Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.99
      1  1.99      elad /*	$NetBSD: kern_time.c,v 1.99 2006/05/14 21:15:11 elad Exp $	*/
      2  1.42       cgd 
      3  1.42       cgd /*-
      4  1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  1.42       cgd  * All rights reserved.
      6  1.42       cgd  *
      7  1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8  1.42       cgd  * by Christopher G. Demetriou.
      9  1.42       cgd  *
     10  1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11  1.42       cgd  * modification, are permitted provided that the following conditions
     12  1.42       cgd  * are met:
     13  1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18  1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19  1.42       cgd  *    must display the following acknowledgement:
     20  1.42       cgd  *	This product includes software developed by the NetBSD
     21  1.42       cgd  *	Foundation, Inc. and its contributors.
     22  1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.42       cgd  *    contributors may be used to endorse or promote products derived
     24  1.42       cgd  *    from this software without specific prior written permission.
     25  1.42       cgd  *
     26  1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37  1.42       cgd  */
     38   1.9       cgd 
     39   1.1       cgd /*
     40   1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41   1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42   1.1       cgd  *
     43   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44   1.1       cgd  * modification, are permitted provided that the following conditions
     45   1.1       cgd  * are met:
     46   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51  1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52   1.1       cgd  *    may be used to endorse or promote products derived from this software
     53   1.1       cgd  *    without specific prior written permission.
     54   1.1       cgd  *
     55   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.1       cgd  * SUCH DAMAGE.
     66   1.1       cgd  *
     67  1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68   1.1       cgd  */
     69  1.58     lukem 
     70  1.58     lukem #include <sys/cdefs.h>
     71  1.99      elad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.99 2006/05/14 21:15:11 elad Exp $");
     72  1.31   thorpej 
     73  1.31   thorpej #include "fs_nfs.h"
     74  1.54     bjh21 #include "opt_nfs.h"
     75  1.34   thorpej #include "opt_nfsserver.h"
     76   1.1       cgd 
     77   1.5   mycroft #include <sys/param.h>
     78   1.5   mycroft #include <sys/resourcevar.h>
     79   1.5   mycroft #include <sys/kernel.h>
     80   1.8       cgd #include <sys/systm.h>
     81   1.5   mycroft #include <sys/proc.h>
     82  1.63   thorpej #include <sys/sa.h>
     83  1.63   thorpej #include <sys/savar.h>
     84   1.8       cgd #include <sys/vnode.h>
     85  1.17  christos #include <sys/signalvar.h>
     86  1.25     perry #include <sys/syslog.h>
     87  1.95      cube #include <sys/timevar.h>
     88  1.99      elad #include <sys/kauth.h>
     89   1.1       cgd 
     90  1.11       cgd #include <sys/mount.h>
     91  1.11       cgd #include <sys/syscallargs.h>
     92  1.19  christos 
     93  1.37   thorpej #include <uvm/uvm_extern.h>
     94  1.37   thorpej 
     95  1.26   thorpej #if defined(NFS) || defined(NFSSERVER)
     96  1.20      fvdl #include <nfs/rpcv2.h>
     97  1.20      fvdl #include <nfs/nfsproto.h>
     98  1.93      jmmv #include <nfs/nfs.h>
     99  1.19  christos #include <nfs/nfs_var.h>
    100  1.19  christos #endif
    101  1.17  christos 
    102   1.5   mycroft #include <machine/cpu.h>
    103  1.23       cgd 
    104  1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    105  1.97    simonb     &pool_allocator_nointr);
    106  1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    107  1.97    simonb     &pool_allocator_nointr);
    108  1.97    simonb 
    109  1.63   thorpej static void timerupcall(struct lwp *, void *);
    110  1.63   thorpej 
    111  1.63   thorpej /* Time of day and interval timer support.
    112   1.1       cgd  *
    113   1.1       cgd  * These routines provide the kernel entry points to get and set
    114   1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    115   1.1       cgd  * here provide support for adding and subtracting timeval structures
    116   1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    117   1.1       cgd  * timers when they expire.
    118   1.1       cgd  */
    119   1.1       cgd 
    120  1.22       jtc /* This function is used by clock_settime and settimeofday */
    121  1.39      tron int
    122  1.98  christos settime(struct proc *p, struct timespec *ts)
    123  1.22       jtc {
    124  1.98  christos 	struct timeval delta, tv;
    125  1.47   thorpej 	struct cpu_info *ci;
    126  1.22       jtc 	int s;
    127  1.22       jtc 
    128  1.98  christos 	/*
    129  1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    130  1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    131  1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    132  1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    133  1.98  christos 	 * the time past the cutoff, it will take a very long time
    134  1.98  christos 	 * to get to the wrap point.
    135  1.98  christos 	 *
    136  1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    137  1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    138  1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    139  1.98  christos 	 */
    140  1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    141  1.98  christos 		struct proc *pp = p->p_pptr;
    142  1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    143  1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    144  1.98  christos 		    "tried to set clock forward to %ld\n",
    145  1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    146  1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    147  1.98  christos 		return (EPERM);
    148  1.98  christos 	}
    149  1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    150  1.98  christos 
    151  1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    152  1.22       jtc 	s = splclock();
    153  1.98  christos 	timersub(&tv, &time, &delta);
    154  1.55      tron 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    155  1.55      tron 		splx(s);
    156  1.29       tls 		return (EPERM);
    157  1.55      tron 	}
    158  1.29       tls #ifdef notyet
    159  1.55      tron 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    160  1.55      tron 		splx(s);
    161  1.29       tls 		return (EPERM);
    162  1.55      tron 	}
    163  1.29       tls #endif
    164  1.98  christos 	time = tv;
    165  1.38   thorpej 	(void) spllowersoftclock();
    166  1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    167  1.47   thorpej 	/*
    168  1.47   thorpej 	 * XXXSMP
    169  1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    170  1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    171  1.47   thorpej 	 * CPUs which have a process on them.
