kern_time.c revision 1.101 1 /* $NetBSD: kern_time.c,v 1.101 2006/06/07 22:33:40 kardel Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.101 2006/06/07 22:33:40 kardel Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/sa.h>
83 #include <sys/savar.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87 #ifdef __HAVE_TIMECOUNTER
88 #include <sys/timetc.h>
89 #else /* !__HAVE_TIMECOUNTER */
90 #include <sys/timevar.h>
91 #endif /* !__HAVE_TIMECOUNTER */
92 #include <sys/kauth.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs.h>
103 #include <nfs/nfs_var.h>
104 #endif
105
106 #include <machine/cpu.h>
107
108 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 &pool_allocator_nointr);
110 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 &pool_allocator_nointr);
112
113 static void timerupcall(struct lwp *, void *);
114 #ifdef __HAVE_TIMECOUNTER
115 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
116 #endif /* __HAVE_TIMECOUNTER */
117
118 /* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers. Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127 /* This function is used by clock_settime and settimeofday */
128 int
129 settime(struct proc *p, struct timespec *ts)
130 {
131 struct timeval delta, tv;
132 #ifdef __HAVE_TIMECOUNTER
133 struct timeval now;
134 struct timespec ts1;
135 #endif /* !__HAVE_TIMECOUNTER */
136 struct cpu_info *ci;
137 int s;
138
139 /*
140 * Don't allow the time to be set forward so far it will wrap
141 * and become negative, thus allowing an attacker to bypass
142 * the next check below. The cutoff is 1 year before rollover
143 * occurs, so even if the attacker uses adjtime(2) to move
144 * the time past the cutoff, it will take a very long time
145 * to get to the wrap point.
146 *
147 * XXX: we check against INT_MAX since on 64-bit
148 * platforms, sizeof(int) != sizeof(long) and
149 * time_t is 32 bits even when atv.tv_sec is 64 bits.
150 */
151 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152 struct proc *pp = p->p_pptr;
153 log(LOG_WARNING, "pid %d (%s) "
154 "invoked by uid %d ppid %d (%s) "
155 "tried to set clock forward to %ld\n",
156 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158 return (EPERM);
159 }
160 TIMESPEC_TO_TIMEVAL(&tv, ts);
161
162 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163 s = splclock();
164 #ifdef __HAVE_TIMECOUNTER
165 microtime(&now);
166 timersub(&tv, &now, &delta);
167 #else /* !__HAVE_TIMECOUNTER */
168 timersub(&tv, &time, &delta);
169 #endif /* !__HAVE_TIMECOUNTER */
170 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
171 splx(s);
172 return (EPERM);
173 }
174 #ifdef notyet
175 if ((delta.tv_sec < 86400) && securelevel > 0) {
176 splx(s);
177 return (EPERM);
178 }
179 #endif
180 #ifdef __HAVE_TIMECOUNTER
181 ts1.tv_sec = tv.tv_sec;
182 ts1.tv_nsec = tv.tv_usec * 1000;
183 tc_setclock(&ts1);
184 (void) spllowersoftclock();
185 #else /* !__HAVE_TIMECOUNTER */
186 time = tv;
187 (void) spllowersoftclock();
188 timeradd(&boottime, &delta, &boottime);
189 #endif /* !__HAVE_TIMECOUNTER */
190 /*
191 * XXXSMP
192 * This is wrong. We should traverse a list of all
193 * CPUs and add the delta to the runtime of those
194 * CPUs which have a process on them.
195 */
196 ci = curcpu();
197 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
198 &ci->ci_schedstate.spc_runtime);
199 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
200 nqnfs_lease_updatetime(delta.tv_sec);
201 #endif
202 splx(s);
203 resettodr();
204 return (0);
205 }
206
207 /* ARGSUSED */
208 int
209 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
210 {
211 struct sys_clock_gettime_args /* {
212 syscallarg(clockid_t) clock_id;
213 syscallarg(struct timespec *) tp;
214 } */ *uap = v;
215 clockid_t clock_id;
216 struct timespec ats;
217
218 clock_id = SCARG(uap, clock_id);
219 switch (clock_id) {
220 case CLOCK_REALTIME:
221 nanotime(&ats);
222 break;
223 case CLOCK_MONOTONIC:
224 #ifdef __HAVE_TIMECOUNTER
225 nanouptime(&ats);
226 #else /* !__HAVE_TIMECOUNTER */
227 {
228 int s;
229
230 /* XXX "hz" granularity */
231 s = splclock();
232 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
233 splx(s);
234 }
235 #endif /* !__HAVE_TIMECOUNTER */
236 break;
237 default:
238 return (EINVAL);
239 }
240
241 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
242 }
243
244 /* ARGSUSED */
245 int
246 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
247 {
248 struct sys_clock_settime_args /* {
249 syscallarg(clockid_t) clock_id;
250 syscallarg(const struct timespec *) tp;
251 } */ *uap = v;
252 struct proc *p = l->l_proc;
253 int error;
254
255 if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
256 &p->p_acflag)) != 0)
257 return (error);
258
259 return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
260 }
261
262
263 int
264 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
265 {
266 struct timespec ats;
