kern_time.c revision 1.98.6.2 1 1.98.6.2 kardel /* $NetBSD: kern_time.c,v 1.98.6.2 2006/02/28 21:07:13 kardel Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.98.6.2 kardel __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.98.6.2 2006/02/28 21:07:13 kardel Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.5 mycroft #include <sys/proc.h>
82 1.63 thorpej #include <sys/sa.h>
83 1.63 thorpej #include <sys/savar.h>
84 1.8 cgd #include <sys/vnode.h>
85 1.17 christos #include <sys/signalvar.h>
86 1.25 perry #include <sys/syslog.h>
87 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
88 1.98.6.1 simonb #include <sys/timetc.h>
89 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
90 1.95 cube #include <sys/timevar.h>
91 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
92 1.1 cgd
93 1.11 cgd #include <sys/mount.h>
94 1.11 cgd #include <sys/syscallargs.h>
95 1.19 christos
96 1.37 thorpej #include <uvm/uvm_extern.h>
97 1.37 thorpej
98 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
99 1.20 fvdl #include <nfs/rpcv2.h>
100 1.20 fvdl #include <nfs/nfsproto.h>
101 1.93 jmmv #include <nfs/nfs.h>
102 1.19 christos #include <nfs/nfs_var.h>
103 1.19 christos #endif
104 1.17 christos
105 1.5 mycroft #include <machine/cpu.h>
106 1.23 cgd
107 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108 1.97 simonb &pool_allocator_nointr);
109 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110 1.97 simonb &pool_allocator_nointr);
111 1.97 simonb
112 1.63 thorpej static void timerupcall(struct lwp *, void *);
113 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
114 1.98.6.1 simonb static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
115 1.98.6.1 simonb #endif /* __HAVE_TIMECOUNTER */
116 1.63 thorpej
117 1.63 thorpej /* Time of day and interval timer support.
118 1.1 cgd *
119 1.1 cgd * These routines provide the kernel entry points to get and set
120 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
121 1.1 cgd * here provide support for adding and subtracting timeval structures
122 1.1 cgd * and decrementing interval timers, optionally reloading the interval
123 1.1 cgd * timers when they expire.
124 1.1 cgd */
125 1.1 cgd
126 1.22 jtc /* This function is used by clock_settime and settimeofday */
127 1.39 tron int
128 1.98 christos settime(struct proc *p, struct timespec *ts)
129 1.22 jtc {
130 1.98 christos struct timeval delta, tv;
131 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
132 1.98.6.1 simonb struct timeval now;
133 1.98.6.1 simonb struct timespec ts1;
134 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
135 1.47 thorpej struct cpu_info *ci;
136 1.22 jtc int s;
137 1.22 jtc
138 1.98 christos /*
139 1.98 christos * Don't allow the time to be set forward so far it will wrap
140 1.98 christos * and become negative, thus allowing an attacker to bypass
141 1.98 christos * the next check below. The cutoff is 1 year before rollover
142 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
143 1.98 christos * the time past the cutoff, it will take a very long time
144 1.98 christos * to get to the wrap point.
145 1.98 christos *
146 1.98 christos * XXX: we check against INT_MAX since on 64-bit
147 1.98 christos * platforms, sizeof(int) != sizeof(long) and
148 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
149 1.98 christos */
150 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
151 1.98 christos struct proc *pp = p->p_pptr;
152 1.98 christos log(LOG_WARNING, "pid %d (%s) "
153 1.98 christos "invoked by uid %d ppid %d (%s) "
154 1.98 christos "tried to set clock forward to %ld\n",
155 1.98 christos p->p_pid, p->p_comm, pp->p_ucred->cr_uid,
156 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
157 1.98 christos return (EPERM);
158 1.98 christos }
159 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
160 1.98 christos
161 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
162 1.22 jtc s = splclock();
163 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
164 1.98.6.1 simonb microtime(&now);
165 1.98.6.1 simonb timersub(&tv, &now, &delta);
166 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
167 1.98 christos timersub(&tv, &time, &delta);
168 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
169 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
170 1.55 tron splx(s);
171 1.29 tls return (EPERM);
172 1.55 tron }
173 1.29 tls #ifdef notyet
174 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
175 1.55 tron splx(s);
176 1.29 tls return (EPERM);
177 1.55 tron }
178 1.29 tls #endif
179 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
180 1.98.6.1 simonb ts1.tv_sec = tv.tv_sec;
181 1.98.6.1 simonb ts1.tv_nsec = tv.tv_usec * 1000;
182 1.98.6.1 simonb tc_setclock(&ts1);
183 1.98.6.1 simonb (void) spllowersoftclock();
184 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
185 1.98 christos time = tv;
186 1.38 thorpej (void) spllowersoftclock();
187 1.22 jtc timeradd(&boottime, &delta, &boottime);
188 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
189 1.47 thorpej /*
190 1.47 thorpej * XXXSMP
191 1.47 thorpej * This is wrong. We should traverse a list of all
192 1.47 thorpej * CPUs and add the delta to the runtime of those
193 1.47 thorpej * CPUs which have a process on them.
194 1.47 thorpej */
195 1.47 thorpej ci = curcpu();
196 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
197 1.47 thorpej &ci->ci_schedstate.spc_runtime);
198 1.98.6.1 simonb #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
199 1.98.6.1 simonb nqnfs_lease_updatetime(delta.tv_sec);
200 1.98.6.1 simonb #endif
201 1.22 jtc splx(s);
202 1.22 jtc resettodr();
203 1.29 tls return (0);
204 1.22 jtc }
205 1.22 jtc
206 1.22 jtc /* ARGSUSED */
207 1.22 jtc int
208 1.63 thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
209 1.22 jtc {
210 1.45 augustss struct sys_clock_gettime_args /* {
211 1.22 jtc syscallarg(clockid_t) clock_id;
212 1.23 cgd syscallarg(struct timespec *) tp;
213 1.23 cgd } */ *uap = v;
214 1.22 jtc clockid_t clock_id;
215 1.22 jtc struct timespec ats;
216 1.22 jtc
217 1.22 jtc clock_id = SCARG(uap, clock_id);
218 1.61 simonb switch (clock_id) {
219 1.61 simonb case CLOCK_REALTIME:
220 1.96 simonb nanotime(&ats);
221 1.61 simonb break;
222 1.61 simonb case CLOCK_MONOTONIC:
223 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
224 1.98.6.1 simonb nanouptime(&ats);
225 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
226 1.98.6.1 simonb {
227 1.98.6.1 simonb int s;
228 1.98.6.1 simonb
229 1.61 simonb /* XXX "hz" granularity */
230 1.63 thorpej s = splclock();
231 1.98.6.1 simonb TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
232 1.61 simonb splx(s);
233 1.98.6.1 simonb }
234 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
235 1.61 simonb break;