    172  1.47   thorpej 	 */
    173  1.47   thorpej 	ci = curcpu();
    174  1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    175  1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    176  1.54     bjh21 #	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    177  1.22       jtc 		nqnfs_lease_updatetime(delta.tv_sec);
    178  1.22       jtc #	endif
    179  1.22       jtc 	splx(s);
    180  1.22       jtc 	resettodr();
    181  1.29       tls 	return (0);
    182  1.22       jtc }
    183  1.22       jtc 
    184  1.22       jtc /* ARGSUSED */
    185  1.22       jtc int
    186  1.63   thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    187  1.22       jtc {
    188  1.45  augustss 	struct sys_clock_gettime_args /* {
    189  1.22       jtc 		syscallarg(clockid_t) clock_id;
    190  1.23       cgd 		syscallarg(struct timespec *) tp;
    191  1.23       cgd 	} */ *uap = v;
    192  1.22       jtc 	clockid_t clock_id;
    193  1.22       jtc 	struct timeval atv;
    194  1.22       jtc 	struct timespec ats;
    195  1.61    simonb 	int s;
    196  1.22       jtc 
    197  1.22       jtc 	clock_id = SCARG(uap, clock_id);
    198  1.61    simonb 	switch (clock_id) {
    199  1.61    simonb 	case CLOCK_REALTIME:
    200  1.96    simonb 		nanotime(&ats);
    201  1.61    simonb 		break;
    202  1.61    simonb 	case CLOCK_MONOTONIC:
    203  1.61    simonb 		/* XXX "hz" granularity */
    204  1.63   thorpej 		s = splclock();
    205  1.61    simonb 		atv = mono_time;
    206  1.61    simonb 		splx(s);
    207  1.61    simonb 		TIMEVAL_TO_TIMESPEC(&atv,&ats);
    208  1.61    simonb 		break;
    209  1.61    simonb 	default:
    210  1.22       jtc 		return (EINVAL);
    211  1.61    simonb 	}
    212  1.22       jtc 
    213  1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    214  1.22       jtc }
    215  1.22       jtc 
    216  1.22       jtc /* ARGSUSED */
    217  1.22       jtc int
    218  1.90   thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    219  1.22       jtc {
    220  1.45  augustss 	struct sys_clock_settime_args /* {
    221  1.22       jtc 		syscallarg(clockid_t) clock_id;
    222  1.23       cgd 		syscallarg(const struct timespec *) tp;
    223  1.23       cgd 	} */ *uap = v;
    224  1.63   thorpej 	struct proc *p = l->l_proc;
    225  1.22       jtc 	int error;
    226  1.22       jtc 
    227  1.99      elad 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    228  1.99      elad 				       &p->p_acflag)) != 0)
    229  1.22       jtc 		return (error);
    230  1.22       jtc 
    231  1.98  christos 	return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
    232  1.56      manu }
    233  1.56      manu 
    234  1.56      manu 
    235  1.56      manu int
    236  1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    237  1.56      manu {
    238  1.60      manu 	struct timespec ats;
    239  1.56      manu 	int error;
    240  1.56      manu 
    241  1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    242  1.60      manu 		return (error);
    243  1.60      manu 
    244  1.61    simonb 	switch (clock_id) {
    245  1.61    simonb 	case CLOCK_REALTIME:
    246  1.98  christos 		if ((error = settime(p, &ats)) != 0)
    247  1.61    simonb 			return (error);
    248  1.61    simonb 		break;
    249  1.61    simonb 	case CLOCK_MONOTONIC:
    250  1.61    simonb 		return (EINVAL);	/* read-only clock */
    251  1.61    simonb 	default:
    252  1.56      manu 		return (EINVAL);
    253  1.61    simonb 	}
    254  1.22       jtc 
    255  1.22       jtc 	return 0;
    256  1.22       jtc }
    257  1.22       jtc 
    258  1.22       jtc int
    259  1.63   thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    260  1.22       jtc {
    261  1.45  augustss 	struct sys_clock_getres_args /* {
    262  1.22       jtc 		syscallarg(clockid_t) clock_id;
    263  1.23       cgd 		syscallarg(struct timespec *) tp;
    264  1.23       cgd 	} */ *uap = v;
    265  1.22       jtc 	clockid_t clock_id;
    266  1.22       jtc 	struct timespec ts;
    267  1.22       jtc 	int error = 0;
    268  1.22       jtc 
    269  1.22       jtc 	clock_id = SCARG(uap, clock_id);
    270  1.61    simonb 	switch (clock_id) {
    271  1.61    simonb 	case CLOCK_REALTIME:
    272  1.61    simonb 	case CLOCK_MONOTONIC:
    273  1.22       jtc 		ts.tv_sec = 0;
    274  1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    275  1.61    simonb 		break;
    276  1.61    simonb 	default:
    277  1.61    simonb 		return (EINVAL);
    278  1.61    simonb 	}
    279  1.22       jtc 
    280  1.61    simonb 	if (SCARG(uap, tp))
    281  1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    282  1.22       jtc 
    283  1.22       jtc 	return error;
    284  1.22       jtc }
    285  1.22       jtc 
    286  1.27       jtc /* ARGSUSED */
    287  1.27       jtc int
    288  1.63   thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    289  1.27       jtc {
    290  1.27       jtc 	static int nanowait;
    291  1.45  augustss 	struct sys_nanosleep_args/* {
    292  1.27       jtc 		syscallarg(struct timespec *) rqtp;
    293  1.27       jtc 		syscallarg(struct timespec *) rmtp;
    294  1.27       jtc 	} */ *uap = v;
    295  1.27       jtc 	struct timespec rqt;
    296  1.27       jtc 	struct timespec rmt;
    297  1.27       jtc 	struct timeval atv, utv;
    298  1.27       jtc 	int error, s, timo;
    299  1.27       jtc 
    300  1.89  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    301  1.27       jtc 	if (error)
    302  1.27       jtc 		return (error);
    303  1.27       jtc 
    304  1.85    atatat 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    305  1.80  christos 	if (itimerfix(&atv))
    306  1.27       jtc 		return (EINVAL);
    307  1.27       jtc 
    308  1.27       jtc 	s = splclock();
    309  1.27       jtc 	timeradd(&atv,&time,&atv);
    310  1.27       jtc 	timo = hzto(&atv);
    311  1.63   thorpej 	/*
    312  1.27       jtc 	 * Avoid inadvertantly sleeping forever
    313  1.27       jtc 	 */
    314  1.27       jtc 	if (timo == 0)
    315  1.27       jtc 		timo = 1;
    316  1.27       jtc 	splx(s);
    317  1.27       jtc 
    318  1.27       jtc 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    319  1.27       jtc 	if (error == ERESTART)
    320  1.27       jtc 		error = EINTR;
    321  1.27       jtc 	if (error == EWOULDBLOCK)
    322  1.27       jtc 		error = 0;
    323  1.27       jtc 
    324  1.27       jtc 	if (SCARG(uap, rmtp)) {
    325  1.89  christos 		int error1;
    326  1.28       jtc 
    327  1.27       jtc 		s = splclock();
    328  1.27       jtc 		utv = time;
    329  1.27       jtc 		splx(s);
    330  1.27       jtc 
    331  1.27       jtc 		timersub(&atv, &utv, &utv);
    332  1.27       jtc 		if (utv.tv_sec < 0)
    333  1.27       jtc 			timerclear(&utv);
    334  1.27       jtc 
    335  1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    336  1.89  christos 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    337  1.28       jtc 			sizeof(rmt));
    338  1.89  christos 		if (error1)
    339  1.89  christos 			return (error1);
    340  1.27       jtc 	}
    341  1.27       jtc 
    342  1.27       jtc 	return error;
    343  1.27       jtc }
    344  1.22       jtc 
    345   1.1       cgd /* ARGSUSED */
    346   1.3    andrew int
    347  1.63   thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    348  1.15   thorpej {
    349  1.45  augustss 	struct sys_gettimeofday_args /* {
    350  1.11       cgd 		syscallarg(struct timeval *) tp;
    351  1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    352  1.15   thorpej 	} */ *uap = v;
    353   1.1       cgd 	struct timeval atv;
    354   1.1       cgd 	int error = 0;
    355  1.25     perry 	struct timezone tzfake;
    356   1.1       cgd 
    357  1.11       cgd 	if (SCARG(uap, tp)) {
    358   1.1       cgd 		microtime(&atv);
    359  1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    360  1.17  christos 		if (error)
    361   1.1       cgd 			return (error);
    362   1.1       cgd 	}
    363  1.25     perry 	if (SCARG(uap, tzp)) {
    364  1.25     perry 		/*
    365  1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    366  1.25     perry 		 * fake up a timezone struct and return it if demanded.