267 int error;
268
269 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
270 return (error);
271
272 switch (clock_id) {
273 case CLOCK_REALTIME:
274 if ((error = settime(p, &ats)) != 0)
275 return (error);
276 break;
277 case CLOCK_MONOTONIC:
278 return (EINVAL); /* read-only clock */
279 default:
280 return (EINVAL);
281 }
282
283 return 0;
284 }
285
286 int
287 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
288 {
289 struct sys_clock_getres_args /* {
290 syscallarg(clockid_t) clock_id;
291 syscallarg(struct timespec *) tp;
292 } */ *uap = v;
293 clockid_t clock_id;
294 struct timespec ts;
295 int error = 0;
296
297 clock_id = SCARG(uap, clock_id);
298 switch (clock_id) {
299 case CLOCK_REALTIME:
300 case CLOCK_MONOTONIC:
301 ts.tv_sec = 0;
302 ts.tv_nsec = 1000000000 / hz;
303 break;
304 default:
305 return (EINVAL);
306 }
307
308 if (SCARG(uap, tp))
309 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
310
311 return error;
312 }
313
314 /* ARGSUSED */
315 int
316 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
317 {
318 #ifdef __HAVE_TIMECOUNTER
319 static int nanowait;
320 struct sys_nanosleep_args/* {
321 syscallarg(struct timespec *) rqtp;
322 syscallarg(struct timespec *) rmtp;
323 } */ *uap = v;
324 struct timespec rmt, rqt;
325 int error, timo;
326
327 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
328 if (error)
329 return (error);
330
331 if (itimespecfix(&rqt))
332 return (EINVAL);
333
334 timo = tstohz(&rqt);
335 /*
336 * Avoid inadvertantly sleeping forever
337 */
338 if (timo == 0)
339 timo = 1;
340
341 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
342 if (error == ERESTART)
343 error = EINTR;
344 if (error == EWOULDBLOCK)
345 error = 0;
346
347 if (SCARG(uap, rmtp)) {
348 int error1;
349
350 getnanotime(&rmt);
351
352 timespecsub(&rqt, &rmt, &rmt);
353 if (rmt.tv_sec < 0)
354 timespecclear(&rmt);
355
356 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
357 sizeof(rmt));
358 if (error1)
359 return (error1);
360 }
361
362 return error;
363 #else /* !__HAVE_TIMECOUNTER */
364 static int nanowait;
365 struct sys_nanosleep_args/* {
366 syscallarg(struct timespec *) rqtp;
367 syscallarg(struct timespec *) rmtp;
368 } */ *uap = v;
369 struct timespec rqt;
370 struct timespec rmt;
371 struct timeval atv, utv;
372 int error, s, timo;
373
374 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
375 if (error)
376 return (error);
377
378 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
379 if (itimerfix(&atv))
380 return (EINVAL);
381
382 s = splclock();
383 timeradd(&atv,&time,&atv);
384 timo = hzto(&atv);
385 /*
386 * Avoid inadvertantly sleeping forever
387 */
388 if (timo == 0)
389 timo = 1;
390 splx(s);
391
392 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
393 if (error == ERESTART)
394 error = EINTR;
395 if (error == EWOULDBLOCK)
396 error = 0;
397
398 if (SCARG(uap, rmtp)) {
399 int error1;
400
401 s = splclock();
402 utv = time;
403 splx(s);
404
405 timersub(&atv, &utv, &utv);
406 if (utv.tv_sec < 0)
407 timerclear(&utv);
408
409 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
410 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
411 sizeof(rmt));
412 if (error1)
413 return (error1);
414 }
415
416 return error;
417 #endif /* !__HAVE_TIMECOUNTER */
418 }
419
420 /* ARGSUSED */
421 int
422 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
423 {
424 struct sys_gettimeofday_args /* {
425 syscallarg(struct timeval *) tp;
426 syscallarg(void *) tzp; really "struct timezone *"
427 } */ *uap = v;
428 struct timeval atv;
429 int error = 0;
430 struct timezone tzfake;
431
432 if (SCARG(uap, tp)) {
433 microtime(&atv);
434 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
435 if (error)
436 return (error);
437 }
438 if (SCARG(uap, tzp)) {
439 /*
440 * NetBSD has no kernel notion of time zone, so we just
441 * fake up a timezone struct and return it if demanded.
442 */
443 tzfake.tz_minuteswest = 0;
444 tzfake.tz_dsttime = 0;
445 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
446 }
447 return (error);
448 }
449
450 /* ARGSUSED */
451 int
452 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
453 {
454 struct sys_settimeofday_args /* {
455 syscallarg(const struct timeval *) tv;
456 syscallarg(const void *) tzp; really "const struct timezone *"
457 } */ *uap = v;
458 struct proc *p = l->l_proc;
459 int error;
460
461 if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
462 &p->p_acflag)) != 0)
463 return (error);
464
465 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
466 }
467
468 int
469 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
470 struct proc *p)
471 {
472 struct timeval atv;
473 struct timespec ts;
474 int error;
475
476 /* Verify all parameters before changing time. */
477 /*
478 * NetBSD has no kernel notion of time zone, and only an
479 * obsolete program would try to set it, so we log a warning.