236 1.61 simonb default:
237 1.22 jtc return (EINVAL);
238 1.61 simonb }
239 1.22 jtc
240 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
241 1.22 jtc }
242 1.22 jtc
243 1.22 jtc /* ARGSUSED */
244 1.22 jtc int
245 1.90 thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
246 1.22 jtc {
247 1.45 augustss struct sys_clock_settime_args /* {
248 1.22 jtc syscallarg(clockid_t) clock_id;
249 1.23 cgd syscallarg(const struct timespec *) tp;
250 1.23 cgd } */ *uap = v;
251 1.63 thorpej struct proc *p = l->l_proc;
252 1.22 jtc int error;
253 1.22 jtc
254 1.22 jtc if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
255 1.22 jtc return (error);
256 1.22 jtc
257 1.98 christos return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
258 1.56 manu }
259 1.56 manu
260 1.56 manu
261 1.56 manu int
262 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
263 1.56 manu {
264 1.60 manu struct timespec ats;
265 1.56 manu int error;
266 1.56 manu
267 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
268 1.60 manu return (error);
269 1.60 manu
270 1.61 simonb switch (clock_id) {
271 1.61 simonb case CLOCK_REALTIME:
272 1.98 christos if ((error = settime(p, &ats)) != 0)
273 1.61 simonb return (error);
274 1.61 simonb break;
275 1.61 simonb case CLOCK_MONOTONIC:
276 1.61 simonb return (EINVAL); /* read-only clock */
277 1.61 simonb default:
278 1.56 manu return (EINVAL);
279 1.61 simonb }
280 1.22 jtc
281 1.22 jtc return 0;
282 1.22 jtc }
283 1.22 jtc
284 1.22 jtc int
285 1.63 thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
286 1.22 jtc {
287 1.45 augustss struct sys_clock_getres_args /* {
288 1.22 jtc syscallarg(clockid_t) clock_id;
289 1.23 cgd syscallarg(struct timespec *) tp;
290 1.23 cgd } */ *uap = v;
291 1.22 jtc clockid_t clock_id;
292 1.22 jtc struct timespec ts;
293 1.22 jtc int error = 0;
294 1.22 jtc
295 1.22 jtc clock_id = SCARG(uap, clock_id);
296 1.61 simonb switch (clock_id) {
297 1.61 simonb case CLOCK_REALTIME:
298 1.61 simonb case CLOCK_MONOTONIC:
299 1.22 jtc ts.tv_sec = 0;
300 1.22 jtc ts.tv_nsec = 1000000000 / hz;
301 1.61 simonb break;
302 1.61 simonb default:
303 1.61 simonb return (EINVAL);
304 1.61 simonb }
305 1.22 jtc
306 1.61 simonb if (SCARG(uap, tp))
307 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
308 1.22 jtc
309 1.22 jtc return error;
310 1.22 jtc }
311 1.22 jtc
312 1.27 jtc /* ARGSUSED */
313 1.27 jtc int
314 1.63 thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
315 1.27 jtc {
316 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
317 1.98.6.1 simonb static int nanowait;
318 1.98.6.1 simonb struct sys_nanosleep_args/* {
319 1.98.6.1 simonb syscallarg(struct timespec *) rqtp;
320 1.98.6.1 simonb syscallarg(struct timespec *) rmtp;
321 1.98.6.1 simonb } */ *uap = v;
322 1.98.6.1 simonb struct timespec rmt, rqt;
323 1.98.6.1 simonb int error, timo;
324 1.98.6.1 simonb
325 1.98.6.1 simonb error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
326 1.98.6.1 simonb if (error)
327 1.98.6.1 simonb return (error);
328 1.98.6.1 simonb
329 1.98.6.1 simonb if (itimespecfix(&rqt))
330 1.98.6.1 simonb return (EINVAL);
331 1.98.6.1 simonb
332 1.98.6.1 simonb timo = tstohz(&rqt);
333 1.98.6.1 simonb /*
334 1.98.6.1 simonb * Avoid inadvertantly sleeping forever
335 1.98.6.1 simonb */
336 1.98.6.1 simonb if (timo == 0)
337 1.98.6.1 simonb timo = 1;
338 1.98.6.1 simonb
339 1.98.6.1 simonb error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
340 1.98.6.1 simonb if (error == ERESTART)
341 1.98.6.1 simonb error = EINTR;
342 1.98.6.1 simonb if (error == EWOULDBLOCK)
343 1.98.6.1 simonb error = 0;
344 1.98.6.1 simonb
345 1.98.6.1 simonb if (SCARG(uap, rmtp)) {
346 1.98.6.1 simonb int error1;
347 1.98.6.1 simonb
348 1.98.6.1 simonb getnanotime(&rmt);
349 1.98.6.1 simonb
350 1.98.6.1 simonb timespecsub(&rqt, &rmt, &rmt);
351 1.98.6.1 simonb if (rmt.tv_sec < 0)
352 1.98.6.1 simonb timespecclear(&rmt);
353 1.98.6.1 simonb
354 1.98.6.1 simonb error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
355 1.98.6.1 simonb sizeof(rmt));
356 1.98.6.1 simonb if (error1)
357 1.98.6.1 simonb return (error1);
358 1.98.6.1 simonb }
359 1.98.6.1 simonb
360 1.98.6.1 simonb return error;
361 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
362 1.27 jtc static int nanowait;
363 1.45 augustss struct sys_nanosleep_args/* {
364 1.27 jtc syscallarg(struct timespec *) rqtp;
365 1.27 jtc syscallarg(struct timespec *) rmtp;
366 1.27 jtc } */ *uap = v;
367 1.27 jtc struct timespec rqt;
368 1.27 jtc struct timespec rmt;
369 1.27 jtc struct timeval atv, utv;
370 1.27 jtc int error, s, timo;
371 1.27 jtc
372 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
373 1.27 jtc if (error)
374 1.27 jtc return (error);
375 1.27 jtc
376 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
377 1.80 christos if (itimerfix(&atv))
378 1.27 jtc return (EINVAL);
379 1.27 jtc
380 1.27 jtc s = splclock();
381 1.27 jtc timeradd(&atv,&time,&atv);
382 1.27 jtc timo = hzto(&atv);
383 1.63 thorpej /*
384 1.27 jtc * Avoid inadvertantly sleeping forever
385 1.27 jtc */
386 1.27 jtc if (timo == 0)
387 1.27 jtc timo = 1;
388 1.27 jtc splx(s);
389 1.27 jtc
390 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
391 1.27 jtc if (error == ERESTART)
392 1.27 jtc error = EINTR;
393 1.27 jtc if (error == EWOULDBLOCK)
394 1.27 jtc error = 0;
395 1.27 jtc
396 1.27 jtc if (SCARG(uap, rmtp)) {
397 1.89 christos int error1;
398 1.28 jtc
399 1.27 jtc s = splclock();
400 1.27 jtc utv = time;
401 1.27 jtc splx(s);
402 1.27 jtc
403 1.27 jtc timersub(&atv, &utv, &utv);
404 1.27 jtc if (utv.tv_sec < 0)
405 1.27 jtc timerclear(&utv);
406 1.27 jtc
407 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
408 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
409 1.28 jtc sizeof(rmt));
410 1.89 christos if (error1)
411 1.89 christos return (error1);
412 1.27 jtc }
413 1.27 jtc
414 1.27 jtc return error;
415 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
416 1.27 jtc }
417 1.22 jtc
418 1.1 cgd /* ARGSUSED */
419 1.3 andrew int
420 1.63 thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
421 1.15 thorpej {
422 1.45 augustss struct sys_gettimeofday_args /* {
423 1.11 cgd syscallarg(struct timeval *) tp;
424 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
425 1.15 thorpej } */ *uap = v;
426 1.1 cgd struct timeval atv;
427 1.1 cgd int error = 0;
428 1.25 perry struct timezone tzfake;
429 1.1 cgd
430 1.11 cgd if (SCARG(uap, tp)) {
431 1.1 cgd microtime(&atv);
432 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
433 1.17 christos if (error)
434 1.1 cgd return (error);
435 1.1 cgd }
436 1.25 perry if (SCARG(uap, tzp)) {
437 1.25 perry /*
438 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
439 1.25 perry * fake up a timezone struct and return it if demanded.