    367  1.25     perry 		 */
    368  1.25     perry 		tzfake.tz_minuteswest = 0;
    369  1.25     perry 		tzfake.tz_dsttime = 0;
    370  1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    371  1.25     perry 	}
    372   1.1       cgd 	return (error);
    373   1.1       cgd }
    374   1.1       cgd 
    375   1.1       cgd /* ARGSUSED */
    376   1.3    andrew int
    377  1.63   thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    378  1.15   thorpej {
    379  1.16   mycroft 	struct sys_settimeofday_args /* {
    380  1.24       cgd 		syscallarg(const struct timeval *) tv;
    381  1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    382  1.15   thorpej 	} */ *uap = v;
    383  1.63   thorpej 	struct proc *p = l->l_proc;
    384  1.60      manu 	int error;
    385  1.60      manu 
    386  1.99      elad 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    387  1.99      elad 				       &p->p_acflag)) != 0)
    388  1.60      manu 		return (error);
    389  1.60      manu 
    390  1.60      manu 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    391  1.60      manu }
    392  1.60      manu 
    393  1.60      manu int
    394  1.90   thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    395  1.90   thorpej     struct proc *p)
    396  1.60      manu {
    397  1.22       jtc 	struct timeval atv;
    398  1.98  christos 	struct timespec ts;
    399  1.22       jtc 	int error;
    400   1.1       cgd 
    401   1.8       cgd 	/* Verify all parameters before changing time. */
    402  1.25     perry 	/*
    403  1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    404  1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    405  1.25     perry 	 */
    406  1.98  christos 	if (utzp)
    407  1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    408  1.63   thorpej 		    "(obsolete) kernel time zone\n", p->p_pid);
    409  1.98  christos 
    410  1.98  christos 	if (utv == NULL)
    411  1.98  christos 		return 0;
    412  1.98  christos 
    413  1.98  christos 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    414  1.98  christos 		return error;
    415  1.98  christos 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    416  1.98  christos 	return settime(p, &ts);
    417   1.1       cgd }
    418   1.1       cgd 
    419   1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    420   1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    421   1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    422  1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    423   1.1       cgd 
    424   1.1       cgd /* ARGSUSED */
    425   1.3    andrew int
    426  1.63   thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
    427  1.15   thorpej {
    428  1.45  augustss 	struct sys_adjtime_args /* {
    429  1.24       cgd 		syscallarg(const struct timeval *) delta;
    430  1.11       cgd 		syscallarg(struct timeval *) olddelta;
    431  1.15   thorpej 	} */ *uap = v;
    432  1.63   thorpej 	struct proc *p = l->l_proc;
    433  1.56      manu 	int error;
    434   1.1       cgd 
    435  1.99      elad 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    436  1.99      elad 				       &p->p_acflag)) != 0)
    437   1.1       cgd 		return (error);
    438  1.17  christos 
    439  1.60      manu 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    440  1.56      manu }
    441  1.56      manu 
    442  1.56      manu int
    443  1.90   thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    444  1.56      manu {
    445  1.60      manu 	struct timeval atv;
    446  1.56      manu 	long ndelta, ntickdelta, odelta;
    447  1.60      manu 	int error;
    448  1.56      manu 	int s;
    449   1.8       cgd 
    450  1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    451  1.60      manu 	if (error)
    452  1.60      manu 		return (error);
    453  1.60      manu 
    454   1.8       cgd 	/*
    455   1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    456   1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    457   1.8       cgd 	 * delta, so that after some number of incremental changes in
    458   1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    459   1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    460   1.8       cgd 	 */
    461  1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    462  1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    463   1.8       cgd 		ntickdelta = 10 * tickadj;
    464   1.8       cgd 	else
    465   1.8       cgd 		ntickdelta = tickadj;
    466   1.8       cgd 	if (ndelta % ntickdelta)
    467   1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    468   1.8       cgd 
    469   1.8       cgd 	/*
    470   1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    471   1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    472   1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    473   1.8       cgd 	 */
    474   1.8       cgd 	if (ndelta < 0)
    475   1.8       cgd 		ntickdelta = -ntickdelta;
    476  1.68       dsl 	if (ndelta != 0)
    477  1.68       dsl 		/* We need to save the system clock time during shutdown */
    478  1.68       dsl 		time_adjusted |= 1;
    479   1.1       cgd 	s = splclock();
    480   1.8       cgd 	odelta = timedelta;
    481   1.1       cgd 	timedelta = ndelta;
    482   1.8       cgd 	tickdelta = ntickdelta;
    483   1.1       cgd 	splx(s);
    484   1.1       cgd 
    485  1.56      manu 	if (olddelta) {
    486  1.60      manu 		atv.tv_sec = odelta / 1000000;
    487  1.60      manu 		atv.tv_usec = odelta % 1000000;
    488  1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    489   1.8       cgd 	}
    490  1.79       chs 	return error;
    491   1.1       cgd }
    492   1.1       cgd 
    493   1.1       cgd /*
    494  1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495  1.63   thorpej  * timer_*() family of routines are supported.
    496   1.1       cgd  *
    497  1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    498  1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    499  1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    500  1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501  1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502  1.63   thorpej  * syscall.