480 */
481 if (utzp)
482 log(LOG_WARNING, "pid %d attempted to set the "
483 "(obsolete) kernel time zone\n", p->p_pid);
484
485 if (utv == NULL)
486 return 0;
487
488 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
489 return error;
490 TIMEVAL_TO_TIMESPEC(&atv, &ts);
491 return settime(p, &ts);
492 }
493
494 #ifndef __HAVE_TIMECOUNTER
495 int tickdelta; /* current clock skew, us. per tick */
496 long timedelta; /* unapplied time correction, us. */
497 long bigadj = 1000000; /* use 10x skew above bigadj us. */
498 #endif
499
500 int time_adjusted; /* set if an adjustment is made */
501
502 /* ARGSUSED */
503 int
504 sys_adjtime(struct lwp *l, void *v, register_t *retval)
505 {
506 struct sys_adjtime_args /* {
507 syscallarg(const struct timeval *) delta;
508 syscallarg(struct timeval *) olddelta;
509 } */ *uap = v;
510 struct proc *p = l->l_proc;
511 int error;
512
513 if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
514 &p->p_acflag)) != 0)
515 return (error);
516
517 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
518 }
519
520 int
521 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
522 {
523 struct timeval atv;
524 int error = 0;
525
526 #ifdef __HAVE_TIMECOUNTER
527 extern int64_t time_adjtime; /* in kern_ntptime.c */
528 #else /* !__HAVE_TIMECOUNTER */
529 long ndelta, ntickdelta, odelta;
530 int s;
531 #endif /* !__HAVE_TIMECOUNTER */
532
533 #ifdef __HAVE_TIMECOUNTER
534 if (olddelta) {
535 atv.tv_sec = time_adjtime / 1000000;
536 atv.tv_usec = time_adjtime % 1000000;
537 if (atv.tv_usec < 0) {
538 atv.tv_usec += 1000000;
539 atv.tv_sec--;
540 }
541 error = copyout(&atv, olddelta, sizeof(struct timeval));
542 if (error)
543 return (error);
544 }
545
546 if (delta) {
547 error = copyin(delta, &atv, sizeof(struct timeval));
548 if (error)
549 return (error);
550
551 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
552 atv.tv_usec;
553
554 if (time_adjtime)
555 /* We need to save the system time during shutdown */
556 time_adjusted |= 1;
557 }
558 #else /* !__HAVE_TIMECOUNTER */
559 error = copyin(delta, &atv, sizeof(struct timeval));
560 if (error)
561 return (error);
562
563 /*
564 * Compute the total correction and the rate at which to apply it.
565 * Round the adjustment down to a whole multiple of the per-tick
566 * delta, so that after some number of incremental changes in
567 * hardclock(), tickdelta will become zero, lest the correction
568 * overshoot and start taking us away from the desired final time.
569 */
570 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
571 if (ndelta > bigadj || ndelta < -bigadj)
572 ntickdelta = 10 * tickadj;
573 else
574 ntickdelta = tickadj;
575 if (ndelta % ntickdelta)
576 ndelta = ndelta / ntickdelta * ntickdelta;
577
578 /*
579 * To make hardclock()'s job easier, make the per-tick delta negative
580 * if we want time to run slower; then hardclock can simply compute
581 * tick + tickdelta, and subtract tickdelta from timedelta.
582 */
583 if (ndelta < 0)
584 ntickdelta = -ntickdelta;
585 if (ndelta != 0)
586 /* We need to save the system clock time during shutdown */
587 time_adjusted |= 1;
588 s = splclock();
589 odelta = timedelta;
590 timedelta = ndelta;
591 tickdelta = ntickdelta;
592 splx(s);
593
594 if (olddelta) {
595 atv.tv_sec = odelta / 1000000;
596 atv.tv_usec = odelta % 1000000;
597 error = copyout(&atv, olddelta, sizeof(struct timeval));
598 }
599 #endif /* __HAVE_TIMECOUNTER */
600
601 return error;
602 }
603
604 /*
605 * Interval timer support. Both the BSD getitimer() family and the POSIX
606 * timer_*() family of routines are supported.
607 *
608 * All timers are kept in an array pointed to by p_timers, which is
609 * allocated on demand - many processes don't use timers at all. The
610 * first three elements in this array are reserved for the BSD timers:
611 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
612 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
613 * syscall.
614 *
615 * Realtime timers are kept in the ptimer structure as an absolute
616 * time; virtual time timers are kept as a linked list of deltas.
617 * Virtual time timers are processed in the hardclock() routine of
618 * kern_clock.c. The real time timer is processed by a callout
619 * routine, called from the softclock() routine. Since a callout may
620 * be delayed in real time due to interrupt processing in the system,
621 * it is possible for the real time timeout routine (realtimeexpire,
622 * given below), to be delayed in real time past when it is supposed
623 * to occur. It does not suffice, therefore, to reload the real timer
624 * .it_value from the real time timers .it_interval. Rather, we
625 * compute the next time in absolute time the timer should go off. */
626
627 /* Allocate a POSIX realtime timer. */
628 int
629 sys_timer_create(struct lwp *l, void *v, register_t *retval)
630 {
631 struct sys_timer_create_args /* {
632 syscallarg(clockid_t) clock_id;
633 syscallarg(struct sigevent *) evp;
634 syscallarg(timer_t *) timerid;
635 } */ *uap = v;
636
637 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
