd if (timerisset(&itp->it_interval)) {
1230 1.1 cgd itp->it_value = itp->it_interval;
1231 1.1 cgd itp->it_value.tv_usec -= usec;
1232 1.1 cgd if (itp->it_value.tv_usec < 0) {
1233 1.1 cgd itp->it_value.tv_usec += 1000000;
1234 1.1 cgd itp->it_value.tv_sec--;
1235 1.1 cgd }
1236 1.63 thorpej timer_settime(pt);
1237 1.1 cgd } else
1238 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1239 1.1 cgd return (0);
1240 1.42 cgd }
1241 1.42 cgd
1242 1.63 thorpej void
1243 1.63 thorpej itimerfire(struct ptimer *pt)
1244 1.63 thorpej {
1245 1.63 thorpej struct proc *p = pt->pt_proc;
1246 1.82 cl struct sadata_vp *vp;
1247 1.64 nathanw int s;
1248 1.82 cl unsigned int i;
1249 1.78 cl
1250 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1251 1.63 thorpej /*
1252 1.63 thorpej * No RT signal infrastructure exists at this time;
1253 1.63 thorpej * just post the signal number and throw away the
1254 1.63 thorpej * value.
1255 1.63 thorpej */
1256 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1257 1.63 thorpej pt->pt_overruns++;
1258 1.63 thorpej else {
1259 1.75 christos ksiginfo_t ksi;
1260 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1261 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1262 1.75 christos ksi.ksi_code = SI_TIMER;
1263 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1264 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1265 1.63 thorpej pt->pt_overruns = 0;
1266 1.75 christos kpsignal(p, &ksi, NULL);
1267 1.63 thorpej }
1268 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1269 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1270 1.63 thorpej
1271 1.63 thorpej if (p->p_userret == NULL) {
1272 1.70 nathanw /*
1273 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1274 1.70 nathanw * which can be inside sa_yield's inner loop, which
1275 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1276 1.70 nathanw * determine if we really should call setrunnable.
1277 1.70 nathanw */
1278 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1279 1.63 thorpej pt->pt_overruns = 0;
1280 1.64 nathanw i = 1 << pt->pt_entry;
1281 1.64 nathanw p->p_timers->pts_fired = i;
1282 1.63 thorpej p->p_userret = timerupcall;
1283 1.64 nathanw p->p_userret_arg = p->p_timers;
1284 1.87 perry
1285 1.78 cl SCHED_LOCK(s);
1286 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1287 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1288 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1289 1.82 cl sched_wakeup(vp->savp_lwp);
1290 1.82 cl break;
1291 1.82 cl }
1292 1.78 cl }
1293 1.78 cl SCHED_UNLOCK(s);
1294 1.64 nathanw } else if (p->p_userret == timerupcall) {
1295 1.64 nathanw i = 1 << pt->pt_entry;
1296 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1297 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1298 1.64 nathanw pt->pt_overruns = 0;
1299 1.66 jdolecek p->p_timers->pts_fired |= i;
1300 1.64 nathanw } else
1301 1.64 nathanw pt->pt_overruns++;
1302 1.64 nathanw } else {
1303 1.63 thorpej pt->pt_overruns++;
1304 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1305 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1306 1.78 cl p->p_pid, pt->pt_overruns,
1307 1.78 cl pt->pt_ev.sigev_value.sival_int,
1308 1.78 cl p->p_userret);
1309 1.64 nathanw }
1310 1.63 thorpej }
1311 1.63 thorpej
1312 1.63 thorpej }
1313 1.63 thorpej
1314 1.42 cgd /*
1315 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1316 1.42 cgd * for usage and rationale.
1317 1.42 cgd */
1318 1.42 cgd int
1319 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1320 1.42 cgd {
1321 1.49 itojun struct timeval tv, delta;
1322 1.42 cgd int s, rv = 0;
1323 1.42 cgd
1324 1.63 thorpej s = splclock();
1325 1.49 itojun tv = mono_time;
1326 1.49 itojun splx(s);
1327 1.49 itojun
1328 1.49 itojun timersub(&tv, lasttime, &delta);
1329 1.42 cgd
1330 1.42 cgd /*
1331 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1332 1.42 cgd * even if interval is huge.
1333 1.42 cgd */
1334 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1335 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1336 1.49 itojun *lasttime = tv;
1337 1.42 cgd rv = 1;
1338 1.42 cgd }
1339 1.50 itojun
1340 1.50 itojun return (rv);
1341 1.50 itojun }
1342 1.50 itojun
1343 1.50 itojun /*
1344 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1345 1.50 itojun */
1346 1.50 itojun int
1347 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1348 1.50 itojun {
1349 1.50 itojun struct timeval tv, delta;
1350 1.50 itojun int s, rv;
1351 1.50 itojun
1352 1.63 thorpej s = splclock();
1353 1.50 itojun tv = mono_time;
1354 1.50 itojun splx(s);
1355 1.50 itojun
1356 1.50 itojun timersub(&tv, lasttime, &delta);
1357 1.50 itojun
1358 1.50 itojun /*
1359 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1360 1.50 itojun * if more than one second have passed since the last update of
1361 1.50 itojun * lasttime, reset the counter.
1362 1.50 itojun *
1363 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1364 1.50 itojun * try to use *curpps for stat purposes as well.
1365 1.50 itojun */
1366 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1367 1.50 itojun delta.tv_sec >= 1) {
1368 1.50 itojun *lasttime = tv;
1369 1.50 itojun *curpps = 0;
1370 1.69 dyoung }
1371 1.69 dyoung if (maxpps < 0)
1372 1.53 itojun rv = 1;
1373 1.53 itojun else if (*curpps < maxpps)
1374 1.50 itojun rv = 1;
1375 1.50 itojun else
1376 1.50 itojun rv = 0;
1377 1.50 itojun
1378 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1379 1.50 itojun /* be careful about wrap-around */
1380 1.50 itojun if (*curpps + 1 > *curpps)
1381 1.50 itojun *curpps = *curpps + 1;
1382 1.50 itojun #else
1383 1.50 itojun /*
1384 1.50 itojun * assume that there's not too many calls to this function.
1385 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1386 1.50 itojun * behavior, not the behavior of this function.
1387 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1388 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1389 1.50 itojun */
1390 1.50 itojun *curpps = *curpps + 1;
1391 1.50 itojun #endif
1392 1.42 cgd
1393 1.42 cgd return (rv);
1394 1.1 cgd }
1395