    503   1.1       cgd  *
    504  1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    505  1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    506   1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    507  1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    508  1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    509  1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    510  1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    511  1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    512  1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    513  1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    514  1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    515  1.63   thorpej 
    516  1.63   thorpej /* Allocate a POSIX realtime timer. */
    517  1.63   thorpej int
    518  1.63   thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
    519  1.63   thorpej {
    520  1.63   thorpej 	struct sys_timer_create_args /* {
    521  1.63   thorpej 		syscallarg(clockid_t) clock_id;
    522  1.63   thorpej 		syscallarg(struct sigevent *) evp;
    523  1.63   thorpej 		syscallarg(timer_t *) timerid;
    524  1.63   thorpej 	} */ *uap = v;
    525  1.92      cube 
    526  1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    527  1.92      cube 	    SCARG(uap, evp), copyin, l->l_proc);
    528  1.92      cube }
    529  1.92      cube 
    530  1.92      cube int
    531  1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    532  1.95      cube     copyin_t fetch_event, struct proc *p)
    533  1.92      cube {
    534  1.92      cube 	int error;
    535  1.92      cube 	timer_t timerid;
    536  1.63   thorpej 	struct ptimer *pt;
    537  1.63   thorpej 
    538  1.63   thorpej 	if (id < CLOCK_REALTIME ||
    539  1.63   thorpej 	    id > CLOCK_PROF)
    540  1.63   thorpej 		return (EINVAL);
    541  1.63   thorpej 
    542  1.63   thorpej 	if (p->p_timers == NULL)
    543  1.63   thorpej 		timers_alloc(p);
    544  1.63   thorpej 
    545  1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    546  1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    547  1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    548  1.63   thorpej 			break;
    549  1.63   thorpej 
    550  1.63   thorpej 	if (timerid == TIMER_MAX)
    551  1.63   thorpej 		return EAGAIN;
    552  1.63   thorpej 
    553  1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    554  1.63   thorpej 	if (evp) {
    555  1.63   thorpej 		if (((error =
    556  1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    557  1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    558  1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    559  1.63   thorpej 			pool_put(&ptimer_pool, pt);
    560  1.63   thorpej 			return (error ? error : EINVAL);
    561  1.63   thorpej 		}
    562  1.63   thorpej 	} else {
    563  1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    564  1.63   thorpej 		switch (id) {
    565  1.63   thorpej 		case CLOCK_REALTIME:
    566  1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    567  1.63   thorpej 			break;
    568  1.63   thorpej 		case CLOCK_VIRTUAL:
    569  1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    570  1.63   thorpej 			break;
    571  1.63   thorpej 		case CLOCK_PROF:
    572  1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    573  1.63   thorpej 			break;
    574  1.63   thorpej 		}
    575  1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    576  1.63   thorpej 	}
    577  1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    578  1.73  christos 	pt->pt_info.ksi_errno = 0;
    579  1.73  christos 	pt->pt_info.ksi_code = 0;
    580  1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    581  1.99      elad 	pt->pt_info.ksi_uid = kauth_cred_getuid(p->p_cred);
    582  1.73  christos 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    583  1.63   thorpej 
    584  1.63   thorpej 	pt->pt_type = id;
    585  1.63   thorpej 	pt->pt_proc = p;
    586  1.63   thorpej 	pt->pt_overruns = 0;
    587  1.63   thorpej 	pt->pt_poverruns = 0;
    588  1.64   nathanw 	pt->pt_entry = timerid;
    589  1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    590  1.63   thorpej 	if (id == CLOCK_REALTIME)
    591  1.63   thorpej 		callout_init(&pt->pt_ch);
    592  1.63   thorpej 	else
    593  1.63   thorpej 		pt->pt_active = 0;
    594  1.63   thorpej 
    595  1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    596  1.63   thorpej 
    597  1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    598  1.63   thorpej }
    599  1.63   thorpej 
    600  1.63   thorpej /* Delete a POSIX realtime timer */
    601   1.3    andrew int
    602  1.63   thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    603  1.15   thorpej {
    604  1.63   thorpej 	struct sys_timer_delete_args /*  {
    605  1.63   thorpej 		syscallarg(timer_t) timerid;
    606  1.15   thorpej 	} */ *uap = v;
    607  1.63   thorpej 	struct proc *p = l->l_proc;
    608  1.65  jdolecek 	timer_t timerid;
    609  1.63   thorpej 	struct ptimer *pt, *ptn;
    610   1.1       cgd 	int s;
    611   1.1       cgd 
    612  1.63   thorpej 	timerid = SCARG(uap, timerid);
    613  1.63   thorpej 
    614  1.63   thorpej 	if ((p->p_timers == NULL) ||
    615  1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    616  1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    617   1.1       cgd 		return (EINVAL);
    618  1.63   thorpej 
    619  1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME)
    620  1.63   thorpej 		callout_stop(&pt->pt_ch);
    621  1.63   thorpej 	else if (pt->pt_active) {
    622  1.63   thorpej 		s = splclock();
    623  1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    624  1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    625  1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    626  1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    627  1.63   thorpej 			    &ptn->pt_time.it_value);
    628  1.63   thorpej 		splx(s);
    629  1.63   thorpej 	}
    630  1.63   thorpej 
    631  1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    632  1.63   thorpej 	pool_put(&ptimer_pool, pt);
    633  1.63   thorpej 
    634  1.63   thorpej 	return (0);
    635  1.63   thorpej }
    636  1.63   thorpej 
    637  1.63   thorpej /*
    638  1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    639  1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    640  1.67   nathanw  * time for virtual timers.
    641  1.63   thorpej  * Must be called at splclock().
    642  1.63   thorpej  */
    643  1.63   thorpej void
    644  1.63   thorpej timer_settime(struct ptimer *pt)
    645  1.63   thorpej {
    646  1.63   thorpej 	struct ptimer *ptn, *pptn;
    647  1.63   thorpej 	struct ptlist *ptl;
    648  1.63   thorpej 
    649  1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    650  1.63   thorpej 		callout_stop(&pt->pt_ch);
    651  1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    652  1.63   thorpej 			/*
    653  1.63   thorpej 			 * Don't need to check hzto() return value, here.
    654  1.63   thorpej 			 * callout_reset() does it for us.
    655  1.63   thorpej 			 */
    656  1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    657  1.63   thorpej 			    realtimerexpire, pt);
    658  1.63   thorpej 		}
    659  1.63   thorpej 	} else {
    660  1.63   thorpej 		if (pt->pt_active) {
    661  1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    662  1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    663  1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    664  1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    665  1.63   thorpej 				    &ptn->pt_time.it_value,
    666  1.63   thorpej 				    &ptn->pt_time.it_value);
    667  1.63   thorpej 		}
    668  1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    669  1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    670  1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    671  1.63   thorpej 			else
    672  1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    673  1.63   thorpej 
    674  1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    675  1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    676  1.63   thorpej 				 &ptn->pt_time.it_value, >);
    677  1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    678  1.63   thorpej 				timersub(&pt->pt_time.it_value,
    679  1.63   thorpej 				    &ptn->pt_time.it_value,
    680  1.63   thorpej 				    &pt->pt_time.it_value);
    681  1.63   thorpej 
    682  1.63   thorpej 			if (pptn)
    683  1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    684  1.63   thorpej 			else
    685  1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    686  1.63   thorpej 
    687  1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    688  1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    689  1.63   thorpej 				    &pt->pt_time.it_value,
    690  1.63   thorpej 				    &ptn->pt_time.it_value);
    691  1.63   thorpej 
    692  1.63   thorpej 			pt->pt_active = 1;
    693  1.63   thorpej 		} else
    694  1.63   thorpej 			pt->pt_active = 0;
    695  1.63   thorpej 	}
    696  1.63   thorpej }
    697  1.63   thorpej 
    698  1.63   thorpej void
    699  1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    700  1.63   thorpej {
    701  1.63   thorpej 	struct ptimer *ptn;
    702  1.63   thorpej 
    703  1.63   thorpej 	*aitv = pt->pt_time;
    704  1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    705   1.1       cgd 		/*
    706  1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    707  1.63   thorpej 		 * part of real time timer.  If time for real time
    708  1.63   thorpej 		 * timer has passed return 0, else return difference
    709  1.63   thorpej 		 * between current time and time for the timer to go
    710  1.63   thorpej 		 * off.