638 SCARG(uap, evp), copyin, l->l_proc);
639 }
640
641 int
642 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
643 copyin_t fetch_event, struct proc *p)
644 {
645 int error;
646 timer_t timerid;
647 struct ptimer *pt;
648
649 if (id < CLOCK_REALTIME ||
650 id > CLOCK_PROF)
651 return (EINVAL);
652
653 if (p->p_timers == NULL)
654 timers_alloc(p);
655
656 /* Find a free timer slot, skipping those reserved for setitimer(). */
657 for (timerid = 3; timerid < TIMER_MAX; timerid++)
658 if (p->p_timers->pts_timers[timerid] == NULL)
659 break;
660
661 if (timerid == TIMER_MAX)
662 return EAGAIN;
663
664 pt = pool_get(&ptimer_pool, PR_WAITOK);
665 if (evp) {
666 if (((error =
667 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
668 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
669 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
670 pool_put(&ptimer_pool, pt);
671 return (error ? error : EINVAL);
672 }
673 } else {
674 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
675 switch (id) {
676 case CLOCK_REALTIME:
677 pt->pt_ev.sigev_signo = SIGALRM;
678 break;
679 case CLOCK_VIRTUAL:
680 pt->pt_ev.sigev_signo = SIGVTALRM;
681 break;
682 case CLOCK_PROF:
683 pt->pt_ev.sigev_signo = SIGPROF;
684 break;
685 }
686 pt->pt_ev.sigev_value.sival_int = timerid;
687 }
688 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
689 pt->pt_info.ksi_errno = 0;
690 pt->pt_info.ksi_code = 0;
691 pt->pt_info.ksi_pid = p->p_pid;
692 pt->pt_info.ksi_uid = kauth_cred_getuid(p->p_cred);
693 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
694
695 pt->pt_type = id;
696 pt->pt_proc = p;
697 pt->pt_overruns = 0;
698 pt->pt_poverruns = 0;
699 pt->pt_entry = timerid;
700 timerclear(&pt->pt_time.it_value);
701 if (id == CLOCK_REALTIME)
702 callout_init(&pt->pt_ch);
703 else
704 pt->pt_active = 0;
705
706 p->p_timers->pts_timers[timerid] = pt;
707
708 return copyout(&timerid, tid, sizeof(timerid));
709 }
710
711 /* Delete a POSIX realtime timer */
712 int
713 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
714 {
715 struct sys_timer_delete_args /* {
716 syscallarg(timer_t) timerid;
717 } */ *uap = v;
718 struct proc *p = l->l_proc;
719 timer_t timerid;
720 struct ptimer *pt, *ptn;
721 int s;
722
723 timerid = SCARG(uap, timerid);
724
725 if ((p->p_timers == NULL) ||
726 (timerid < 2) || (timerid >= TIMER_MAX) ||
727 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
728 return (EINVAL);
729
730 if (pt->pt_type == CLOCK_REALTIME)
731 callout_stop(&pt->pt_ch);
732 else if (pt->pt_active) {
733 s = splclock();
734 ptn = LIST_NEXT(pt, pt_list);
735 LIST_REMOVE(pt, pt_list);
736 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
737 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
738 &ptn->pt_time.it_value);
739 splx(s);
740 }
741
742 p->p_timers->pts_timers[timerid] = NULL;
743 pool_put(&ptimer_pool, pt);
744
745 return (0);
746 }
747
748 /*
749 * Set up the given timer. The value in pt->pt_time.it_value is taken
750 * to be an absolute time for CLOCK_REALTIME timers and a relative
751 * time for virtual timers.
752 * Must be called at splclock().
753 */
754 void
755 timer_settime(struct ptimer *pt)
756 {
757 struct ptimer *ptn, *pptn;
758 struct ptlist *ptl;
759
760 if (pt->pt_type == CLOCK_REALTIME) {
761 callout_stop(&pt->pt_ch);
762 if (timerisset(&pt->pt_time.it_value)) {
763 /*
764 * Don't need to check hzto() return value, here.
765 * callout_reset() does it for us.
766 */
767 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
768 realtimerexpire, pt);
769 }
770 } else {
771 if (pt->pt_active) {
772 ptn = LIST_NEXT(pt, pt_list);
773 LIST_REMOVE(pt, pt_list);
774 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
775 timeradd(&pt->pt_time.it_value,
776 &ptn->pt_time.it_value,
777 &ptn->pt_time.it_value);
778 }
779 if (timerisset(&pt->pt_time.it_value)) {
780 if (pt->pt_type == CLOCK_VIRTUAL)
781 ptl = &pt->pt_proc->p_timers->pts_virtual;
782 else
783 ptl = &pt->pt_proc->p_timers->pts_prof;
784
785 for (ptn = LIST_FIRST(ptl), pptn = NULL;
786 ptn && timercmp(&pt->pt_time.it_value,
787 &ptn->pt_time.it_value, >);
788 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
789 timersub(&pt->pt_time.it_value,
790 &ptn->pt_time.it_value,
791 &pt->pt_time.it_value);
792
793 if (pptn)
794 LIST_INSERT_AFTER(pptn, pt, pt_list);
795 else
796 LIST_INSERT_HEAD(ptl, pt, pt_list);
797
798 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
799 timersub(&ptn->pt_time.it_value,
800 &pt->pt_time.it_value,
801 &ptn->pt_time.it_value);
802
803 pt->pt_active = 1;
804 } else
805 pt->pt_active = 0;
806 }
807 }
808
809 void
810 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
811 {
812 #ifdef __HAVE_TIMECOUNTER
813 struct timeval now;
814 #endif
815 struct ptimer *ptn;
816
817 *aitv = pt->pt_time;
818 if (pt->pt_type == CLOCK_REALTIME) {
819 /*
820 * Convert from absolute to relative time in .it_value
821 * part of real time timer. If time for real time
822 * timer has passed return 0, else return difference
823 * between current time and time for the timer to go
824 * off.
