Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.1.1.3
      1 /*
      2  * Copyright (c) 1982, 1986, 1989, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/resourcevar.h>
     38 #include <sys/kernel.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/vnode.h>
     42 
     43 #include <sys/mount.h>
     44 #include <sys/syscallargs.h>
     45 
     46 #include <machine/cpu.h>
     47 
     48 /*
     49  * Time of day and interval timer support.
     50  *
     51  * These routines provide the kernel entry points to get and set
     52  * the time-of-day and per-process interval timers.  Subroutines
     53  * here provide support for adding and subtracting timeval structures
     54  * and decrementing interval timers, optionally reloading the interval
     55  * timers when they expire.
     56  */
     57 
     58 /* ARGSUSED */
     59 int
     60 gettimeofday(p, uap, retval)
     61 	struct proc *p;
     62 	register struct gettimeofday_args /* {
     63 		syscallarg(struct timeval *) tp;
     64 		syscallarg(struct timezone *) tzp;
     65 	} */ *uap;
     66 	register_t *retval;
     67 {
     68 	struct timeval atv;
     69 	int error = 0;
     70 
     71 	if (SCARG(uap, tp)) {
     72 		microtime(&atv);
     73 		if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
     74 		    sizeof (atv)))
     75 			return (error);
     76 	}
     77 	if (SCARG(uap, tzp))
     78 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
     79 		    sizeof (tz));
     80 	return (error);
     81 }
     82 
     83 /* ARGSUSED */
     84 int
     85 settimeofday(p, uap, retval)
     86 	struct proc *p;
     87 	struct settimeofday_args /* {
     88 		syscallarg(struct timeval *) tv;
     89 		syscallarg(struct timezone *) tzp;
     90 	} */ *uap;
     91 	register_t *retval;
     92 {
     93 	struct timeval atv, delta;
     94 	struct timezone atz;
     95 	int error, s;
     96 
     97 	if (error = suser(p->p_ucred, &p->p_acflag))
     98 		return (error);
     99 	/* Verify all parameters before changing time. */
    100 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
    101 	    (caddr_t)&atv, sizeof(atv))))
    102 		return (error);
    103 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
    104 	    (caddr_t)&atz, sizeof(atz))))
    105 		return (error);
    106 	if (SCARG(uap, tv)) {
    107 		/*
    108 		 * If the system is secure, we do not allow the time to be
    109 		 * set to an earlier value (it may be slowed using adjtime,
    110 		 * but not set back). This feature prevent interlopers from
    111 		 * setting arbitrary time stamps on files.
    112 		 */
    113 		if (securelevel > 0 && timercmp(&atv, &time, <))
    114 			return (EPERM);
    115 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    116 		s = splclock();
    117 		/* nb. delta.tv_usec may be < 0, but this is OK here */
    118 		delta.tv_sec = atv.tv_sec - time.tv_sec;
    119 		delta.tv_usec = atv.tv_usec - time.tv_usec;
    120 		time = atv;
    121 		(void) splsoftclock();
    122 		timevaladd(&boottime, &delta);
    123 		timevalfix(&boottime);
    124 		timevaladd(&runtime, &delta);
    125 		timevalfix(&runtime);
    126 #		ifdef NFS
    127 			lease_updatetime(delta.tv_sec);
    128 #		endif
    129 		splx(s);
    130 		resettodr();
    131 	}
    132 	if (SCARG(uap, tzp))
    133 		tz = atz;
    134 	return (0);
    135 }
    136 
    137 extern	int tickadj;			/* "standard" clock skew, us./tick */
    138 int	tickdelta;			/* current clock skew, us. per tick */
    139 long	timedelta;			/* unapplied time correction, us. */
    140 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    141 
    142 /* ARGSUSED */
    143 int
    144 adjtime(p, uap, retval)
    145 	struct proc *p;
    146 	register struct adjtime_args /* {
    147 		syscallarg(struct timeval *) delta;
    148 		syscallarg(struct timeval *) olddelta;
    149 	} */ *uap;
    150 	register_t *retval;
    151 {
    152 	struct timeval atv;
    153 	register long ndelta, ntickdelta, odelta;
    154 	int s, error;
    155 
    156 	if (error = suser(p->p_ucred, &p->p_acflag))
    157 		return (error);
    158 	if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
    159 	    sizeof(struct timeval)))
    160 		return (error);
    161 
    162 	/*
    163 	 * Compute the total correction and the rate at which to apply it.
    164 	 * Round the adjustment down to a whole multiple of the per-tick
    165 	 * delta, so that after some number of incremental changes in
    166 	 * hardclock(), tickdelta will become zero, lest the correction
    167 	 * overshoot and start taking us away from the desired final time.