    711   1.1       cgd 		 */
    712  1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    713  1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    714  1.63   thorpej 				timerclear(&aitv->it_value);
    715   1.1       cgd 			else
    716  1.63   thorpej 				timersub(&aitv->it_value, &time,
    717  1.63   thorpej 				    &aitv->it_value);
    718  1.36   thorpej 		}
    719  1.63   thorpej 	} else if (pt->pt_active) {
    720  1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    721  1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    722  1.63   thorpej 		else
    723  1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    724  1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    725  1.63   thorpej 			timeradd(&aitv->it_value,
    726  1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    727  1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    728   1.1       cgd 	} else
    729  1.63   thorpej 		timerclear(&aitv->it_value);
    730  1.63   thorpej }
    731  1.63   thorpej 
    732  1.63   thorpej 
    733  1.63   thorpej 
    734  1.63   thorpej /* Set and arm a POSIX realtime timer */
    735  1.63   thorpej int
    736  1.63   thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    737  1.63   thorpej {
    738  1.63   thorpej 	struct sys_timer_settime_args /* {
    739  1.63   thorpej 		syscallarg(timer_t) timerid;
    740  1.63   thorpej 		syscallarg(int) flags;
    741  1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    742  1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    743  1.63   thorpej 	} */ *uap = v;
    744  1.92      cube 	int error;
    745  1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    746  1.92      cube 
    747  1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    748  1.92      cube 	    sizeof(struct itimerspec))) != 0)
    749  1.92      cube 		return (error);
    750  1.92      cube 
    751  1.92      cube 	if (SCARG(uap, ovalue))
    752  1.92      cube 		ovp = &ovalue;
    753  1.92      cube 
    754  1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    755  1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    756  1.92      cube 		return error;
    757  1.92      cube 
    758  1.92      cube 	if (ovp)
    759  1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    760  1.92      cube 		    sizeof(struct itimerspec));
    761  1.92      cube 	return 0;
    762  1.92      cube }
    763  1.92      cube 
    764  1.92      cube int
    765  1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    766  1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    767  1.92      cube {
    768  1.92      cube 	int s;
    769  1.63   thorpej 	struct itimerval val, oval;
    770  1.63   thorpej 	struct ptimer *pt;
    771  1.63   thorpej 
    772  1.63   thorpej 	if ((p->p_timers == NULL) ||
    773  1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    774  1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    775  1.63   thorpej 		return (EINVAL);
    776  1.63   thorpej 
    777  1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    778  1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    779  1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    780  1.63   thorpej 		return (EINVAL);
    781  1.63   thorpej 
    782  1.63   thorpej 	oval = pt->pt_time;
    783  1.63   thorpej 	pt->pt_time = val;
    784  1.63   thorpej 
    785  1.63   thorpej 	s = splclock();
    786  1.67   nathanw 	/*
    787  1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    788  1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    789  1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    790  1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    791  1.67   nathanw 	 * negative, which would confuse the comparison tests.
    792  1.67   nathanw 	 */
    793  1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    794  1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    795  1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    796  1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    797  1.67   nathanw 				    &pt->pt_time.it_value);
    798  1.67   nathanw 		} else {
    799  1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    800  1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    801  1.67   nathanw 				    &pt->pt_time.it_value);
    802  1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    803  1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    804  1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    805  1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    806  1.67   nathanw 				}
    807  1.67   nathanw 			}
    808  1.67   nathanw 		}
    809  1.67   nathanw 	}
    810  1.67   nathanw 
    811  1.63   thorpej 	timer_settime(pt);
    812  1.63   thorpej 	splx(s);
    813  1.63   thorpej 
    814  1.92      cube 	if (ovalue) {
    815  1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    816  1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    817  1.63   thorpej 	}
    818  1.63   thorpej 
    819  1.63   thorpej 	return (0);
    820  1.63   thorpej }
    821  1.63   thorpej 
    822  1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    823  1.63   thorpej int
    824  1.63   thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    825  1.63   thorpej {
    826  1.63   thorpej 	struct sys_timer_gettime_args /* {
    827  1.63   thorpej 		syscallarg(timer_t) timerid;
    828  1.63   thorpej 		syscallarg(struct itimerspec *) value;
    829  1.63   thorpej 	} */ *uap = v;
    830  1.63   thorpej 	struct itimerspec its;
    831  1.92      cube 	int error;
    832  1.92      cube 
    833  1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    834  1.92      cube 	    &its)) != 0)
    835  1.92      cube 		return error;
    836  1.92      cube 
    837  1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    838  1.92      cube }
    839  1.92      cube 
    840  1.92      cube int
    841  1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    842  1.92      cube {
    843  1.92      cube 	int s;
    844  1.63   thorpej 	struct ptimer *pt;
    845  1.92      cube 	struct itimerval aitv;
    846  1.63   thorpej 
    847  1.63   thorpej 	if ((p->p_timers == NULL) ||
    848  1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    849  1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    850  1.63   thorpej 		return (EINVAL);
    851  1.63   thorpej 
    852  1.63   thorpej 	s = splclock();
    853  1.63   thorpej 	timer_gettime(pt, &aitv);
    854   1.1       cgd 	splx(s);
    855  1.63   thorpej 
    856  1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    857  1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    858  1.63   thorpej 
    859  1.92      cube 	return 0;
    860  1.63   thorpej }
    861  1.63   thorpej 
    862  1.63   thorpej /*
    863  1.63   thorpej  * Return the count of the number of times a periodic timer expired
    864  1.63   thorpej  * while a notification was already pending. The counter is reset when
    865  1.63   thorpej  * a timer expires and a notification can be posted.
    866  1.63   thorpej  */
    867  1.63   thorpej int
    868  1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    869  1.63   thorpej {
    870  1.63   thorpej 	struct sys_timer_getoverrun_args /* {
    871  1.63   thorpej 		syscallarg(timer_t) timerid;
    872  1.63   thorpej 	} */ *uap = v;
    873  1.63   thorpej 	struct proc *p = l->l_proc;
    874  1.63   thorpej 	int timerid;
    875  1.63   thorpej 	struct ptimer *pt;
    876  1.63   thorpej 
    877  1.63   thorpej 	timerid = SCARG(uap, timerid);
    878  1.63   thorpej 
    879  1.63   thorpej 	if ((p->p_timers == NULL) ||
    880  1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    881  1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    882  1.63   thorpej 		return (EINVAL);
    883  1.63   thorpej 
    884  1.63   thorpej 	*retval = pt->pt_poverruns;
    885  1.63   thorpej 
    886  1.63   thorpej 	return (0);
    887  1.63   thorpej }
    888  1.63   thorpej 
    889  1.63   thorpej /* Glue function that triggers an upcall; called from userret(). */
    890  1.63   thorpej static void
    891  1.63   thorpej timerupcall(struct lwp *l, void *arg)
    892  1.63   thorpej {
    893  1.64   nathanw 	struct ptimers *pt = (struct ptimers *)arg;
    894  1.64   nathanw 	unsigned int i, fired, done;
    895  1.74        cl 
    896  1.81        cl 	KDASSERT(l->l_proc->p_sa);
    897  1.81        cl 	/* Bail out if we do not own the virtual processor */
    898  1.82        cl 	if (l->l_savp->savp_lwp != l)
    899  1.81        cl 		return ;
    900  1.87     perry 
    901  1.63   thorpej 	KERNEL_PROC_LOCK(l);
    902  1.71      fvdl 
    903  1.64   nathanw 	fired = pt->pts_fired;
    904  1.64   nathanw 	done = 0;
    905  1.64   nathanw 	while ((i = ffs(fired)) != 0) {
    906  1.74        cl 		siginfo_t *si;
    907  1.73  christos 		int mask = 1 << --i;
    908  1.74        cl 		int f;
    909  1.73  christos 
    910  1.74        cl 		f = l->l_flag & L_SA;
    911  1.74        cl 		l->l_flag &= ~L_SA;
    912  1.94       chs 		si = siginfo_alloc(PR_WAITOK);
    913  1.77   thorpej 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    914  1.64   nathanw 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    915  1.94       chs 		    sizeof(*si), si, siginfo_free) != 0) {
    916  1.94       chs 			siginfo_free(si);
    917  1.86   mycroft 			/* XXX What do we do here?? */
    918  1.86   mycroft 		} else
    919  1.73  christos 			done |= mask;
    920  1.73  christos 		fired &= ~mask;
    921  1.74        cl 		l->l_flag |= f;
    922  1.64   nathanw 	}
    923  1.64   nathanw 	pt->pts_fired &= ~done;
    924  1.64   nathanw 	if (pt->pts_fired == 0)
    925  1.63   thorpej 		l->l_proc->p_userret = NULL;
    926  1.63   thorpej 
    927  1.63   thorpej 	KERNEL_PROC_UNLOCK(l);
    928  1.63   thorpej }
    929  1.63   thorpej 
    930  1.63   thorpej 
    931  1.63   thorpej /*
    932  1.63   thorpej  * Real interval timer expired:
    933  1.63   thorpej  * send process whose timer expired an alarm signal.