825 */
826 if (timerisset(&aitv->it_value)) {
827 #ifdef __HAVE_TIMECOUNTER
828 getmicrotime(&now);
829 if (timercmp(&aitv->it_value, &now, <))
830 timerclear(&aitv->it_value);
831 else
832 timersub(&aitv->it_value, &now,
833 &aitv->it_value);
834 #else /* !__HAVE_TIMECOUNTER */
835 if (timercmp(&aitv->it_value, &time, <))
836 timerclear(&aitv->it_value);
837 else
838 timersub(&aitv->it_value, &time,
839 &aitv->it_value);
840 #endif /* !__HAVE_TIMECOUNTER */
841 }
842 } else if (pt->pt_active) {
843 if (pt->pt_type == CLOCK_VIRTUAL)
844 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
845 else
846 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
847 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
848 timeradd(&aitv->it_value,
849 &ptn->pt_time.it_value, &aitv->it_value);
850 KASSERT(ptn != NULL); /* pt should be findable on the list */
851 } else
852 timerclear(&aitv->it_value);
853 }
854
855
856
857 /* Set and arm a POSIX realtime timer */
858 int
859 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
860 {
861 struct sys_timer_settime_args /* {
862 syscallarg(timer_t) timerid;
863 syscallarg(int) flags;
864 syscallarg(const struct itimerspec *) value;
865 syscallarg(struct itimerspec *) ovalue;
866 } */ *uap = v;
867 int error;
868 struct itimerspec value, ovalue, *ovp = NULL;
869
870 if ((error = copyin(SCARG(uap, value), &value,
871 sizeof(struct itimerspec))) != 0)
872 return (error);
873
874 if (SCARG(uap, ovalue))
875 ovp = &ovalue;
876
877 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
878 SCARG(uap, flags), l->l_proc)) != 0)
879 return error;
880
881 if (ovp)
882 return copyout(&ovalue, SCARG(uap, ovalue),
883 sizeof(struct itimerspec));
884 return 0;
885 }
886
887 int
888 dotimer_settime(int timerid, struct itimerspec *value,
889 struct itimerspec *ovalue, int flags, struct proc *p)
890 {
891 #ifdef __HAVE_TIMECOUNTER
892 struct timeval now;
893 #endif
894 struct itimerval val, oval;
895 struct ptimer *pt;
896 int s;
897
898 if ((p->p_timers == NULL) ||
899 (timerid < 2) || (timerid >= TIMER_MAX) ||
900 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
901 return (EINVAL);
902
903 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
904 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
905 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
906 return (EINVAL);
907
908 oval = pt->pt_time;
909 pt->pt_time = val;
910
911 s = splclock();
912 /*
913 * If we've been passed a relative time for a realtime timer,
914 * convert it to absolute; if an absolute time for a virtual
915 * timer, convert it to relative and make sure we don't set it
916 * to zero, which would cancel the timer, or let it go
917 * negative, which would confuse the comparison tests.
918 */
919 if (timerisset(&pt->pt_time.it_value)) {
920 if (pt->pt_type == CLOCK_REALTIME) {
921 #ifdef __HAVE_TIMECOUNTER
922 if ((flags & TIMER_ABSTIME) == 0) {
923 getmicrotime(&now);
924 timeradd(&pt->pt_time.it_value, &now,
925 &pt->pt_time.it_value);
926 }
927 #else /* !__HAVE_TIMECOUNTER */
928 if ((flags & TIMER_ABSTIME) == 0)
929 timeradd(&pt->pt_time.it_value, &time,
930 &pt->pt_time.it_value);
931 #endif /* !__HAVE_TIMECOUNTER */
932 } else {
933 if ((flags & TIMER_ABSTIME) != 0) {
934 #ifdef __HAVE_TIMECOUNTER
935 getmicrotime(&now);
936 timersub(&pt->pt_time.it_value, &now,
937 &pt->pt_time.it_value);
938 #else /* !__HAVE_TIMECOUNTER */
939 timersub(&pt->pt_time.it_value, &time,
940 &pt->pt_time.it_value);
941 #endif /* !__HAVE_TIMECOUNTER */
942 if (!timerisset(&pt->pt_time.it_value) ||
943 pt->pt_time.it_value.tv_sec < 0) {
944 pt->pt_time.it_value.tv_sec = 0;
945 pt->pt_time.it_value.tv_usec = 1;
946 }
947 }
948 }
949 }
950
951 timer_settime(pt);
952 splx(s);
953
954 if (ovalue) {
955 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
956 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
957 }
958
959 return (0);
960 }
961
962 /* Return the time remaining until a POSIX timer fires. */
963 int
964 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
965 {
966 struct sys_timer_gettime_args /* {
967 syscallarg(timer_t) timerid;
968 syscallarg(struct itimerspec *) value;
969 } */ *uap = v;
970 struct itimerspec its;
971 int error;
972
973 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
974 &its)) != 0)
975 return error;
976
977 return copyout(&its, SCARG(uap, value), sizeof(its));
978 }
979
980 int
981 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
982 {
983 int s;
984 struct ptimer *pt;
985 struct itimerval aitv;
986
987 if ((p->p_timers == NULL) ||
988 (timerid < 2) || (timerid >= TIMER_MAX) ||
989 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
990 return (EINVAL);
991
992 s = splclock();
993 timer_gettime(pt, &aitv);
994 splx(s);
995
996 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
997 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
998
999 return 0;
1000 }
1001
1002 /*
1003 * Return the count of the number of times a periodic timer expired
1004 * while a notification was already pending. The counter is reset when
1005 * a timer expires and a notification can be posted.
1006 */
1007 int
1008 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1009 {
1010 struct sys_timer_getoverrun_args /* {
1011 syscallarg(timer_t) timerid;
1012 } */ *uap = v;
1013 struct proc *p = l->l_proc;
1014 int timerid;
1015 struct ptimer *pt;
1016
1017 timerid = SCARG(uap, timerid);
1018
1019 if ((p->p_timers == NULL) ||
1020 (timerid < 2) || (timerid >= TIMER_MAX) ||
1021 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1022 return (EINVAL);
1023
1024 *retval = pt->pt_poverruns;
1025
1026 return (0);
1027 }
1028
1029 /* Glue function that triggers an upcall; called from userret(). */
1030 static void
1031 timerupcall(struct lwp *l, void *arg)
1032 {
1033 struct ptimers *pt = (struct ptimers *)arg;
1034 unsigned int i, fired, done;
1035
1036 KDASSERT(l->l_proc->p_sa);
1037 /* Bail out if we do not own the virtual processor */
1038 if (l->l_savp->savp_lwp != l)
1039 return ;
1040
1041 KERNEL_PROC_LOCK(l);
1042
1043 fired = pt->pts_fired;
1044 done = 0;
1045 while ((i = ffs(fired)) != 0) {
1046 siginfo_t *si;
1047 int mask = 1 << --i;
1048 int f;
1049
1050 f = l->l_flag & L_SA;
1051 l->l_flag &= ~L_SA;
1052 si = siginfo_alloc(PR_WAITOK);
1053 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1054 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1055 sizeof(*si), si, siginfo_free) != 0) {
1056 siginfo_free(si);
1057 /* XXX What do we do here?? */
1058 } else
1059 done |= mask;
1060 fired &= ~mask;
1061 l->l_flag |= f;
1062 }
1063 pt->pts_fired &= ~done;
1064 if (pt->pts_fired == 0)
1065 l->l_proc->p_userret = NULL;
1066
1067 KERNEL_PROC_UNLOCK(l);
1068 }
1069
1070 /*
1071 * Real interval timer expired:
1072 * send process whose timer expired an alarm signal.