440 1.25 perry */
441 1.25 perry tzfake.tz_minuteswest = 0;
442 1.25 perry tzfake.tz_dsttime = 0;
443 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
444 1.25 perry }
445 1.1 cgd return (error);
446 1.1 cgd }
447 1.1 cgd
448 1.1 cgd /* ARGSUSED */
449 1.3 andrew int
450 1.63 thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
451 1.15 thorpej {
452 1.16 mycroft struct sys_settimeofday_args /* {
453 1.24 cgd syscallarg(const struct timeval *) tv;
454 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
455 1.15 thorpej } */ *uap = v;
456 1.63 thorpej struct proc *p = l->l_proc;
457 1.60 manu int error;
458 1.60 manu
459 1.60 manu if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
460 1.60 manu return (error);
461 1.60 manu
462 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
463 1.60 manu }
464 1.60 manu
465 1.60 manu int
466 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
467 1.90 thorpej struct proc *p)
468 1.60 manu {
469 1.22 jtc struct timeval atv;
470 1.98 christos struct timespec ts;
471 1.22 jtc int error;
472 1.1 cgd
473 1.8 cgd /* Verify all parameters before changing time. */
474 1.25 perry /*
475 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
476 1.25 perry * obsolete program would try to set it, so we log a warning.
477 1.25 perry */
478 1.98 christos if (utzp)
479 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
480 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
481 1.98 christos
482 1.98 christos if (utv == NULL)
483 1.98 christos return 0;
484 1.98 christos
485 1.98 christos if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
486 1.98 christos return error;
487 1.98 christos TIMEVAL_TO_TIMESPEC(&atv, &ts);
488 1.98 christos return settime(p, &ts);
489 1.1 cgd }
490 1.1 cgd
491 1.98.6.2 kardel #ifndef __HAVE_TIMECOUNTER
492 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
493 1.1 cgd long timedelta; /* unapplied time correction, us. */
494 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
495 1.98.6.2 kardel #endif
496 1.98.6.2 kardel
497 1.68 dsl int time_adjusted; /* set if an adjustment is made */
498 1.1 cgd
499 1.1 cgd /* ARGSUSED */
500 1.3 andrew int
501 1.63 thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
502 1.15 thorpej {
503 1.45 augustss struct sys_adjtime_args /* {
504 1.24 cgd syscallarg(const struct timeval *) delta;
505 1.11 cgd syscallarg(struct timeval *) olddelta;
506 1.15 thorpej } */ *uap = v;
507 1.63 thorpej struct proc *p = l->l_proc;
508 1.56 manu int error;
509 1.1 cgd
510 1.17 christos if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
511 1.1 cgd return (error);
512 1.17 christos
513 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
514 1.56 manu }
515 1.56 manu
516 1.56 manu int
517 1.90 thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
518 1.56 manu {
519 1.60 manu struct timeval atv;
520 1.98.6.2 kardel int error = 0;
521 1.98.6.2 kardel
522 1.98.6.2 kardel #ifdef __HAVE_TIMECOUNTER
523 1.98.6.2 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
524 1.98.6.2 kardel #else /* !__HAVE_TIMECOUNTER */
525 1.56 manu long ndelta, ntickdelta, odelta;
526 1.56 manu int s;
527 1.98.6.2 kardel #endif /* !__HAVE_TIMECOUNTER */
528 1.98.6.2 kardel
529 1.98.6.2 kardel #ifdef __HAVE_TIMECOUNTER
530 1.98.6.2 kardel if (olddelta) {
531 1.98.6.2 kardel atv.tv_sec = time_adjtime / 1000000;
532 1.98.6.2 kardel atv.tv_usec = time_adjtime % 1000000;
533 1.98.6.2 kardel if (atv.tv_usec < 0) {
534 1.98.6.2 kardel atv.tv_usec += 1000000;
535 1.98.6.2 kardel atv.tv_sec--;
536 1.98.6.2 kardel }
537 1.98.6.2 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
538 1.98.6.2 kardel if (error)
539 1.98.6.2 kardel return (error);
540 1.98.6.2 kardel }
541 1.98.6.2 kardel
542 1.98.6.2 kardel if (delta) {
543 1.98.6.2 kardel error = copyin(delta, &atv, sizeof(struct timeval));
544 1.98.6.2 kardel if (error)
545 1.98.6.2 kardel return (error);
546 1.98.6.2 kardel
547 1.98.6.2 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
548 1.98.6.2 kardel atv.tv_usec;
549 1.8 cgd
550 1.98.6.2 kardel if (time_adjtime)
551 1.98.6.2 kardel /* We need to save the system time during shutdown */
552 1.98.6.2 kardel time_adjusted |= 1;
553 1.98.6.2 kardel }
554 1.98.6.2 kardel #else /* !__HAVE_TIMECOUNTER */
555 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
556 1.60 manu if (error)
557 1.60 manu return (error);
558 1.60 manu
559 1.8 cgd /*
560 1.8 cgd * Compute the total correction and the rate at which to apply it.
561 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
562 1.8 cgd * delta, so that after some number of incremental changes in
563 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
564 1.8 cgd * overshoot and start taking us away from the desired final time.
565 1.8 cgd */
566 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
567 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
568 1.8 cgd ntickdelta = 10 * tickadj;
569 1.8 cgd else
570 1.8 cgd ntickdelta = tickadj;
571 1.8 cgd if (ndelta % ntickdelta)
572 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
573 1.8 cgd
574 1.8 cgd /*
575 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
576 1.8 cgd * if we want time to run slower; then hardclock can simply compute
577 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
578 1.8 cgd */
579 1.8 cgd if (ndelta < 0)
580 1.8 cgd ntickdelta = -ntickdelta;
581 1.68 dsl if (ndelta != 0)
582 1.68 dsl /* We need to save the system clock time during shutdown */
583 1.68 dsl time_adjusted |= 1;
584 1.1 cgd s = splclock();
585 1.8 cgd odelta = timedelta;
586 1.1 cgd timedelta = ndelta;
587 1.8 cgd tickdelta = ntickdelta;
588 1.1 cgd splx(s);
589 1.1 cgd
590 1.56 manu if (olddelta) {
591 1.60 manu atv.tv_sec = odelta / 1000000;
592 1.60 manu atv.tv_usec = odelta % 1000000;
593 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
594 1.8 cgd }
595 1.98.6.2 kardel #endif /* __HAVE_TIMECOUNTER */
596 1.98.6.2 kardel
597 1.79 chs return error;
598 1.1 cgd }
599 1.1 cgd
600 1.1 cgd /*
601 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
602 1.63 thorpej * timer_*() family of routines are supported.
603 1.1 cgd *
604 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
605 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
606 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
607 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
608 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
609 1.63 thorpej * syscall.
