kern_time.c revision 1.105 1 /* $NetBSD: kern_time.c,v 1.105 2006/07/23 22:06:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.105 2006/07/23 22:06:11 ad Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/sa.h>
83 #include <sys/savar.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87 #ifdef __HAVE_TIMECOUNTER
88 #include <sys/timetc.h>
89 #else /* !__HAVE_TIMECOUNTER */
90 #include <sys/timevar.h>
91 #endif /* !__HAVE_TIMECOUNTER */
92 #include <sys/kauth.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs.h>
103 #include <nfs/nfs_var.h>
104 #endif
105
106 #include <machine/cpu.h>
107
108 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 &pool_allocator_nointr);
110 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 &pool_allocator_nointr);
112
113 static void timerupcall(struct lwp *, void *);
114 #ifdef __HAVE_TIMECOUNTER
115 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
116 #endif /* __HAVE_TIMECOUNTER */
117
118 /* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers. Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127 /* This function is used by clock_settime and settimeofday */
128 int
129 settime(struct proc *p, struct timespec *ts)
130 {
131 struct timeval delta, tv;
132 #ifdef __HAVE_TIMECOUNTER
133 struct timeval now;
134 struct timespec ts1;
135 #endif /* !__HAVE_TIMECOUNTER */
136 struct cpu_info *ci;
137 int s;
138
139 /*
140 * Don't allow the time to be set forward so far it will wrap
141 * and become negative, thus allowing an attacker to bypass
142 * the next check below. The cutoff is 1 year before rollover
143 * occurs, so even if the attacker uses adjtime(2) to move
144 * the time past the cutoff, it will take a very long time
145 * to get to the wrap point.
146 *
147 * XXX: we check against INT_MAX since on 64-bit
148 * platforms, sizeof(int) != sizeof(long) and
149 * time_t is 32 bits even when atv.tv_sec is 64 bits.
150 */
151 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152 struct proc *pp = p->p_pptr;
153 log(LOG_WARNING, "pid %d (%s) "
154 "invoked by uid %d ppid %d (%s) "
155 "tried to set clock forward to %ld\n",
156 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158 return (EPERM);
159 }
160 TIMESPEC_TO_TIMEVAL(&tv, ts);
161
162 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163 s = splclock();
164 #ifdef __HAVE_TIMECOUNTER
165 microtime(&now);
166 timersub(&tv, &now, &delta);
167 #else /* !__HAVE_TIMECOUNTER */
168 timersub(&tv, &time, &delta);
169 #endif /* !__HAVE_TIMECOUNTER */
170 if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
171 splx(s);
172 return (EPERM);
173 }
174 #ifdef notyet
175 if ((delta.tv_sec < 86400) && securelevel > 0) {
176 splx(s);
177 return (EPERM);
178 }
179 #endif
180
181 #ifdef __HAVE_TIMECOUNTER
182 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
183 tc_setclock(&ts1);
184 #else /* !__HAVE_TIMECOUNTER */
185 time = tv;
186 #endif /* !__HAVE_TIMECOUNTER */
187
188 (void) spllowersoftclock();
189
190 timeradd(&boottime, &delta, &boottime);
191
192 /*
193 * XXXSMP
194 * This is wrong. We should traverse a list of all
195 * CPUs and add the delta to the runtime of those
196 * CPUs which have a process on them.