    934  1.63   thorpej  * If time is not set up to reload, then just return.
    935  1.63   thorpej  * Else compute next time timer should go off which is > current time.
    936  1.63   thorpej  * This is where delay in processing this timeout causes multiple
    937  1.63   thorpej  * SIGALRM calls to be compressed into one.
    938  1.63   thorpej  */
    939  1.63   thorpej void
    940  1.63   thorpej realtimerexpire(void *arg)
    941  1.63   thorpej {
    942  1.63   thorpej 	struct ptimer *pt;
    943  1.63   thorpej 	int s;
    944  1.63   thorpej 
    945  1.63   thorpej 	pt = (struct ptimer *)arg;
    946  1.63   thorpej 
    947  1.63   thorpej 	itimerfire(pt);
    948  1.63   thorpej 
    949  1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    950  1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    951  1.63   thorpej 		return;
    952  1.63   thorpej 	}
    953  1.63   thorpej 	for (;;) {
    954  1.63   thorpej 		s = splclock();
    955  1.63   thorpej 		timeradd(&pt->pt_time.it_value,
    956  1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    957  1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
    958  1.63   thorpej 			/*
    959  1.63   thorpej 			 * Don't need to check hzto() return value, here.
    960  1.63   thorpej 			 * callout_reset() does it for us.
    961  1.63   thorpej 			 */
    962  1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    963  1.63   thorpej 			    realtimerexpire, pt);
    964  1.63   thorpej 			splx(s);
    965  1.63   thorpej 			return;
    966  1.63   thorpej 		}
    967  1.63   thorpej 		splx(s);
    968  1.63   thorpej 		pt->pt_overruns++;
    969  1.63   thorpej 	}
    970  1.63   thorpej }
    971  1.63   thorpej 
    972  1.63   thorpej /* BSD routine to get the value of an interval timer. */
    973  1.63   thorpej /* ARGSUSED */
    974  1.63   thorpej int
    975  1.63   thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
    976  1.63   thorpej {
    977  1.63   thorpej 	struct sys_getitimer_args /* {
    978  1.63   thorpej 		syscallarg(int) which;
    979  1.63   thorpej 		syscallarg(struct itimerval *) itv;
    980  1.63   thorpej 	} */ *uap = v;
    981  1.63   thorpej 	struct proc *p = l->l_proc;
    982  1.63   thorpej 	struct itimerval aitv;
    983  1.91      cube 	int error;
    984  1.91      cube 
    985  1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    986  1.91      cube 	if (error)
    987  1.91      cube 		return error;
    988  1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    989  1.91      cube }
    990  1.63   thorpej 
    991  1.91      cube int
    992  1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    993  1.91      cube {
    994  1.91      cube 	int s;
    995  1.63   thorpej 
    996  1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
    997  1.63   thorpej 		return (EINVAL);
    998  1.63   thorpej 
    999  1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1000  1.91      cube 		timerclear(&itvp->it_value);
   1001  1.91      cube 		timerclear(&itvp->it_interval);
   1002  1.63   thorpej 	} else {
   1003  1.63   thorpej 		s = splclock();
   1004  1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1005  1.63   thorpej 		splx(s);
   1006  1.63   thorpej 	}
   1007  1.63   thorpej 
   1008  1.91      cube 	return 0;
   1009   1.1       cgd }
   1010   1.1       cgd 
   1011  1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1012   1.1       cgd /* ARGSUSED */
   1013   1.3    andrew int
   1014  1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1015  1.15   thorpej {
   1016  1.45  augustss 	struct sys_setitimer_args /* {
   1017  1.30   mycroft 		syscallarg(int) which;
   1018  1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1019  1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1020  1.15   thorpej 	} */ *uap = v;
   1021  1.63   thorpej 	struct proc *p = l->l_proc;
   1022  1.30   mycroft 	int which = SCARG(uap, which);
   1023  1.21       cgd 	struct sys_getitimer_args getargs;
   1024  1.91      cube 	const struct itimerval *itvp;
   1025   1.1       cgd 	struct itimerval aitv;
   1026  1.91      cube 	int error;
   1027   1.1       cgd 
   1028  1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1029   1.1       cgd 		return (EINVAL);
   1030  1.11       cgd 	itvp = SCARG(uap, itv);
   1031  1.63   thorpej 	if (itvp &&
   1032  1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1033   1.1       cgd 		return (error);
   1034  1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1035  1.30   mycroft 		SCARG(&getargs, which) = which;
   1036  1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1037  1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1038  1.21       cgd 			return (error);
   1039  1.21       cgd 	}
   1040   1.1       cgd 	if (itvp == 0)
   1041   1.1       cgd 		return (0);
   1042  1.91      cube 
   1043  1.91      cube 	return dosetitimer(p, which, &aitv);
   1044  1.91      cube }
   1045  1.91      cube 
   1046  1.91      cube int
   1047  1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1048  1.91      cube {
   1049  1.91      cube 	struct ptimer *pt;
   1050  1.91      cube 	int s;
   1051  1.91      cube 
   1052  1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1053   1.1       cgd 		return (EINVAL);
   1054  1.63   thorpej 
   1055  1.63   thorpej 	/*
   1056  1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1057  1.63   thorpej 	 * wants to clear the timer.