610 1.1 cgd *
611 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
612 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
613 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
614 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
615 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
616 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
617 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
618 1.63 thorpej * given below), to be delayed in real time past when it is supposed
619 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
620 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
621 1.63 thorpej * compute the next time in absolute time the timer should go off. */
622 1.63 thorpej
623 1.63 thorpej /* Allocate a POSIX realtime timer. */
624 1.63 thorpej int
625 1.63 thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
626 1.63 thorpej {
627 1.63 thorpej struct sys_timer_create_args /* {
628 1.63 thorpej syscallarg(clockid_t) clock_id;
629 1.63 thorpej syscallarg(struct sigevent *) evp;
630 1.63 thorpej syscallarg(timer_t *) timerid;
631 1.63 thorpej } */ *uap = v;
632 1.92 cube
633 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
634 1.92 cube SCARG(uap, evp), copyin, l->l_proc);
635 1.92 cube }
636 1.92 cube
637 1.92 cube int
638 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
639 1.95 cube copyin_t fetch_event, struct proc *p)
640 1.92 cube {
641 1.92 cube int error;
642 1.92 cube timer_t timerid;
643 1.63 thorpej struct ptimer *pt;
644 1.63 thorpej
645 1.63 thorpej if (id < CLOCK_REALTIME ||
646 1.63 thorpej id > CLOCK_PROF)
647 1.63 thorpej return (EINVAL);
648 1.63 thorpej
649 1.63 thorpej if (p->p_timers == NULL)
650 1.63 thorpej timers_alloc(p);
651 1.63 thorpej
652 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
653 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
654 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
655 1.63 thorpej break;
656 1.63 thorpej
657 1.63 thorpej if (timerid == TIMER_MAX)
658 1.63 thorpej return EAGAIN;
659 1.63 thorpej
660 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
661 1.63 thorpej if (evp) {
662 1.63 thorpej if (((error =
663 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
664 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
665 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
666 1.63 thorpej pool_put(&ptimer_pool, pt);
667 1.63 thorpej return (error ? error : EINVAL);
668 1.63 thorpej }
669 1.63 thorpej } else {
670 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
671 1.63 thorpej switch (id) {
672 1.63 thorpej case CLOCK_REALTIME:
673 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
674 1.63 thorpej break;
675 1.63 thorpej case CLOCK_VIRTUAL:
676 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
677 1.63 thorpej break;
678 1.63 thorpej case CLOCK_PROF:
679 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
680 1.63 thorpej break;
681 1.63 thorpej }
682 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
683 1.63 thorpej }
684 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
685 1.73 christos pt->pt_info.ksi_errno = 0;
686 1.73 christos pt->pt_info.ksi_code = 0;
687 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
688 1.73 christos pt->pt_info.ksi_uid = p->p_cred->p_ruid;
689 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
690 1.63 thorpej
691 1.63 thorpej pt->pt_type = id;
692 1.63 thorpej pt->pt_proc = p;
693 1.63 thorpej pt->pt_overruns = 0;
694 1.63 thorpej pt->pt_poverruns = 0;
695 1.64 nathanw pt->pt_entry = timerid;
696 1.63 thorpej timerclear(&pt->pt_time.it_value);
697 1.63 thorpej if (id == CLOCK_REALTIME)
698 1.63 thorpej callout_init(&pt->pt_ch);
699 1.63 thorpej else
700 1.63 thorpej pt->pt_active = 0;
701 1.63 thorpej
702 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
703 1.63 thorpej
704 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
705 1.63 thorpej }
706 1.63 thorpej
707 1.63 thorpej /* Delete a POSIX realtime timer */
708 1.3 andrew int
709 1.63 thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
710 1.15 thorpej {
711 1.63 thorpej struct sys_timer_delete_args /* {
712 1.63 thorpej syscallarg(timer_t) timerid;
713 1.15 thorpej } */ *uap = v;
714 1.63 thorpej struct proc *p = l->l_proc;
715 1.65 jdolecek timer_t timerid;
716 1.63 thorpej struct ptimer *pt, *ptn;
717 1.1 cgd int s;
718 1.1 cgd
719 1.63 thorpej timerid = SCARG(uap, timerid);
720 1.63 thorpej
721 1.63 thorpej if ((p->p_timers == NULL) ||
722 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
723 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
724 1.1 cgd return (EINVAL);
725 1.63 thorpej
726 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
727 1.63 thorpej callout_stop(&pt->pt_ch);
728 1.63 thorpej else if (pt->pt_active) {
729 1.63 thorpej s = splclock();
730 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
731 1.63 thorpej LIST_REMOVE(pt, pt_list);
732 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
733 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
734 1.63 thorpej &ptn->pt_time.it_value);
735 1.63 thorpej splx(s);
736 1.63 thorpej }
737 1.63 thorpej
738 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
739 1.63 thorpej pool_put(&ptimer_pool, pt);
740 1.63 thorpej
741 1.63 thorpej return (0);
742 1.63 thorpej }
743 1.63 thorpej
744 1.63 thorpej /*
745 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
746 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
747 1.67 nathanw * time for virtual timers.
748 1.63 thorpej * Must be called at splclock().
749 1.63 thorpej */
750 1.63 thorpej void
751 1.63 thorpej timer_settime(struct ptimer *pt)
752 1.63 thorpej {
753 1.63 thorpej struct ptimer *ptn, *pptn;
754 1.63 thorpej struct ptlist *ptl;
755 1.63 thorpej
756 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
757 1.63 thorpej callout_stop(&pt->pt_ch);
758 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
759 1.63 thorpej /*
760 1.63 thorpej * Don't need to check hzto() return value, here.
761 1.63 thorpej * callout_reset() does it for us.
762 1.63 thorpej */
763 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
764 1.63 thorpej realtimerexpire, pt);
765 1.63 thorpej }
766 1.63 thorpej } else {
767 1.63 thorpej if (pt->pt_active) {
768 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
769 1.63 thorpej LIST_REMOVE(pt, pt_list);
770 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
771 1.63 thorpej timeradd(&pt->pt_time.it_value,
772 1.63 thorpej &ptn->pt_time.it_value,
773 1.63 thorpej &ptn->pt_time.it_value);
774 1.63 thorpej }
775 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
776 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
777 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
778 1.63 thorpej else
779 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
780 1.63 thorpej
781 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
782 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
783 1.63 thorpej &ptn->pt_time.it_value, >);
784 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
785 1.63 thorpej timersub(&pt->pt_time.it_value,
786 1.63 thorpej &ptn->pt_time.it_value,
787 1.63 thorpej &pt->pt_time.it_value);
788 1.63 thorpej
789 1.63 thorpej if (pptn)
790 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
791 1.63 thorpej else
792 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
793 1.63 thorpej
794 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
795 1.63 thorpej timersub(&ptn->pt_time.it_value,
796 1.63 thorpej &pt->pt_time.it_value,
797 1.63 thorpej &ptn->pt_time.it_value);
798 1.63 thorpej
799 1.63 thorpej pt->pt_active = 1;
800 1.63 thorpej } else
801 1.63 thorpej pt->pt_active = 0;
802 1.63 thorpej }
803 1.63 thorpej }
804 1.63 thorpej
805 1.63 thorpej void
806 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
807 1.63 thorpej {
808 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
809 1.98.6.1 simonb struct timeval now;
810 1.98.6.1 simonb #endif
811 1.63 thorpej struct ptimer *ptn;
812 1.63 thorpej
813 1.63 thorpej *aitv = pt->pt_time;
814 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
815 1.1 cgd /*
816 1.12 mycroft * Convert from absolute to relative time in .it_value
817 1.63 thorpej * part of real time timer. If time for real time
818 1.63 thorpej * timer has passed return 0, else return difference
819 1.63 thorpej * between current time and time for the timer to go
820 1.63 thorpej * off.