197 */
198 ci = curcpu();
199 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
200 &ci->ci_schedstate.spc_runtime);
201 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
202 nqnfs_lease_updatetime(delta.tv_sec);
203 #endif
204 splx(s);
205 resettodr();
206 return (0);
207 }
208
209 /* ARGSUSED */
210 int
211 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
212 {
213 struct sys_clock_gettime_args /* {
214 syscallarg(clockid_t) clock_id;
215 syscallarg(struct timespec *) tp;
216 } */ *uap = v;
217 clockid_t clock_id;
218 struct timespec ats;
219
220 clock_id = SCARG(uap, clock_id);
221 switch (clock_id) {
222 case CLOCK_REALTIME:
223 nanotime(&ats);
224 break;
225 case CLOCK_MONOTONIC:
226 #ifdef __HAVE_TIMECOUNTER
227 nanouptime(&ats);
228 #else /* !__HAVE_TIMECOUNTER */
229 {
230 int s;
231
232 /* XXX "hz" granularity */
233 s = splclock();
234 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
235 splx(s);
236 }
237 #endif /* !__HAVE_TIMECOUNTER */
238 break;
239 default:
240 return (EINVAL);
241 }
242
243 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
244 }
245
246 /* ARGSUSED */
247 int
248 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
249 {
250 struct sys_clock_settime_args /* {
251 syscallarg(clockid_t) clock_id;
252 syscallarg(const struct timespec *) tp;
253 } */ *uap = v;
254 int error;
255
256 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
257 &l->l_acflag)) != 0)
258 return (error);
259
260 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
261 }
262
263
264 int
265 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
266 {
267 struct timespec ats;
268 int error;
269
270 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
271 return (error);
272
273 switch (clock_id) {
274 case CLOCK_REALTIME:
275 if ((error = settime(p, &ats)) != 0)
276 return (error);
277 break;
278 case CLOCK_MONOTONIC:
279 return (EINVAL); /* read-only clock */
280 default:
281 return (EINVAL);
282 }
283
284 return 0;
285 }
286
287 int
288 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
289 {
290 struct sys_clock_getres_args /* {
291 syscallarg(clockid_t) clock_id;
292 syscallarg(struct timespec *) tp;
293 } */ *uap = v;
294 clockid_t clock_id;
295 struct timespec ts;
296 int error = 0;
297
298 clock_id = SCARG(uap, clock_id);
299 switch (clock_id) {
300 case CLOCK_REALTIME:
301 case CLOCK_MONOTONIC:
302 ts.tv_sec = 0;
303 #ifdef __HAVE_TIMECOUNTER
304 if (tc_getfrequency() > 1000000000)
305 ts.tv_nsec = 1;
306 else
307 ts.tv_nsec = 1000000000 / tc_getfrequency();
308 #else /* !__HAVE_TIMECOUNTER */
309 ts.tv_nsec = 1000000000 / hz;
310 #endif /* !__HAVE_TIMECOUNTER */
311 break;
312 default:
313 return (EINVAL);
314 }
315
316 if (SCARG(uap, tp))
317 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
318
319 return error;
320 }
321
322 /* ARGSUSED */
323 int
324 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
325 {
326 #ifdef __HAVE_TIMECOUNTER
327 static int nanowait;
328 struct sys_nanosleep_args/* {
329 syscallarg(struct timespec *) rqtp;
330 syscallarg(struct timespec *) rmtp;
331 } */ *uap = v;
332 struct timespec rmt, rqt;
333 int error, timo;
334
335 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
336 if (error)
337 return (error);
338
339 if (itimespecfix(&rqt))
340 return (EINVAL);
341
342 timo = tstohz(&rqt);
343 /*
344 * Avoid inadvertantly sleeping forever
345 */
346 if (timo == 0)
347 timo = 1;
348
349 getnanouptime(&rmt);
350
351 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
352 if (error == ERESTART)
353 error = EINTR;
354 if (error == EWOULDBLOCK)
355 error = 0;
356
357 if (SCARG(uap, rmtp)) {
358 int error1;
359 struct timespec rmtend;
360
361 getnanouptime(&rmtend);
362
363 timespecsub(&rmtend, &rmt, &rmt);
364 timespecsub(&rqt, &rmt, &rmt);
365 if (rmt.tv_sec < 0)
366 timespecclear(&rmt);
367
368 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
369 sizeof(rmt));
370 if (error1)
371 return (error1);
372 }
373
374 return error;
375 #else /* !__HAVE_TIMECOUNTER */
376 static int nanowait;
377 struct sys_nanosleep_args/* {
378 syscallarg(struct timespec *) rqtp;
379 syscallarg(struct timespec *) rmtp;
380 } */ *uap = v;
381 struct timespec rqt;
382 struct timespec rmt;
383 struct timeval atv, utv;
384 int error, s, timo;
385
386 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
387 if (error)
388 return (error);
389
390 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
391 if (itimerfix(&atv))
392 return (EINVAL);
393
394 s = splclock();
395 timeradd(&atv,&time,&atv);
396 timo = hzto(&atv);
397 /*
398 * Avoid inadvertantly sleeping forever
399 */
400 if (timo == 0)
401 timo = 1;
402 splx(s);
403
404 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
405 if (error == ERESTART)
406 error = EINTR;
407 if (error == EWOULDBLOCK)
408 error = 0;
409
410 if (SCARG(uap, rmtp)) {
411 int error1;
412
413 s = splclock();
414 utv = time;
415 splx(s);
416
417 timersub(&atv, &utv, &utv);
418 if (utv.tv_sec < 0)
419 timerclear(&utv);
420
421 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
422 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
423 sizeof(rmt));
424 if (error1)
425 return (error1);
426 }
427
428 return error;
429 #endif /* !__HAVE_TIMECOUNTER */
430 }
431
432 /* ARGSUSED */
433 int
434 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
435 {
436 struct sys_gettimeofday_args /* {
437 syscallarg(struct timeval *) tp;
438 syscallarg(void *) tzp; really "struct timezone *"
439 } */ *uap = v;
440 struct timeval atv;
441 int error = 0;
442 struct timezone tzfake;
443
444 if (SCARG(uap, tp)) {
445 microtime(&atv);
446 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
447 if (error)
448 return (error);
449 }
450 if (SCARG(uap, tzp)) {
451 /*
452 * NetBSD has no kernel notion of time zone, so we just
453 * fake up a timezone struct and return it if demanded.