    168 	 */
    169 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    170 	if (ndelta > bigadj)
    171 		ntickdelta = 10 * tickadj;
    172 	else
    173 		ntickdelta = tickadj;
    174 	if (ndelta % ntickdelta)
    175 		ndelta = ndelta / ntickdelta * ntickdelta;
    176 
    177 	/*
    178 	 * To make hardclock()'s job easier, make the per-tick delta negative
    179 	 * if we want time to run slower; then hardclock can simply compute
    180 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    181 	 */
    182 	if (ndelta < 0)
    183 		ntickdelta = -ntickdelta;
    184 	s = splclock();
    185 	odelta = timedelta;
    186 	timedelta = ndelta;
    187 	tickdelta = ntickdelta;
    188 	splx(s);
    189 
    190 	if (SCARG(uap, olddelta)) {
    191 		atv.tv_sec = odelta / 1000000;
    192 		atv.tv_usec = odelta % 1000000;
    193 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
    194 		    sizeof(struct timeval));
    195 	}
    196 	return (0);
    197 }
    198 
    199 /*
    200  * Get value of an interval timer.  The process virtual and
    201  * profiling virtual time timers are kept in the p_stats area, since
    202  * they can be swapped out.  These are kept internally in the
    203  * way they are specified externally: in time until they expire.
    204  *
    205  * The real time interval timer is kept in the process table slot
    206  * for the process, and its value (it_value) is kept as an
    207  * absolute time rather than as a delta, so that it is easy to keep
    208  * periodic real-time signals from drifting.
    209  *
    210  * Virtual time timers are processed in the hardclock() routine of
    211  * kern_clock.c.  The real time timer is processed by a timeout
    212  * routine, called from the softclock() routine.  Since a callout
    213  * may be delayed in real time due to interrupt processing in the system,
    214  * it is possible for the real time timeout routine (realitexpire, given below),
    215  * to be delayed in real time past when it is supposed to occur.  It
    216  * does not suffice, therefore, to reload the real timer .it_value from the
    217  * real time timers .it_interval.  Rather, we compute the next time in
    218  * absolute time the timer should go off.
    219  */
    220 /* ARGSUSED */
    221 int
    222 getitimer(p, uap, retval)
    223 	struct proc *p;
    224 	register struct getitimer_args /* {
    225 		syscallarg(u_int) which;
    226 		syscallarg(struct itimerval *) itv;
    227 	} */ *uap;
    228 	register_t *retval;
    229 {
    230 	struct itimerval aitv;
    231 	int s;
    232 
    233 	if (SCARG(uap, which) > ITIMER_PROF)
    234 		return (EINVAL);
    235 	s = splclock();
    236 	if (SCARG(uap, which) == ITIMER_REAL) {
    237 		/*
    238 		 * Convert from absolute to relative time in .it_value
    239 		 * part of real time timer.  If time for real time timer
    240 		 * has passed return 0, else return difference between
    241 		 * current time and time for the timer to go off.
    242 		 */
    243 		aitv = p->p_realtimer;
    244 		if (timerisset(&aitv.it_value))
    245 			if (timercmp(&aitv.it_value, &time, <))
    246 				timerclear(&aitv.it_value);
    247 			else
    248 				timevalsub(&aitv.it_value,
    249 				    (struct timeval *)&time);
    250 	} else
    251 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    252 	splx(s);
    253 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
    254 	    sizeof (struct itimerval)));
    255 }
    256 
    257 /* ARGSUSED */
    258 int
    259 setitimer(p, uap, retval)
    260 	struct proc *p;
    261 	register struct setitimer_args /* {
    262 		syscallarg(u_int) which;
    263 		syscallarg(struct itimerval *) itv;
    264 		syscallarg(struct itimerval *) oitv;
    265 	} */ *uap;
    266 	register_t *retval;
    267 {
    268 	struct itimerval aitv;
    269 	register struct itimerval *itvp;
    270 	int s, error;
    271 
    272 	if (SCARG(uap, which) > ITIMER_PROF)
    273 		return (EINVAL);
    274 	itvp = SCARG(uap, itv);
    275 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    276 	    sizeof(struct itimerval))))
    277 		return (error);
    278 	if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
    279 	    (error = getitimer(p, uap, retval)))
    280 		return (error);
    281 	if (itvp == 0)
    282 		return (0);
    283 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    284 		return (EINVAL);
    285 	s = splclock();
    286 	if (SCARG(uap, which) == ITIMER_REAL) {
    287 		untimeout(realitexpire, (caddr_t)p);
    288 		if (timerisset(&aitv.it_value)) {
    289 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    290 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
    291 		}
    292 		p->p_realtimer = aitv;
    293 	} else
    294 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    295 	splx(s);
    296 	return (0);
    297 }
    298 
    299 /*
    300  * Real interval timer expired:
    301  * send process whose timer expired an alarm signal.