821 1.1 cgd */
822 1.63 thorpej if (timerisset(&aitv->it_value)) {
823 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
824 1.98.6.1 simonb getmicrotime(&now);
825 1.98.6.1 simonb if (timercmp(&aitv->it_value, &now, <))
826 1.98.6.1 simonb timerclear(&aitv->it_value);
827 1.98.6.1 simonb else
828 1.98.6.1 simonb timersub(&aitv->it_value, &now,
829 1.98.6.1 simonb &aitv->it_value);
830 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
831 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
832 1.63 thorpej timerclear(&aitv->it_value);
833 1.1 cgd else
834 1.63 thorpej timersub(&aitv->it_value, &time,
835 1.63 thorpej &aitv->it_value);
836 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
837 1.36 thorpej }
838 1.63 thorpej } else if (pt->pt_active) {
839 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
840 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
841 1.63 thorpej else
842 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
843 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
844 1.63 thorpej timeradd(&aitv->it_value,
845 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
846 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
847 1.1 cgd } else
848 1.63 thorpej timerclear(&aitv->it_value);
849 1.63 thorpej }
850 1.63 thorpej
851 1.63 thorpej
852 1.63 thorpej
853 1.63 thorpej /* Set and arm a POSIX realtime timer */
854 1.63 thorpej int
855 1.63 thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
856 1.63 thorpej {
857 1.63 thorpej struct sys_timer_settime_args /* {
858 1.63 thorpej syscallarg(timer_t) timerid;
859 1.63 thorpej syscallarg(int) flags;
860 1.63 thorpej syscallarg(const struct itimerspec *) value;
861 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
862 1.63 thorpej } */ *uap = v;
863 1.92 cube int error;
864 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
865 1.92 cube
866 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
867 1.92 cube sizeof(struct itimerspec))) != 0)
868 1.92 cube return (error);
869 1.92 cube
870 1.92 cube if (SCARG(uap, ovalue))
871 1.92 cube ovp = &ovalue;
872 1.92 cube
873 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
874 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
875 1.92 cube return error;
876 1.92 cube
877 1.92 cube if (ovp)
878 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
879 1.92 cube sizeof(struct itimerspec));
880 1.92 cube return 0;
881 1.92 cube }
882 1.92 cube
883 1.92 cube int
884 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
885 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
886 1.92 cube {
887 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
888 1.98.6.1 simonb struct timeval now;
889 1.98.6.1 simonb #endif
890 1.63 thorpej struct itimerval val, oval;
891 1.63 thorpej struct ptimer *pt;
892 1.98.6.1 simonb int s;
893 1.63 thorpej
894 1.63 thorpej if ((p->p_timers == NULL) ||
895 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
896 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
897 1.63 thorpej return (EINVAL);
898 1.63 thorpej
899 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
900 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
901 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
902 1.63 thorpej return (EINVAL);
903 1.63 thorpej
904 1.63 thorpej oval = pt->pt_time;
905 1.63 thorpej pt->pt_time = val;
906 1.63 thorpej
907 1.63 thorpej s = splclock();
908 1.67 nathanw /*
909 1.67 nathanw * If we've been passed a relative time for a realtime timer,
910 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
911 1.67 nathanw * timer, convert it to relative and make sure we don't set it
912 1.67 nathanw * to zero, which would cancel the timer, or let it go
913 1.67 nathanw * negative, which would confuse the comparison tests.
914 1.67 nathanw */
915 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
916 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
917 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
918 1.98.6.1 simonb if ((flags & TIMER_ABSTIME) == 0) {
919 1.98.6.1 simonb getmicrotime(&now);
920 1.98.6.1 simonb timeradd(&pt->pt_time.it_value, &now,
921 1.98.6.1 simonb &pt->pt_time.it_value);
922 1.98.6.1 simonb }
923 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
924 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
925 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
926 1.67 nathanw &pt->pt_time.it_value);
927 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
928 1.67 nathanw } else {
929 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
930 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
931 1.98.6.1 simonb getmicrotime(&now);
932 1.98.6.1 simonb timersub(&pt->pt_time.it_value, &now,
933 1.98.6.1 simonb &pt->pt_time.it_value);
934 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
935 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
936 1.67 nathanw &pt->pt_time.it_value);
937 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
938 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
939 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
940 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
941 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
942 1.67 nathanw }
943 1.67 nathanw }
944 1.67 nathanw }
945 1.67 nathanw }
946 1.67 nathanw
947 1.63 thorpej timer_settime(pt);
948 1.63 thorpej splx(s);
949 1.63 thorpej
950 1.92 cube if (ovalue) {
951 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
952 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
953 1.63 thorpej }
954 1.63 thorpej
955 1.63 thorpej return (0);
956 1.63 thorpej }
957 1.63 thorpej
958 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
959 1.63 thorpej int
960 1.63 thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
961 1.63 thorpej {
962 1.63 thorpej struct sys_timer_gettime_args /* {
963 1.63 thorpej syscallarg(timer_t) timerid;
964 1.63 thorpej syscallarg(struct itimerspec *) value;
965 1.63 thorpej } */ *uap = v;
966 1.63 thorpej struct itimerspec its;
967 1.92 cube int error;
968 1.92 cube
969 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
970 1.92 cube &its)) != 0)
971 1.92 cube return error;
972 1.92 cube
973 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
974 1.92 cube }
975 1.92 cube
976 1.92 cube int
977 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
978 1.92 cube {
979 1.92 cube int s;
980 1.63 thorpej struct ptimer *pt;
981 1.92 cube struct itimerval aitv;
982 1.63 thorpej
983 1.63 thorpej if ((p->p_timers == NULL) ||
984 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
985 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
986 1.63 thorpej return (EINVAL);
987 1.63 thorpej
988 1.63 thorpej s = splclock();
989 1.63 thorpej timer_gettime(pt, &aitv);
990 1.1 cgd splx(s);
991 1.63 thorpej
992 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
993 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
994 1.63 thorpej
995 1.92 cube return 0;
996 1.63 thorpej }
997 1.63 thorpej
998 1.63 thorpej /*
999 1.63 thorpej * Return the count of the number of times a periodic timer expired
1000 1.63 thorpej * while a notification was already pending. The counter is reset when
1001 1.63 thorpej * a timer expires and a notification can be posted.