454 */
455 tzfake.tz_minuteswest = 0;
456 tzfake.tz_dsttime = 0;
457 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
458 }
459 return (error);
460 }
461
462 /* ARGSUSED */
463 int
464 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
465 {
466 struct sys_settimeofday_args /* {
467 syscallarg(const struct timeval *) tv;
468 syscallarg(const void *) tzp; really "const struct timezone *"
469 } */ *uap = v;
470 int error;
471
472 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
473 &l->l_acflag)) != 0)
474 return (error);
475
476 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
477 }
478
479 int
480 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
481 struct proc *p)
482 {
483 struct timeval atv;
484 struct timespec ts;
485 int error;
486
487 /* Verify all parameters before changing time. */
488 /*
489 * NetBSD has no kernel notion of time zone, and only an
490 * obsolete program would try to set it, so we log a warning.
491 */
492 if (utzp)
493 log(LOG_WARNING, "pid %d attempted to set the "
494 "(obsolete) kernel time zone\n", p->p_pid);
495
496 if (utv == NULL)
497 return 0;
498
499 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
500 return error;
501 TIMEVAL_TO_TIMESPEC(&atv, &ts);
502 return settime(p, &ts);
503 }
504
505 #ifndef __HAVE_TIMECOUNTER
506 int tickdelta; /* current clock skew, us. per tick */
507 long timedelta; /* unapplied time correction, us. */
508 long bigadj = 1000000; /* use 10x skew above bigadj us. */
509 #endif
510
511 int time_adjusted; /* set if an adjustment is made */
512
513 /* ARGSUSED */
514 int
515 sys_adjtime(struct lwp *l, void *v, register_t *retval)
516 {
517 struct sys_adjtime_args /* {
518 syscallarg(const struct timeval *) delta;
519 syscallarg(struct timeval *) olddelta;
520 } */ *uap = v;
521 int error;
522
523 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
524 &l->l_acflag)) != 0)
525 return (error);
526
527 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
528 }
529
530 int
531 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
532 {
533 struct timeval atv;
534 int error = 0;
535
536 #ifdef __HAVE_TIMECOUNTER
537 extern int64_t time_adjtime; /* in kern_ntptime.c */
538 #else /* !__HAVE_TIMECOUNTER */
539 long ndelta, ntickdelta, odelta;
540 int s;
541 #endif /* !__HAVE_TIMECOUNTER */
542
543 #ifdef __HAVE_TIMECOUNTER
544 if (olddelta) {
545 atv.tv_sec = time_adjtime / 1000000;
546 atv.tv_usec = time_adjtime % 1000000;
547 if (atv.tv_usec < 0) {
548 atv.tv_usec += 1000000;
549 atv.tv_sec--;
550 }
551 error = copyout(&atv, olddelta, sizeof(struct timeval));
552 if (error)
553 return (error);
554 }
555
556 if (delta) {
557 error = copyin(delta, &atv, sizeof(struct timeval));
558 if (error)
559 return (error);
560
561 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
562 atv.tv_usec;
563
564 if (time_adjtime)
565 /* We need to save the system time during shutdown */
566 time_adjusted |= 1;
567 }
568 #else /* !__HAVE_TIMECOUNTER */
569 error = copyin(delta, &atv, sizeof(struct timeval));
570 if (error)
571 return (error);
572
573 /*
574 * Compute the total correction and the rate at which to apply it.