   1058  1.63   thorpej 	 */
   1059  1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1060  1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1061  1.63   thorpej 		return (0);
   1062  1.63   thorpej 
   1063  1.63   thorpej 	if (p->p_timers == NULL)
   1064  1.63   thorpej 		timers_alloc(p);
   1065  1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1066  1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1067  1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1068  1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1069  1.63   thorpej 		pt->pt_overruns = 0;
   1070  1.63   thorpej 		pt->pt_proc = p;
   1071  1.63   thorpej 		pt->pt_type = which;
   1072  1.64   nathanw 		pt->pt_entry = which;
   1073  1.63   thorpej 		switch (which) {
   1074  1.63   thorpej 		case ITIMER_REAL:
   1075  1.63   thorpej 			callout_init(&pt->pt_ch);
   1076  1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1077  1.63   thorpej 			break;
   1078  1.63   thorpej 		case ITIMER_VIRTUAL:
   1079  1.63   thorpej 			pt->pt_active = 0;
   1080  1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1081  1.63   thorpej 			break;
   1082  1.63   thorpej 		case ITIMER_PROF:
   1083  1.63   thorpej 			pt->pt_active = 0;
   1084  1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1085  1.63   thorpej 			break;
   1086   1.1       cgd 		}
   1087   1.1       cgd 	} else
   1088  1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1089  1.63   thorpej 
   1090  1.91      cube 	pt->pt_time = *itvp;
   1091  1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1092  1.63   thorpej 
   1093  1.63   thorpej 	s = splclock();
   1094  1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1095  1.67   nathanw 		/* Convert to absolute time */
   1096  1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1097  1.67   nathanw 	}
   1098  1.63   thorpej 	timer_settime(pt);
   1099   1.1       cgd 	splx(s);
   1100  1.63   thorpej 
   1101   1.1       cgd 	return (0);
   1102   1.1       cgd }
   1103   1.1       cgd 
   1104  1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1105  1.63   thorpej void
   1106  1.63   thorpej timers_alloc(struct proc *p)
   1107  1.63   thorpej {
   1108  1.63   thorpej 	int i;
   1109  1.63   thorpej 	struct ptimers *pts;
   1110  1.63   thorpej 
   1111  1.97    simonb 	pts = pool_get(&ptimers_pool, 0);
   1112  1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1113  1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1114  1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1115  1.63   thorpej 		pts->pts_timers[i] = NULL;
   1116  1.64   nathanw 	pts->pts_fired = 0;
   1117  1.63   thorpej 	p->p_timers = pts;
   1118  1.63   thorpej }
   1119  1.63   thorpej 
   1120   1.1       cgd /*
   1121  1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1122  1.63   thorpej  * then clean up all timers and free all the data structures. If
   1123  1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1124  1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1125  1.63   thorpej  * structure if none of those remain.
   1126   1.1       cgd  */
   1127   1.3    andrew void
   1128  1.63   thorpej timers_free(struct proc *p, int which)
   1129   1.6       cgd {
   1130  1.63   thorpej 	int i, s;
   1131  1.63   thorpej 	struct ptimers *pts;
   1132  1.63   thorpej 	struct ptimer *pt, *ptn;
   1133  1.63   thorpej 	struct timeval tv;
   1134  1.63   thorpej 
   1135  1.63   thorpej 	if (p->p_timers) {
   1136  1.63   thorpej 		pts = p->p_timers;
   1137  1.63   thorpej 		if (which == TIMERS_ALL)
   1138  1.63   thorpej 			i = 0;
   1139  1.63   thorpej 		else {
   1140  1.63   thorpej 			s = splclock();
   1141  1.63   thorpej 			timerclear(&tv);
   1142  1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1143  1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1144  1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1145  1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1146  1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1147  1.63   thorpej 			if (ptn) {
   1148  1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1149  1.63   thorpej 				    &ptn->pt_time.it_value);
   1150  1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1151  1.63   thorpej 				    ptn, pt_list);
   1152  1.63   thorpej 			}
   1153  1.63   thorpej 
   1154  1.63   thorpej 			timerclear(&tv);
   1155  1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1156  1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1157  1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1158  1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1159  1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1160  1.63   thorpej 			if (ptn) {
   1161  1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1162  1.63   thorpej 				    &ptn->pt_time.it_value);
   1163  1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1164  1.63   thorpej 				    pt_list);
   1165  1.63   thorpej 			}
   1166   1.1       cgd 			splx(s);
   1167  1.63   thorpej 			i = 3;
   1168  1.63   thorpej 		}
   1169  1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1170  1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1171  1.63   thorpej 				if (pt->pt_type == CLOCK_REALTIME)
   1172  1.63   thorpej 					callout_stop(&pt->pt_ch);
   1173  1.63   thorpej 				pts->pts_timers[i] = NULL;
   1174  1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1175  1.63   thorpej 			}
   1176  1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1177  1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1178  1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1179  1.63   thorpej 			p->p_timers = NULL;
   1180  1.97    simonb 			pool_put(&ptimers_pool, pts);
   1181   1.1       cgd 		}
   1182   1.1       cgd 	}
   1183   1.1       cgd }
   1184   1.1       cgd 
   1185   1.1       cgd /*
   1186   1.1       cgd  * Check that a proposed value to load into the .it_value or
   1187   1.1       cgd  * .it_interval part of an interval timer is acceptable, and
   1188   1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
   1189   1.1       cgd  * than the resolution of the clock, round it up.)
   1190   1.1       cgd  */
   1191   1.3    andrew int
   1192  1.63   thorpej itimerfix(struct timeval *tv)
   1193   1.1       cgd {
   1194   1.1       cgd 
   1195  1.59  christos 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1196   1.1       cgd 		return (EINVAL);
   1197   1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1198   1.1       cgd 		tv->tv_usec = tick;
   1199   1.1       cgd 	return (0);
   1200   1.1       cgd }
   1201   1.1       cgd 
   1202   1.1       cgd /*
   1203   1.1       cgd  * Decrement an interval timer by a specified number
   1204   1.1       cgd  * of microseconds, which must be less than a second,
   1205   1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1206   1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1207   1.8       cgd  * reduce the value reloaded into the timer so that
   1208   1.1       cgd  * the timer does not drift.  This routine assumes
   1209   1.1       cgd  * that it is called in a context where the timers
   1210   1.1       cgd  * on which it is operating cannot change in value.
   1211   1.1       cgd  */
   1212   1.3    andrew int
   1213  1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1214  1.63   thorpej {
   1215  1.45  augustss 	struct itimerval *itp;
   1216   1.1       cgd 
   1217  1.63   thorpej 	itp = &pt->pt_time;
   1218   1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1219   1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1220   1.1       cgd 			/* expired, and already in next interval */
   1221   1.1       cgd 			usec -= itp->it_value.tv_usec;
   1222   1.1       cgd 			goto expire;
   1223   1.1       cgd 		}
   1224   1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1225   1.1       cgd 		itp->it_value.tv_sec--;
   1226   1.1       cgd 	}
   1227   1.1       cgd 	itp->it_value.tv_usec -= usec;
   1228   1.1       cgd 	usec = 0;
   1229   1.1       cgd 	if (timerisset(&itp->it_value))
   1230   1.1       cgd 		return (1);
   1231   1.1       cgd 	/* expired, exactly at end of interval */
   1232   1.1       cgd expire:
   1233   1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1234   1.1       cgd 		itp->it_value = itp->it_interval;
   1235   1.1       cgd 		itp->it_value.tv_usec -= usec;
   1236   1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1237   1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1238   1.1       cgd 			itp->it_value.tv_sec--;
   1239   1.1       cgd 		}
   1240  1.63   thorpej 		timer_settime(pt);
   1241   1.1       cgd 	} else
   1242   1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1243   1.1       cgd 	return (0);
   1244  1.42       cgd }
   1245  1.42       cgd 
   1246  1.63   thorpej void
   1247  1.63   thorpej itimerfire(struct ptimer *pt)
   1248  1.63   thorpej {
   1249  1.63   thorpej 	struct proc *p = pt->pt_proc;
   1250  1.82        cl 	struct sadata_vp *vp;
   1251  1.64   nathanw 	int s;
   1252  1.82        cl 	unsigned int i;
   1253  1.78        cl 
   1254  1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1255  1.63   thorpej 		/*
   1256  1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1257  1.63   thorpej 		 * just post the signal number and throw away the
   1258  1.63   thorpej 		 * value.