    302  * If time is not set up to reload, then just return.
    303  * Else compute next time timer should go off which is > current time.
    304  * This is where delay in processing this timeout causes multiple
    305  * SIGALRM calls to be compressed into one.
    306  */
    307 void
    308 realitexpire(arg)
    309 	void *arg;
    310 {
    311 	register struct proc *p;
    312 	int s;
    313 
    314 	p = (struct proc *)arg;
    315 	psignal(p, SIGALRM);
    316 	if (!timerisset(&p->p_realtimer.it_interval)) {
    317 		timerclear(&p->p_realtimer.it_value);
    318 		return;
    319 	}
    320 	for (;;) {
    321 		s = splclock();
    322 		timevaladd(&p->p_realtimer.it_value,
    323 		    &p->p_realtimer.it_interval);
    324 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    325 			timeout(realitexpire, (caddr_t)p,
    326 			    hzto(&p->p_realtimer.it_value));
    327 			splx(s);
    328 			return;
    329 		}
    330 		splx(s);
    331 	}
    332 }
    333 
    334 /*
    335  * Check that a proposed value to load into the .it_value or
    336  * .it_interval part of an interval timer is acceptable, and
    337  * fix it to have at least minimal value (i.e. if it is less
    338  * than the resolution of the clock, round it up.)
    339  */
    340 int
    341 itimerfix(tv)
    342 	struct timeval *tv;
    343 {
    344 
    345 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    346 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    347 		return (EINVAL);
    348 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    349 		tv->tv_usec = tick;
    350 	return (0);
    351 }
    352 
    353 /*
    354  * Decrement an interval timer by a specified number
    355  * of microseconds, which must be less than a second,
    356  * i.e. < 1000000.  If the timer expires, then reload
    357  * it.  In this case, carry over (usec - old value) to
    358  * reduce the value reloaded into the timer so that
    359  * the timer does not drift.  This routine assumes
    360  * that it is called in a context where the timers
    361  * on which it is operating cannot change in value.
    362  */
    363 int
    364 itimerdecr(itp, usec)
    365 	register struct itimerval *itp;
    366 	int usec;
    367 {
    368 
    369 	if (itp->it_value.tv_usec < usec) {
    370 		if (itp->it_value.tv_sec == 0) {
    371 			/* expired, and already in next interval */
    372 			usec -= itp->it_value.tv_usec;
    373 			goto expire;
    374 		}
    375 		itp->it_value.tv_usec += 1000000;
    376 		itp->it_value.tv_sec--;
    377 	}
    378 	itp->it_value.tv_usec -= usec;
    379 	usec = 0;
    380 	if (timerisset(&itp->it_value))
    381 		return (1);
    382 	/* expired, exactly at end of interval */
    383 expire:
    384 	if (timerisset(&itp->it_interval)) {
    385 		itp->it_value = itp->it_interval;
    386 		itp->it_value.tv_usec -= usec;
    387 		if (itp->it_value.tv_usec < 0) {
    388 			itp->it_value.tv_usec += 1000000;
    389 			itp->it_value.tv_sec--;
    390 		}
    391 	} else
    392 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    393 	return (0);
    394 }
    395 
    396 /*
    397  * Add and subtract routines for timevals.
    398  * N.B.: subtract routine doesn't deal with
    399  * results which are before the beginning,
    400  * it just gets very confused in this case.
    401  * Caveat emptor.
    402  */
    403 timevaladd(t1, t2)
    404 	struct timeval *t1, *t2;
    405 {
    406 
    407 	t1->tv_sec += t2->tv_sec;
    408 	t1->tv_usec += t2->tv_usec;
    409 	timevalfix(t1);
    410 }
    411 
    412 timevalsub(t1, t2)
    413 	struct timeval *t1, *t2;
    414 {
    415 
    416 	t1->tv_sec -= t2->tv_sec;
    417 	t1->tv_usec -= t2->tv_usec;
    418 	timevalfix(t1);
    419 }
    420 
    421 timevalfix(t1)
    422 	struct timeval *t1;
    423 {
    424 
    425 	if (t1->tv_usec < 0) {
    426 		t1->tv_sec--;
    427 		t1->tv_usec += 1000000;
    428 	}
    429 	if (t1->tv_usec >= 1000000) {
    430 		t1->tv_sec++;
    431 		t1->tv_usec -= 1000000;
    432 	}
    433 }
    434