1073 * If time is not set up to reload, then just return.
1074 * Else compute next time timer should go off which is > current time.
1075 * This is where delay in processing this timeout causes multiple
1076 * SIGALRM calls to be compressed into one.
1077 */
1078 void
1079 realtimerexpire(void *arg)
1080 {
1081 #ifdef __HAVE_TIMECOUNTER
1082 struct timeval now;
1083 #endif
1084 struct ptimer *pt;
1085 int s;
1086
1087 pt = (struct ptimer *)arg;
1088
1089 itimerfire(pt);
1090
1091 if (!timerisset(&pt->pt_time.it_interval)) {
1092 timerclear(&pt->pt_time.it_value);
1093 return;
1094 }
1095 #ifdef __HAVE_TIMECOUNTER
1096 for (;;) {
1097 s = splclock(); /* XXX need spl now? */
1098 timeradd(&pt->pt_time.it_value,
1099 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1100 getmicrotime(&now);
1101 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1102 /*
1103 * Don't need to check hzto() return value, here.
1104 * callout_reset() does it for us.
1105 */
1106 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1107 realtimerexpire, pt);
1108 splx(s);
1109 return;
1110 }
1111 splx(s);
1112 pt->pt_overruns++;
1113 }
1114 #else /* !__HAVE_TIMECOUNTER */
1115 for (;;) {
1116 s = splclock();
1117 timeradd(&pt->pt_time.it_value,
1118 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1119 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1120 /*
1121 * Don't need to check hzto() return value, here.
1122 * callout_reset() does it for us.
1123 */
1124 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1125 realtimerexpire, pt);
1126 splx(s);
1127 return;
1128 }
1129 splx(s);
1130 pt->pt_overruns++;
1131 }
1132 #endif /* !__HAVE_TIMECOUNTER */
1133 }
1134
1135 /* BSD routine to get the value of an interval timer. */
1136 /* ARGSUSED */
1137 int
1138 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1139 {
1140 struct sys_getitimer_args /* {
1141 syscallarg(int) which;
1142 syscallarg(struct itimerval *) itv;
1143 } */ *uap = v;
1144 struct proc *p = l->l_proc;
1145 struct itimerval aitv;
1146 int error;
1147
1148 error = dogetitimer(p, SCARG(uap, which), &aitv);
1149 if (error)
1150 return error;
1151 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1152 }
1153
1154 int
1155 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1156 {
1157 int s;
1158
1159 if ((u_int)which > ITIMER_PROF)
1160 return (EINVAL);
1161
1162 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1163 timerclear(&itvp->it_value);
1164 timerclear(&itvp->it_interval);
1165 } else {
1166 s = splclock();
1167 timer_gettime(p->p_timers->pts_timers[which], itvp);
1168 splx(s);
1169 }
1170
1171 return 0;
1172 }
1173
1174 /* BSD routine to set/arm an interval timer. */
1175 /* ARGSUSED */
1176 int
1177 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1178 {
1179 struct sys_setitimer_args /* {
1180 syscallarg(int) which;
1181 syscallarg(const struct itimerval *) itv;
1182 syscallarg(struct itimerval *) oitv;
1183 } */ *uap = v;
1184 struct proc *p = l->l_proc;
1185 int which = SCARG(uap, which);
1186 struct sys_getitimer_args getargs;
1187 const struct itimerval *itvp;
1188 struct itimerval aitv;
1189 int error;
1190
1191 if ((u_int)which > ITIMER_PROF)
1192 return (EINVAL);
1193 itvp = SCARG(uap, itv);
1194 if (itvp &&
1195 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1196 return (error);
1197 if (SCARG(uap, oitv) != NULL) {
1198 SCARG(&getargs, which) = which;
1199 SCARG(&getargs, itv) = SCARG(uap, oitv);
1200 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1201 return (error);
1202 }
1203 if (itvp == 0)
1204 return (0);
1205
1206 return dosetitimer(p, which, &aitv);
1207 }
1208
1209 int
1210 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1211 {
1212 #ifdef __HAVE_TIMECOUNTER
1213 struct timeval now;
1214 #endif
1215 struct ptimer *pt;
1216 int s;
1217
1218 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1219 return (EINVAL);
1220
1221 /*
1222 * Don't bother allocating data structures if the process just
1223 * wants to clear the timer.