575 * Round the adjustment down to a whole multiple of the per-tick
576 * delta, so that after some number of incremental changes in
577 * hardclock(), tickdelta will become zero, lest the correction
578 * overshoot and start taking us away from the desired final time.
579 */
580 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
581 if (ndelta > bigadj || ndelta < -bigadj)
582 ntickdelta = 10 * tickadj;
583 else
584 ntickdelta = tickadj;
585 if (ndelta % ntickdelta)
586 ndelta = ndelta / ntickdelta * ntickdelta;
587
588 /*
589 * To make hardclock()'s job easier, make the per-tick delta negative
590 * if we want time to run slower; then hardclock can simply compute
591 * tick + tickdelta, and subtract tickdelta from timedelta.
592 */
593 if (ndelta < 0)
594 ntickdelta = -ntickdelta;
595 if (ndelta != 0)
596 /* We need to save the system clock time during shutdown */
597 time_adjusted |= 1;
598 s = splclock();
599 odelta = timedelta;
600 timedelta = ndelta;
601 tickdelta = ntickdelta;
602 splx(s);
603
604 if (olddelta) {
605 atv.tv_sec = odelta / 1000000;
606 atv.tv_usec = odelta % 1000000;
607 error = copyout(&atv, olddelta, sizeof(struct timeval));
608 }
609 #endif /* __HAVE_TIMECOUNTER */
610
611 return error;
612 }
613
614 /*
615 * Interval timer support. Both the BSD getitimer() family and the POSIX
616 * timer_*() family of routines are supported.
617 *
618 * All timers are kept in an array pointed to by p_timers, which is
619 * allocated on demand - many processes don't use timers at all. The
620 * first three elements in this array are reserved for the BSD timers:
621 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
622 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
623 * syscall.
624 *
625 * Realtime timers are kept in the ptimer structure as an absolute
626 * time; virtual time timers are kept as a linked list of deltas.
627 * Virtual time timers are processed in the hardclock() routine of
628 * kern_clock.c. The real time timer is processed by a callout
629 * routine, called from the softclock() routine. Since a callout may
630 * be delayed in real time due to interrupt processing in the system,
631 * it is possible for the real time timeout routine (realtimeexpire,
632 * given below), to be delayed in real time past when it is supposed
633 * to occur. It does not suffice, therefore, to reload the real timer
634 * .it_value from the real time timers .it_interval. Rather, we
635 * compute the next time in absolute time the timer should go off. */
636
637 /* Allocate a POSIX realtime timer. */
638 int
639 sys_timer_create(struct lwp *l, void *v, register_t *retval)
640 {
641 struct sys_timer_create_args /* {
642 syscallarg(clockid_t) clock_id;
643 syscallarg(struct sigevent *) evp;
644 syscallarg(timer_t *) timerid;
645 } */ *uap = v;
646
647 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
648 SCARG(uap, evp), copyin, l);
649 }
650
651 int
652 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
653 copyin_t fetch_event, struct lwp *l)
654 {
655 int error;
656 timer_t timerid;
657 struct ptimer *pt;
658 struct proc *p;
659
660 p = l->l_proc;
661
662 if (id < CLOCK_REALTIME ||
663 id > CLOCK_PROF)
664 return (EINVAL);
665
666 if (p->p_timers == NULL)
667 timers_alloc(p);
668
669 /* Find a free timer slot, skipping those reserved for setitimer(). */
670 for (timerid = 3; timerid < TIMER_MAX; timerid++)
671 if (p->p_timers->pts_timers[timerid] == NULL)
672 break;
673
674 if (timerid == TIMER_MAX)
675 return EAGAIN;
676
677 pt = pool_get(&ptimer_pool, PR_WAITOK);
678 if (evp) {
679 if (((error =
680 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
681 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
682 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
683 pool_put(&ptimer_pool, pt);
684 return (error ? error : EINVAL);
685 }
686 } else {
687 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
688 switch (id) {
689 case CLOCK_REALTIME:
690 pt->pt_ev.sigev_signo = SIGALRM;