1002 1.63 thorpej */
1003 1.63 thorpej int
1004 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1005 1.63 thorpej {
1006 1.63 thorpej struct sys_timer_getoverrun_args /* {
1007 1.63 thorpej syscallarg(timer_t) timerid;
1008 1.63 thorpej } */ *uap = v;
1009 1.63 thorpej struct proc *p = l->l_proc;
1010 1.63 thorpej int timerid;
1011 1.63 thorpej struct ptimer *pt;
1012 1.63 thorpej
1013 1.63 thorpej timerid = SCARG(uap, timerid);
1014 1.63 thorpej
1015 1.63 thorpej if ((p->p_timers == NULL) ||
1016 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1017 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1018 1.63 thorpej return (EINVAL);
1019 1.63 thorpej
1020 1.63 thorpej *retval = pt->pt_poverruns;
1021 1.63 thorpej
1022 1.63 thorpej return (0);
1023 1.63 thorpej }
1024 1.63 thorpej
1025 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
1026 1.63 thorpej static void
1027 1.63 thorpej timerupcall(struct lwp *l, void *arg)
1028 1.63 thorpej {
1029 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
1030 1.64 nathanw unsigned int i, fired, done;
1031 1.74 cl
1032 1.81 cl KDASSERT(l->l_proc->p_sa);
1033 1.81 cl /* Bail out if we do not own the virtual processor */
1034 1.82 cl if (l->l_savp->savp_lwp != l)
1035 1.81 cl return ;
1036 1.87 perry
1037 1.63 thorpej KERNEL_PROC_LOCK(l);
1038 1.71 fvdl
1039 1.64 nathanw fired = pt->pts_fired;
1040 1.64 nathanw done = 0;
1041 1.64 nathanw while ((i = ffs(fired)) != 0) {
1042 1.74 cl siginfo_t *si;
1043 1.73 christos int mask = 1 << --i;
1044 1.74 cl int f;
1045 1.73 christos
1046 1.74 cl f = l->l_flag & L_SA;
1047 1.74 cl l->l_flag &= ~L_SA;
1048 1.94 chs si = siginfo_alloc(PR_WAITOK);
1049 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1050 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1051 1.94 chs sizeof(*si), si, siginfo_free) != 0) {
1052 1.94 chs siginfo_free(si);
1053 1.86 mycroft /* XXX What do we do here?? */
1054 1.86 mycroft } else
1055 1.73 christos done |= mask;
1056 1.73 christos fired &= ~mask;
1057 1.74 cl l->l_flag |= f;
1058 1.64 nathanw }
1059 1.64 nathanw pt->pts_fired &= ~done;
1060 1.64 nathanw if (pt->pts_fired == 0)
1061 1.63 thorpej l->l_proc->p_userret = NULL;
1062 1.63 thorpej
1063 1.63 thorpej KERNEL_PROC_UNLOCK(l);
1064 1.63 thorpej }
1065 1.63 thorpej
1066 1.63 thorpej /*
1067 1.63 thorpej * Real interval timer expired:
1068 1.63 thorpej * send process whose timer expired an alarm signal.
1069 1.63 thorpej * If time is not set up to reload, then just return.
1070 1.63 thorpej * Else compute next time timer should go off which is > current time.
1071 1.63 thorpej * This is where delay in processing this timeout causes multiple
1072 1.63 thorpej * SIGALRM calls to be compressed into one.
1073 1.63 thorpej */
1074 1.63 thorpej void
1075 1.63 thorpej realtimerexpire(void *arg)
1076 1.63 thorpej {
1077 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1078 1.98.6.1 simonb struct timeval now;
1079 1.98.6.1 simonb #endif
1080 1.63 thorpej struct ptimer *pt;
1081 1.63 thorpej int s;
1082 1.63 thorpej
1083 1.63 thorpej pt = (struct ptimer *)arg;
1084 1.63 thorpej
1085 1.63 thorpej itimerfire(pt);
1086 1.63 thorpej
1087 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1088 1.63 thorpej timerclear(&pt->pt_time.it_value);
1089 1.63 thorpej return;
1090 1.63 thorpej }
1091 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1092 1.98.6.1 simonb for (;;) {
1093 1.98.6.1 simonb s = splclock(); /* XXX need spl now? */
1094 1.98.6.1 simonb timeradd(&pt->pt_time.it_value,
1095 1.98.6.1 simonb &pt->pt_time.it_interval, &pt->pt_time.it_value);
1096 1.98.6.1 simonb getmicrotime(&now);
1097 1.98.6.1 simonb if (timercmp(&pt->pt_time.it_value, &now, >)) {
1098 1.98.6.1 simonb /*
1099 1.98.6.1 simonb * Don't need to check hzto() return value, here.
1100 1.98.6.1 simonb * callout_reset() does it for us.
1101 1.98.6.1 simonb */
1102 1.98.6.1 simonb callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1103 1.98.6.1 simonb realtimerexpire, pt);
1104 1.98.6.1 simonb splx(s);
1105 1.98.6.1 simonb return;
1106 1.98.6.1 simonb }
1107 1.98.6.1 simonb splx(s);
1108 1.98.6.1 simonb pt->pt_overruns++;
1109 1.98.6.1 simonb }
1110 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1111 1.63 thorpej for (;;) {
1112 1.63 thorpej s = splclock();
1113 1.63 thorpej timeradd(&pt->pt_time.it_value,
1114 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1115 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1116 1.63 thorpej /*
1117 1.63 thorpej * Don't need to check hzto() return value, here.
1118 1.63 thorpej * callout_reset() does it for us.
1119 1.63 thorpej */
1120 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1121 1.63 thorpej realtimerexpire, pt);
1122 1.63 thorpej splx(s);
1123 1.63 thorpej return;
1124 1.63 thorpej }
1125 1.63 thorpej splx(s);
1126 1.63 thorpej pt->pt_overruns++;
1127 1.63 thorpej }
1128 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1129 1.63 thorpej }
1130 1.63 thorpej
1131 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1132 1.63 thorpej /* ARGSUSED */
1133 1.63 thorpej int
1134 1.63 thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
1135 1.63 thorpej {
1136 1.63 thorpej struct sys_getitimer_args /* {
1137 1.63 thorpej syscallarg(int) which;
1138 1.63 thorpej syscallarg(struct itimerval *) itv;
1139 1.63 thorpej } */ *uap = v;
1140 1.63 thorpej struct proc *p = l->l_proc;
1141 1.63 thorpej struct itimerval aitv;
1142 1.91 cube int error;
1143 1.91 cube
1144 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1145 1.91 cube if (error)
1146 1.91 cube return error;
1147 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1148 1.91 cube }
1149 1.63 thorpej
1150 1.91 cube int
1151 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1152 1.91 cube {
1153 1.91 cube int s;
1154 1.63 thorpej
1155 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1156 1.63 thorpej return (EINVAL);
1157 1.63 thorpej
1158 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1159 1.91 cube timerclear(&itvp->it_value);
1160 1.91 cube timerclear(&itvp->it_interval);
1161 1.63 thorpej } else {
1162 1.63 thorpej s = splclock();
1163 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1164 1.63 thorpej splx(s);
1165 1.63 thorpej }
1166 1.63 thorpej
1167 1.91 cube return 0;
1168 1.1 cgd }
1169 1.1 cgd
1170 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1171 1.1 cgd /* ARGSUSED */
1172 1.3 andrew int
1173 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1174 1.15 thorpej {
1175 1.45 augustss struct sys_setitimer_args /* {
1176 1.30 mycroft syscallarg(int) which;
1177 1.24 cgd syscallarg(const struct itimerval *) itv;
1178 1.11 cgd syscallarg(struct itimerval *) oitv;
1179 1.15 thorpej } */ *uap = v;
1180 1.63 thorpej struct proc *p = l->l_proc;
1181 1.30 mycroft int which = SCARG(uap, which);
1182 1.21 cgd struct sys_getitimer_args getargs;
1183 1.91 cube const struct itimerval *itvp;
1184 1.1 cgd struct itimerval aitv;
1185 1.91 cube int error;
1186 1.1 cgd
1187 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1188 1.1 cgd return (EINVAL);
1189 1.11 cgd itvp = SCARG(uap, itv);
1190 1.63 thorpej if (itvp &&
1191 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1192 1.1 cgd return (error);
1193 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1194 1.30 mycroft SCARG(&getargs, which) = which;
1195 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1196 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1197 1.21 cgd return (error);
1198 1.21 cgd }
1199 1.1 cgd if (itvp == 0)
1200 1.1 cgd return (0);
1201 1.91 cube
1202 1.91 cube return dosetitimer(p, which, &aitv);
1203 1.91 cube }
1204 1.91 cube
1205 1.91 cube int
1206 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1207 1.91 cube {
1208 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1209 1.98.6.1 simonb struct timeval now;
1210 1.98.6.1 simonb #endif
1211 1.91 cube struct ptimer *pt;
1212 1.91 cube int s;
1213 1.91 cube
1214 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1215 1.1 cgd return (EINVAL);
1216 1.63 thorpej
1217 1.63 thorpej /*
1218 1.63 thorpej * Don't bother allocating data structures if the process just
1219 1.63 thorpej * wants to clear the timer.