   1259  1.63   thorpej 		 */
   1260  1.63   thorpej 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1261  1.63   thorpej 			pt->pt_overruns++;
   1262  1.63   thorpej 		else {
   1263  1.75  christos 			ksiginfo_t ksi;
   1264  1.75  christos 			(void)memset(&ksi, 0, sizeof(ksi));
   1265  1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1266  1.75  christos 			ksi.ksi_code = SI_TIMER;
   1267  1.75  christos 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1268  1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1269  1.63   thorpej 			pt->pt_overruns = 0;
   1270  1.75  christos 			kpsignal(p, &ksi, NULL);
   1271  1.63   thorpej 		}
   1272  1.63   thorpej 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1273  1.63   thorpej 		/* Cause the process to generate an upcall when it returns. */
   1274  1.63   thorpej 
   1275  1.63   thorpej 		if (p->p_userret == NULL) {
   1276  1.70   nathanw 			/*
   1277  1.70   nathanw 			 * XXX stop signals can be processed inside tsleep,
   1278  1.70   nathanw 			 * which can be inside sa_yield's inner loop, which
   1279  1.70   nathanw 			 * makes testing for sa_idle alone insuffucent to
   1280  1.70   nathanw 			 * determine if we really should call setrunnable.
   1281  1.70   nathanw 			 */
   1282  1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1283  1.63   thorpej 			pt->pt_overruns = 0;
   1284  1.64   nathanw 			i = 1 << pt->pt_entry;
   1285  1.64   nathanw 			p->p_timers->pts_fired = i;
   1286  1.63   thorpej 			p->p_userret = timerupcall;
   1287  1.64   nathanw 			p->p_userret_arg = p->p_timers;
   1288  1.87     perry 
   1289  1.78        cl 			SCHED_LOCK(s);
   1290  1.82        cl 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1291  1.82        cl 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1292  1.82        cl 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1293  1.82        cl 					sched_wakeup(vp->savp_lwp);
   1294  1.82        cl 					break;
   1295  1.82        cl 				}
   1296  1.78        cl 			}
   1297  1.78        cl 			SCHED_UNLOCK(s);
   1298  1.64   nathanw 		} else if (p->p_userret == timerupcall) {
   1299  1.64   nathanw 			i = 1 << pt->pt_entry;
   1300  1.64   nathanw 			if ((p->p_timers->pts_fired & i) == 0) {
   1301  1.64   nathanw 				pt->pt_poverruns = pt->pt_overruns;
   1302  1.64   nathanw 				pt->pt_overruns = 0;
   1303  1.66  jdolecek 				p->p_timers->pts_fired |= i;
   1304  1.64   nathanw 			} else
   1305  1.64   nathanw 				pt->pt_overruns++;
   1306  1.64   nathanw 		} else {
   1307  1.63   thorpej 			pt->pt_overruns++;
   1308  1.78        cl 			if ((p->p_flag & P_WEXIT) == 0)
   1309  1.78        cl 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1310  1.78        cl 				    p->p_pid, pt->pt_overruns,
   1311  1.78        cl 				    pt->pt_ev.sigev_value.sival_int,
   1312  1.78        cl 				    p->p_userret);
   1313  1.64   nathanw 		}
   1314  1.63   thorpej 	}
   1315  1.63   thorpej 
   1316  1.63   thorpej }
   1317  1.63   thorpej 
   1318  1.42       cgd /*
   1319  1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1320  1.42       cgd  * for usage and rationale.
   1321  1.42       cgd  */
   1322  1.42       cgd int
   1323  1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1324  1.42       cgd {
   1325  1.49    itojun 	struct timeval tv, delta;
   1326  1.42       cgd 	int s, rv = 0;
   1327  1.42       cgd 
   1328  1.63   thorpej 	s = splclock();
   1329  1.49    itojun 	tv = mono_time;
   1330  1.49    itojun 	splx(s);
   1331  1.49    itojun 
   1332  1.49    itojun 	timersub(&tv, lasttime, &delta);
   1333  1.42       cgd 
   1334  1.42       cgd 	/*
   1335  1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1336  1.42       cgd 	 * even if interval is huge.
   1337  1.42       cgd 	 */
   1338  1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1339  1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1340  1.49    itojun 		*lasttime = tv;
   1341  1.42       cgd 		rv = 1;
   1342  1.42       cgd 	}
   1343  1.50    itojun 
   1344  1.50    itojun 	return (rv);
   1345  1.50    itojun }
   1346  1.50    itojun 
   1347  1.50    itojun /*
   1348  1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1349  1.50    itojun  */
   1350  1.50    itojun int
   1351  1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1352  1.50    itojun {
   1353  1.50    itojun 	struct timeval tv, delta;
   1354  1.50    itojun 	int s, rv;
   1355  1.50    itojun 
   1356  1.63   thorpej 	s = splclock();
   1357  1.50    itojun 	tv = mono_time;
   1358  1.50    itojun 	splx(s);
   1359  1.50    itojun 
   1360  1.50    itojun 	timersub(&tv, lasttime, &delta);
   1361  1.50    itojun 
   1362  1.50    itojun 	/*
   1363  1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1364  1.50    itojun 	 * if more than one second have passed since the last update of
   1365  1.50    itojun 	 * lasttime, reset the counter.
   1366  1.50    itojun 	 *
   1367  1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1368  1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1369  1.50    itojun 	 */
   1370  1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1371  1.50    itojun 	    delta.tv_sec >= 1) {
   1372  1.50    itojun 		*lasttime = tv;
   1373  1.50    itojun 		*curpps = 0;
   1374  1.69    dyoung 	}
   1375  1.69    dyoung 	if (maxpps < 0)
   1376  1.53    itojun 		rv = 1;
   1377  1.53    itojun 	else if (*curpps < maxpps)
   1378  1.50    itojun 		rv = 1;
   1379  1.50    itojun 	else
   1380  1.50    itojun 		rv = 0;
   1381  1.50    itojun 
   1382  1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1383  1.50    itojun 	/* be careful about wrap-around */
   1384  1.50    itojun 	if (*curpps + 1 > *curpps)
   1385  1.50    itojun 		*curpps = *curpps + 1;
   1386  1.50    itojun #else
   1387  1.50    itojun 	/*
   1388  1.50    itojun 	 * assume that there's not too many calls to this function.
   1389  1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1390  1.50    itojun 	 * behavior, not the behavior of this function.
   1391  1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1392  1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1393  1.50    itojun 	 */
   1394  1.50    itojun 	*curpps = *curpps + 1;
   1395  1.50    itojun #endif
   1396  1.42       cgd 
   1397  1.42       cgd 	return (rv);
   1398   1.1       cgd }
   1399