691 break;
692 case CLOCK_VIRTUAL:
693 pt->pt_ev.sigev_signo = SIGVTALRM;
694 break;
695 case CLOCK_PROF:
696 pt->pt_ev.sigev_signo = SIGPROF;
697 break;
698 }
699 pt->pt_ev.sigev_value.sival_int = timerid;
700 }
701 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
702 pt->pt_info.ksi_errno = 0;
703 pt->pt_info.ksi_code = 0;
704 pt->pt_info.ksi_pid = p->p_pid;
705 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
706 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
707
708 pt->pt_type = id;
709 pt->pt_proc = p;
710 pt->pt_overruns = 0;
711 pt->pt_poverruns = 0;
712 pt->pt_entry = timerid;
713 timerclear(&pt->pt_time.it_value);
714 if (id == CLOCK_REALTIME)
715 callout_init(&pt->pt_ch);
716 else
717 pt->pt_active = 0;
718
719 p->p_timers->pts_timers[timerid] = pt;
720
721 return copyout(&timerid, tid, sizeof(timerid));
722 }
723
724 /* Delete a POSIX realtime timer */
725 int
726 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
727 {
728 struct sys_timer_delete_args /* {
729 syscallarg(timer_t) timerid;
730 } */ *uap = v;
731 struct proc *p = l->l_proc;
732 timer_t timerid;
733 struct ptimer *pt, *ptn;
734 int s;
735
736 timerid = SCARG(uap, timerid);
737
738 if ((p->p_timers == NULL) ||
739 (timerid < 2) || (timerid >= TIMER_MAX) ||
740 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
741 return (EINVAL);
742
743 if (pt->pt_type == CLOCK_REALTIME)
744 callout_stop(&pt->pt_ch);
745 else if (pt->pt_active) {
746 s = splclock();
747 ptn = LIST_NEXT(pt, pt_list);
748 LIST_REMOVE(pt, pt_list);
749 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
750 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
751 &ptn->pt_time.it_value);
752 splx(s);
753 }
754
755 p->p_timers->pts_timers[timerid] = NULL;
756 pool_put(&ptimer_pool, pt);
757
758 return (0);
759 }
760
761 /*
762 * Set up the given timer. The value in pt->pt_time.it_value is taken
763 * to be an absolute time for CLOCK_REALTIME timers and a relative
764 * time for virtual timers.
765 * Must be called at splclock().
766 */
767 void
768 timer_settime(struct ptimer *pt)
769 {
770 struct ptimer *ptn, *pptn;
771 struct ptlist *ptl;
772
773 if (pt->pt_type == CLOCK_REALTIME) {
774 callout_stop(&pt->pt_ch);
775 if (timerisset(&pt->pt_time.it_value)) {
776 /*
777 * Don't need to check hzto() return value, here.
778 * callout_reset() does it for us.
779 */
780 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
781 realtimerexpire, pt);
782 }
783 } else {
784 if (pt->pt_active) {
785 ptn = LIST_NEXT(pt, pt_list);
786 LIST_REMOVE(pt, pt_list);
787 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
788 timeradd(&pt->pt_time.it_value,
789 &ptn->pt_time.it_value,
790 &ptn->pt_time.it_value);
791 }
792 if (timerisset(&pt->pt_time.it_value)) {
793 if (pt->pt_type == CLOCK_VIRTUAL)
794 ptl = &pt->pt_proc->p_timers->pts_virtual;
795 else
796 ptl = &pt->pt_proc->p_timers->pts_prof;
797
798 for (ptn = LIST_FIRST(ptl), pptn = NULL;
799 ptn && timercmp(&pt->pt_time.it_value,
800 &ptn->pt_time.it_value, >);
801 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
802 timersub(&pt->pt_time.it_value,
803 &ptn->pt_time.it_value,
804 &pt->pt_time.it_value);
805
806 if (pptn)
807 LIST_INSERT_AFTER(pptn, pt, pt_list);
808 else
809 LIST_INSERT_HEAD(ptl, pt, pt_list);
810
811 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
812 timersub(&ptn->pt_time.it_value,
813 &pt->pt_time.it_value,
814 &ptn->pt_time.it_value);
815
816 pt->pt_active = 1;
817 } else
818 pt->pt_active = 0;
819 }
820 }
821
822 void
823 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
824 {
825 #ifdef __HAVE_TIMECOUNTER
826 struct timeval now;
827 #endif
828 struct ptimer *ptn;
829
830 *aitv = pt->pt_time;
831 if (pt->pt_type == CLOCK_REALTIME) {
832 /*
833 * Convert from absolute to relative time in .it_value
834 * part of real time timer. If time for real time
835 * timer has passed return 0, else return difference
836 * between current time and time for the timer to go
837 * off.