1220 1.63 thorpej */
1221 1.91 cube if (!timerisset(&itvp->it_value) &&
1222 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1223 1.63 thorpej return (0);
1224 1.63 thorpej
1225 1.63 thorpej if (p->p_timers == NULL)
1226 1.63 thorpej timers_alloc(p);
1227 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1228 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1229 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1230 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1231 1.63 thorpej pt->pt_overruns = 0;
1232 1.63 thorpej pt->pt_proc = p;
1233 1.63 thorpej pt->pt_type = which;
1234 1.64 nathanw pt->pt_entry = which;
1235 1.63 thorpej switch (which) {
1236 1.63 thorpej case ITIMER_REAL:
1237 1.63 thorpej callout_init(&pt->pt_ch);
1238 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1239 1.63 thorpej break;
1240 1.63 thorpej case ITIMER_VIRTUAL:
1241 1.63 thorpej pt->pt_active = 0;
1242 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1243 1.63 thorpej break;
1244 1.63 thorpej case ITIMER_PROF:
1245 1.63 thorpej pt->pt_active = 0;
1246 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1247 1.63 thorpej break;
1248 1.1 cgd }
1249 1.1 cgd } else
1250 1.63 thorpej pt = p->p_timers->pts_timers[which];
1251 1.63 thorpej
1252 1.91 cube pt->pt_time = *itvp;
1253 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1254 1.63 thorpej
1255 1.63 thorpej s = splclock();
1256 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1257 1.67 nathanw /* Convert to absolute time */
1258 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1259 1.98.6.1 simonb /* XXX need to wrap in splclock for timecounters case? */
1260 1.98.6.1 simonb getmicrotime(&now);
1261 1.98.6.1 simonb timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1262 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1263 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1264 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1265 1.67 nathanw }
1266 1.63 thorpej timer_settime(pt);
1267 1.1 cgd splx(s);
1268 1.63 thorpej
1269 1.1 cgd return (0);
1270 1.1 cgd }
1271 1.1 cgd
1272 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1273 1.63 thorpej void
1274 1.63 thorpej timers_alloc(struct proc *p)
1275 1.63 thorpej {
1276 1.63 thorpej int i;
1277 1.63 thorpej struct ptimers *pts;
1278 1.63 thorpej
1279 1.97 simonb pts = pool_get(&ptimers_pool, 0);
1280 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1281 1.63 thorpej LIST_INIT(&pts->pts_prof);
1282 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1283 1.63 thorpej pts->pts_timers[i] = NULL;
1284 1.64 nathanw pts->pts_fired = 0;
1285 1.63 thorpej p->p_timers = pts;
1286 1.63 thorpej }
1287 1.63 thorpej
1288 1.1 cgd /*
1289 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1290 1.63 thorpej * then clean up all timers and free all the data structures. If
1291 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1292 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1293 1.63 thorpej * structure if none of those remain.
1294 1.1 cgd */
1295 1.3 andrew void
1296 1.63 thorpej timers_free(struct proc *p, int which)
1297 1.6 cgd {
1298 1.63 thorpej int i, s;
1299 1.63 thorpej struct ptimers *pts;
1300 1.63 thorpej struct ptimer *pt, *ptn;
1301 1.63 thorpej struct timeval tv;
1302 1.63 thorpej
1303 1.63 thorpej if (p->p_timers) {
1304 1.63 thorpej pts = p->p_timers;
1305 1.63 thorpej if (which == TIMERS_ALL)
1306 1.63 thorpej i = 0;
1307 1.63 thorpej else {
1308 1.63 thorpej s = splclock();
1309 1.63 thorpej timerclear(&tv);
1310 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1311 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1312 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1313 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1314 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1315 1.63 thorpej if (ptn) {
1316 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1317 1.63 thorpej &ptn->pt_time.it_value);
1318 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1319 1.63 thorpej ptn, pt_list);
1320 1.63 thorpej }
1321 1.63 thorpej
1322 1.63 thorpej timerclear(&tv);
1323 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1324 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1325 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1326 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1327 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1328 1.63 thorpej if (ptn) {
1329 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1330 1.63 thorpej &ptn->pt_time.it_value);
1331 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1332 1.63 thorpej pt_list);
1333 1.63 thorpej }
1334 1.1 cgd splx(s);
1335 1.63 thorpej i = 3;
1336 1.63 thorpej }
1337 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1338 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1339 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1340 1.63 thorpej callout_stop(&pt->pt_ch);
1341 1.63 thorpej pts->pts_timers[i] = NULL;
1342 1.63 thorpej pool_put(&ptimer_pool, pt);
1343 1.63 thorpej }
1344 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1345 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1346 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1347 1.63 thorpej p->p_timers = NULL;
1348 1.97 simonb pool_put(&ptimers_pool, pts);
1349 1.1 cgd }
1350 1.1 cgd }
1351 1.1 cgd }
1352 1.1 cgd
1353 1.1 cgd /*
1354 1.1 cgd * Check that a proposed value to load into the .it_value or
1355 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1356 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1357 1.1 cgd * than the resolution of the clock, round it up.)
1358 1.1 cgd */
1359 1.3 andrew int
1360 1.63 thorpej itimerfix(struct timeval *tv)
1361 1.1 cgd {
1362 1.1 cgd
1363 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1364 1.1 cgd return (EINVAL);
1365 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1366 1.1 cgd tv->tv_usec = tick;
1367 1.1 cgd return (0);
1368 1.1 cgd }
1369 1.1 cgd
1370 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1371 1.98.6.1 simonb int
1372 1.98.6.1 simonb itimespecfix(struct timespec *ts)
1373 1.98.6.1 simonb {
1374 1.98.6.1 simonb
1375 1.98.6.1 simonb if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1376 1.98.6.1 simonb return (EINVAL);
1377 1.98.6.1 simonb if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1378 1.98.6.1 simonb ts->tv_nsec = tick * 1000;
1379 1.98.6.1 simonb return (0);
1380 1.98.6.1 simonb }
1381 1.98.6.1 simonb #endif /* __HAVE_TIMECOUNTER */
1382 1.98.6.1 simonb
1383 1.1 cgd /*
1384 1.1 cgd * Decrement an interval timer by a specified number
1385 1.1 cgd * of microseconds, which must be less than a second,
1386 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1387 1.1 cgd * it. In this case, carry over (usec - old value) to
1388 1.8 cgd * reduce the value reloaded into the timer so that
1389 1.1 cgd * the timer does not drift. This routine assumes
1390 1.1 cgd * that it is called in a context where the timers
1391 1.1 cgd * on which it is operating cannot change in value.