1224 */
1225 if (!timerisset(&itvp->it_value) &&
1226 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1227 return (0);
1228
1229 if (p->p_timers == NULL)
1230 timers_alloc(p);
1231 if (p->p_timers->pts_timers[which] == NULL) {
1232 pt = pool_get(&ptimer_pool, PR_WAITOK);
1233 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1234 pt->pt_ev.sigev_value.sival_int = which;
1235 pt->pt_overruns = 0;
1236 pt->pt_proc = p;
1237 pt->pt_type = which;
1238 pt->pt_entry = which;
1239 switch (which) {
1240 case ITIMER_REAL:
1241 callout_init(&pt->pt_ch);
1242 pt->pt_ev.sigev_signo = SIGALRM;
1243 break;
1244 case ITIMER_VIRTUAL:
1245 pt->pt_active = 0;
1246 pt->pt_ev.sigev_signo = SIGVTALRM;
1247 break;
1248 case ITIMER_PROF:
1249 pt->pt_active = 0;
1250 pt->pt_ev.sigev_signo = SIGPROF;
1251 break;
1252 }
1253 } else
1254 pt = p->p_timers->pts_timers[which];
1255
1256 pt->pt_time = *itvp;
1257 p->p_timers->pts_timers[which] = pt;
1258
1259 s = splclock();
1260 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1261 /* Convert to absolute time */
1262 #ifdef __HAVE_TIMECOUNTER
1263 /* XXX need to wrap in splclock for timecounters case? */
1264 getmicrotime(&now);
1265 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1266 #else /* !__HAVE_TIMECOUNTER */
1267 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1268 #endif /* !__HAVE_TIMECOUNTER */
1269 }
1270 timer_settime(pt);
1271 splx(s);
1272
1273 return (0);
1274 }
1275
1276 /* Utility routines to manage the array of pointers to timers. */
1277 void
1278 timers_alloc(struct proc *p)
1279 {
1280 int i;
1281 struct ptimers *pts;
1282
1283 pts = pool_get(&ptimers_pool, PR_WAITOK);
1284 LIST_INIT(&pts->pts_virtual);
1285 LIST_INIT(&pts->pts_prof);
1286 for (i = 0; i < TIMER_MAX; i++)
1287 pts->pts_timers[i] = NULL;
1288 pts->pts_fired = 0;
1289 p->p_timers = pts;
1290 }
1291
1292 /*
1293 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1294 * then clean up all timers and free all the data structures. If
1295 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1296 * by timer_create(), not the BSD setitimer() timers, and only free the
1297 * structure if none of those remain.
1298 */
1299 void
1300 timers_free(struct proc *p, int which)
1301 {
1302 int i, s;
1303 struct ptimers *pts;
1304 struct ptimer *pt, *ptn;
1305 struct timeval tv;
1306
1307 if (p->p_timers) {
1308 pts = p->p_timers;
1309 if (which == TIMERS_ALL)
1310 i = 0;
1311 else {
1312 s = splclock();
1313 timerclear(&tv);
1314 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1315 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1316 ptn = LIST_NEXT(ptn, pt_list))
1317 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1318 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1319 if (ptn) {
1320 timeradd(&tv, &ptn->pt_time.it_value,
1321 &ptn->pt_time.it_value);
1322 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1323 ptn, pt_list);
1324 }
1325
1326 timerclear(&tv);
1327 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1328 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1329 ptn = LIST_NEXT(ptn, pt_list))
1330 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1331 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1332 if (ptn) {
1333 timeradd(&tv, &ptn->pt_time.it_value,
1334 &ptn->pt_time.it_value);
1335 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1336 pt_list);
1337 }
1338 splx(s);
1339 i = 3;
1340 }
1341 for ( ; i < TIMER_MAX; i++)
1342 if ((pt = pts->pts_timers[i]) != NULL) {
1343 if (pt->pt_type == CLOCK_REALTIME)
1344 callout_stop(&pt->pt_ch);
1345 pts->pts_timers[i] = NULL;
1346 pool_put(&ptimer_pool, pt);
1347 }
1348 if ((pts->pts_timers[0] == NULL) &&
1349 (pts->pts_timers[1] == NULL) &&
1350 (pts->pts_timers[2] == NULL)) {
1351 p->p_timers = NULL;
1352 pool_put(&ptimers_pool, pts);
1353 }
1354 }
1355 }
1356
1357 /*
1358 * Check that a proposed value to load into the .it_value or
1359 * .it_interval part of an interval timer is acceptable, and
1360 * fix it to have at least minimal value (i.e. if it is less
1361 * than the resolution of the clock, round it up.)
1362 */
1363 int
1364 itimerfix(struct timeval *tv)
1365 {
1366
1367 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1368 return (EINVAL);
1369 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1370 tv->tv_usec = tick;
1371 return (0);
1372 }
1373
1374 #ifdef __HAVE_TIMECOUNTER
1375 int
1376 itimespecfix(struct timespec *ts)
1377 {
1378
1379 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1380 return (EINVAL);
1381 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1382 ts->tv_nsec = tick * 1000;
1383 return (0);
1384 }
1385 #endif /* __HAVE_TIMECOUNTER */
1386
1387 /*
1388 * Decrement an interval timer by a specified number
1389 * of microseconds, which must be less than a second,
1390 * i.e. < 1000000. If the timer expires, then reload
1391 * it. In this case, carry over (usec - old value) to
1392 * reduce the value reloaded into the timer so that
1393 * the timer does not drift. This routine assumes
1394 * that it is called in a context where the timers
1395 * on which it is operating cannot change in value.