1392 1.1 cgd */
1393 1.3 andrew int
1394 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1395 1.63 thorpej {
1396 1.45 augustss struct itimerval *itp;
1397 1.1 cgd
1398 1.63 thorpej itp = &pt->pt_time;
1399 1.1 cgd if (itp->it_value.tv_usec < usec) {
1400 1.1 cgd if (itp->it_value.tv_sec == 0) {
1401 1.1 cgd /* expired, and already in next interval */
1402 1.1 cgd usec -= itp->it_value.tv_usec;
1403 1.1 cgd goto expire;
1404 1.1 cgd }
1405 1.1 cgd itp->it_value.tv_usec += 1000000;
1406 1.1 cgd itp->it_value.tv_sec--;
1407 1.1 cgd }
1408 1.1 cgd itp->it_value.tv_usec -= usec;
1409 1.1 cgd usec = 0;
1410 1.1 cgd if (timerisset(&itp->it_value))
1411 1.1 cgd return (1);
1412 1.1 cgd /* expired, exactly at end of interval */
1413 1.1 cgd expire:
1414 1.1 cgd if (timerisset(&itp->it_interval)) {
1415 1.1 cgd itp->it_value = itp->it_interval;
1416 1.1 cgd itp->it_value.tv_usec -= usec;
1417 1.1 cgd if (itp->it_value.tv_usec < 0) {
1418 1.1 cgd itp->it_value.tv_usec += 1000000;
1419 1.1 cgd itp->it_value.tv_sec--;
1420 1.1 cgd }
1421 1.63 thorpej timer_settime(pt);
1422 1.1 cgd } else
1423 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1424 1.1 cgd return (0);
1425 1.42 cgd }
1426 1.42 cgd
1427 1.63 thorpej void
1428 1.63 thorpej itimerfire(struct ptimer *pt)
1429 1.63 thorpej {
1430 1.63 thorpej struct proc *p = pt->pt_proc;
1431 1.82 cl struct sadata_vp *vp;
1432 1.64 nathanw int s;
1433 1.82 cl unsigned int i;
1434 1.78 cl
1435 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1436 1.63 thorpej /*
1437 1.63 thorpej * No RT signal infrastructure exists at this time;
1438 1.63 thorpej * just post the signal number and throw away the
1439 1.63 thorpej * value.
1440 1.63 thorpej */
1441 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1442 1.63 thorpej pt->pt_overruns++;
1443 1.63 thorpej else {
1444 1.75 christos ksiginfo_t ksi;
1445 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1446 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1447 1.75 christos ksi.ksi_code = SI_TIMER;
1448 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1449 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1450 1.63 thorpej pt->pt_overruns = 0;
1451 1.75 christos kpsignal(p, &ksi, NULL);
1452 1.63 thorpej }
1453 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1454 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1455 1.63 thorpej
1456 1.63 thorpej if (p->p_userret == NULL) {
1457 1.70 nathanw /*
1458 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1459 1.70 nathanw * which can be inside sa_yield's inner loop, which
1460 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1461 1.70 nathanw * determine if we really should call setrunnable.
1462 1.70 nathanw */
1463 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1464 1.63 thorpej pt->pt_overruns = 0;
1465 1.64 nathanw i = 1 << pt->pt_entry;
1466 1.64 nathanw p->p_timers->pts_fired = i;
1467 1.63 thorpej p->p_userret = timerupcall;
1468 1.64 nathanw p->p_userret_arg = p->p_timers;
1469 1.87 perry
1470 1.78 cl SCHED_LOCK(s);
1471 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1472 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1473 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1474 1.82 cl sched_wakeup(vp->savp_lwp);
1475 1.82 cl break;
1476 1.82 cl }
1477 1.78 cl }
1478 1.78 cl SCHED_UNLOCK(s);
1479 1.64 nathanw } else if (p->p_userret == timerupcall) {
1480 1.64 nathanw i = 1 << pt->pt_entry;
1481 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1482 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1483 1.64 nathanw pt->pt_overruns = 0;
1484 1.66 jdolecek p->p_timers->pts_fired |= i;
1485 1.64 nathanw } else
1486 1.64 nathanw pt->pt_overruns++;
1487 1.64 nathanw } else {
1488 1.63 thorpej pt->pt_overruns++;
1489 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1490 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1491 1.78 cl p->p_pid, pt->pt_overruns,
1492 1.78 cl pt->pt_ev.sigev_value.sival_int,
1493 1.78 cl p->p_userret);
1494 1.64 nathanw }
1495 1.63 thorpej }
1496 1.63 thorpej
1497 1.63 thorpej }
1498 1.63 thorpej
1499 1.42 cgd /*
1500 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1501 1.42 cgd * for usage and rationale.
1502 1.42 cgd */
1503 1.42 cgd int
1504 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1505 1.42 cgd {
1506 1.49 itojun struct timeval tv, delta;
1507 1.98.6.1 simonb int rv = 0;
1508 1.98.6.1 simonb #ifndef __HAVE_TIMECOUNTER
1509 1.98.6.1 simonb int s;
1510 1.98.6.1 simonb #endif
1511 1.42 cgd
1512 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1513 1.98.6.1 simonb getmicrouptime(&tv);
1514 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1515 1.63 thorpej s = splclock();
1516 1.49 itojun tv = mono_time;
1517 1.49 itojun splx(s);
1518 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1519 1.49 itojun timersub(&tv, lasttime, &delta);
1520 1.42 cgd
1521 1.42 cgd /*
1522 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1523 1.42 cgd * even if interval is huge.
1524 1.42 cgd */
1525 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1526 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1527 1.49 itojun *lasttime = tv;
1528 1.42 cgd rv = 1;
1529 1.42 cgd }
1530 1.50 itojun
1531 1.50 itojun return (rv);
1532 1.50 itojun }
1533 1.50 itojun
1534 1.50 itojun /*
1535 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1536 1.50 itojun */
1537 1.50 itojun int
1538 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1539 1.50 itojun {
1540 1.50 itojun struct timeval tv, delta;
1541 1.98.6.1 simonb int rv;
1542 1.98.6.1 simonb #ifndef __HAVE_TIMECOUNTER
1543 1.98.6.1 simonb int s;
1544 1.98.6.1 simonb #endif
1545 1.50 itojun
1546 1.98.6.1 simonb #ifdef __HAVE_TIMECOUNTER
1547 1.98.6.1 simonb getmicrouptime(&tv);
1548 1.98.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1549 1.63 thorpej s = splclock();
1550 1.50 itojun tv = mono_time;
1551 1.50 itojun splx(s);
1552 1.98.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1553 1.50 itojun timersub(&tv, lasttime, &delta);
1554 1.50 itojun
1555 1.50 itojun /*
1556 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1557 1.50 itojun * if more than one second have passed since the last update of
1558 1.50 itojun * lasttime, reset the counter.
1559 1.50 itojun *
1560 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1561 1.50 itojun * try to use *curpps for stat purposes as well.
1562 1.50 itojun */
1563 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1564 1.50 itojun delta.tv_sec >= 1) {
1565 1.50 itojun *lasttime = tv;
1566 1.50 itojun *curpps = 0;
1567 1.69 dyoung }
1568 1.69 dyoung if (maxpps < 0)
1569 1.53 itojun rv = 1;
1570 1.53 itojun else if (*curpps < maxpps)
1571 1.50 itojun rv = 1;
1572 1.50 itojun else
1573 1.50 itojun rv = 0;
1574 1.50 itojun
1575 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1576 1.50 itojun /* be careful about wrap-around */
1577 1.50 itojun if (*curpps + 1 > *curpps)
1578 1.50 itojun *curpps = *curpps + 1;
1579 1.50 itojun #else
1580 1.50 itojun /*
1581 1.50 itojun * assume that there's not too many calls to this function.
1582 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1583 1.50 itojun * behavior, not the behavior of this function.
1584 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1585 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1586 1.50 itojun */
1587 1.50 itojun *curpps = *curpps + 1;
1588 1.50 itojun #endif
1589 1.42 cgd
1590 1.42 cgd return (rv);
1591 1.1 cgd }
1592