1396 */
1397 int
1398 itimerdecr(struct ptimer *pt, int usec)
1399 {
1400 struct itimerval *itp;
1401
1402 itp = &pt->pt_time;
1403 if (itp->it_value.tv_usec < usec) {
1404 if (itp->it_value.tv_sec == 0) {
1405 /* expired, and already in next interval */
1406 usec -= itp->it_value.tv_usec;
1407 goto expire;
1408 }
1409 itp->it_value.tv_usec += 1000000;
1410 itp->it_value.tv_sec--;
1411 }
1412 itp->it_value.tv_usec -= usec;
1413 usec = 0;
1414 if (timerisset(&itp->it_value))
1415 return (1);
1416 /* expired, exactly at end of interval */
1417 expire:
1418 if (timerisset(&itp->it_interval)) {
1419 itp->it_value = itp->it_interval;
1420 itp->it_value.tv_usec -= usec;
1421 if (itp->it_value.tv_usec < 0) {
1422 itp->it_value.tv_usec += 1000000;
1423 itp->it_value.tv_sec--;
1424 }
1425 timer_settime(pt);
1426 } else
1427 itp->it_value.tv_usec = 0; /* sec is already 0 */
1428 return (0);
1429 }
1430
1431 void
1432 itimerfire(struct ptimer *pt)
1433 {
1434 struct proc *p = pt->pt_proc;
1435 struct sadata_vp *vp;
1436 int s;
1437 unsigned int i;
1438
1439 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1440 /*
1441 * No RT signal infrastructure exists at this time;
1442 * just post the signal number and throw away the
1443 * value.
1444 */
1445 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1446 pt->pt_overruns++;
1447 else {
1448 ksiginfo_t ksi;
1449 (void)memset(&ksi, 0, sizeof(ksi));
1450 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1451 ksi.ksi_code = SI_TIMER;
1452 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1453 pt->pt_poverruns = pt->pt_overruns;
1454 pt->pt_overruns = 0;
1455 kpsignal(p, &ksi, NULL);
1456 }
1457 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1458 /* Cause the process to generate an upcall when it returns. */
1459
1460 if (p->p_userret == NULL) {
1461 /*
1462 * XXX stop signals can be processed inside tsleep,
1463 * which can be inside sa_yield's inner loop, which
1464 * makes testing for sa_idle alone insuffucent to
1465 * determine if we really should call setrunnable.
1466 */
1467 pt->pt_poverruns = pt->pt_overruns;
1468 pt->pt_overruns = 0;
1469 i = 1 << pt->pt_entry;
1470 p->p_timers->pts_fired = i;
1471 p->p_userret = timerupcall;
1472 p->p_userret_arg = p->p_timers;
1473
1474 SCHED_LOCK(s);
1475 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1476 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1477 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1478 sched_wakeup(vp->savp_lwp);
1479 break;
1480 }
1481 }
1482 SCHED_UNLOCK(s);
1483 } else if (p->p_userret == timerupcall) {
1484 i = 1 << pt->pt_entry;
1485 if ((p->p_timers->pts_fired & i) == 0) {
1486 pt->pt_poverruns = pt->pt_overruns;
1487 pt->pt_overruns = 0;
1488 p->p_timers->pts_fired |= i;
1489 } else
1490 pt->pt_overruns++;
1491 } else {
1492 pt->pt_overruns++;
1493 if ((p->p_flag & P_WEXIT) == 0)
1494 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1495 p->p_pid, pt->pt_overruns,
1496 pt->pt_ev.sigev_value.sival_int,
1497 p->p_userret);
1498 }
1499 }
1500
1501 }
1502
1503 /*
1504 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1505 * for usage and rationale.
1506 */
1507 int
1508 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1509 {
1510 struct timeval tv, delta;
1511 int rv = 0;
1512 #ifndef __HAVE_TIMECOUNTER
1513 int s;
1514 #endif
1515
1516 #ifdef __HAVE_TIMECOUNTER
1517 getmicrouptime(&tv);
1518 #else /* !__HAVE_TIMECOUNTER */
1519 s = splclock();
1520 tv = mono_time;
1521 splx(s);
1522 #endif /* !__HAVE_TIMECOUNTER */
1523 timersub(&tv, lasttime, &delta);
1524
1525 /*
1526 * check for 0,0 is so that the message will be seen at least once,
1527 * even if interval is huge.
1528 */
1529 if (timercmp(&delta, mininterval, >=) ||
1530 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1531 *lasttime = tv;
1532 rv = 1;
1533 }
1534
1535 return (rv);
1536 }
1537
1538 /*
1539 * ppsratecheck(): packets (or events) per second limitation.
1540 */
1541 int
1542 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1543 {
1544 struct timeval tv, delta;
1545 int rv;
1546 #ifndef __HAVE_TIMECOUNTER
1547 int s;
1548 #endif
1549
1550 #ifdef __HAVE_TIMECOUNTER
1551 getmicrouptime(&tv);
1552 #else /* !__HAVE_TIMECOUNTER */
1553 s = splclock();
1554 tv = mono_time;
1555 splx(s);
1556 #endif /* !__HAVE_TIMECOUNTER */
1557 timersub(&tv, lasttime, &delta);
1558
1559 /*
1560 * check for 0,0 is so that the message will be seen at least once.
1561 * if more than one second have passed since the last update of
1562 * lasttime, reset the counter.
1563 *
1564 * we do increment *curpps even in *curpps < maxpps case, as some may
1565 * try to use *curpps for stat purposes as well.
1566 */
1567 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1568 delta.tv_sec >= 1) {
1569 *lasttime = tv;
1570 *curpps = 0;
1571 }
1572 if (maxpps < 0)
1573 rv = 1;
1574 else if (*curpps < maxpps)
1575 rv = 1;
1576 else
1577 rv = 0;
1578
1579 #if 1 /*DIAGNOSTIC?*/
1580 /* be careful about wrap-around */
1581 if (*curpps + 1 > *curpps)
1582 *curpps = *curpps + 1;
1583 #else
1584 /*
1585 * assume that there's not too many calls to this function.
1586 * not sure if the assumption holds, as it depends on *caller's*
1587 * behavior, not the behavior of this function.
1588 * IMHO it is wrong to make assumption on the caller's behavior,
1589 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1590 */
1591 *curpps = *curpps + 1;
1592 #endif
1593
1594 return (rv);
1595 }
1596