838 */
839 if (timerisset(&aitv->it_value)) {
840 #ifdef __HAVE_TIMECOUNTER
841 getmicrotime(&now);
842 if (timercmp(&aitv->it_value, &now, <))
843 timerclear(&aitv->it_value);
844 else
845 timersub(&aitv->it_value, &now,
846 &aitv->it_value);
847 #else /* !__HAVE_TIMECOUNTER */
848 if (timercmp(&aitv->it_value, &time, <))
849 timerclear(&aitv->it_value);
850 else
851 timersub(&aitv->it_value, &time,
852 &aitv->it_value);
853 #endif /* !__HAVE_TIMECOUNTER */
854 }
855 } else if (pt->pt_active) {
856 if (pt->pt_type == CLOCK_VIRTUAL)
857 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
858 else
859 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
860 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
861 timeradd(&aitv->it_value,
862 &ptn->pt_time.it_value, &aitv->it_value);
863 KASSERT(ptn != NULL); /* pt should be findable on the list */
864 } else
865 timerclear(&aitv->it_value);
866 }
867
868
869
870 /* Set and arm a POSIX realtime timer */
871 int
872 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
873 {
874 struct sys_timer_settime_args /* {
875 syscallarg(timer_t) timerid;
876 syscallarg(int) flags;
877 syscallarg(const struct itimerspec *) value;
878 syscallarg(struct itimerspec *) ovalue;
879 } */ *uap = v;
880 int error;
881 struct itimerspec value, ovalue, *ovp = NULL;
882
883 if ((error = copyin(SCARG(uap, value), &value,
884 sizeof(struct itimerspec))) != 0)
885 return (error);
886
887 if (SCARG(uap, ovalue))
888 ovp = &ovalue;
889
890 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
891 SCARG(uap, flags), l->l_proc)) != 0)
892 return error;
893
894 if (ovp)
895 return copyout(&ovalue, SCARG(uap, ovalue),
896 sizeof(struct itimerspec));
897 return 0;
898 }
899
900 int
901 dotimer_settime(int timerid, struct itimerspec *value,
902 struct itimerspec *ovalue, int flags, struct proc *p)
903 {
904 #ifdef __HAVE_TIMECOUNTER
905 struct timeval now;
906 #endif
907 struct itimerval val, oval;
908 struct ptimer *pt;
909 int s;
910
911 if ((p->p_timers == NULL) ||
912 (timerid < 2) || (timerid >= TIMER_MAX) ||
913 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
914 return (EINVAL);
915
916 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
917 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
918 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
919 return (EINVAL);
920
921 oval = pt->pt_time;
922 pt->pt_time = val;
923
924 s = splclock();
925 /*
926 * If we've been passed a relative time for a realtime timer,
927 * convert it to absolute; if an absolute time for a virtual
928 * timer, convert it to relative and make sure we don't set it
929 * to zero, which would cancel the timer, or let it go
930 * negative, which would confuse the comparison tests.
931 */
932 if (timerisset(&pt->pt_time.it_value)) {
933 if (pt->pt_type == CLOCK_REALTIME) {
934 #ifdef __HAVE_TIMECOUNTER
935 if ((flags & TIMER_ABSTIME) == 0) {
936 getmicrotime(&now);
937 timeradd(&pt->pt_time.it_value, &now,
938 &pt->pt_time.it_value);
939 }
940 #else /* !__HAVE_TIMECOUNTER */
941 if ((flags & TIMER_ABSTIME) == 0)
942 timeradd(&pt->pt_time.it_value, &time,
943 &pt->pt_time.it_value);
944 #endif /* !__HAVE_TIMECOUNTER */
945 } else {
946 if ((flags & TIMER_ABSTIME) != 0) {
947 #ifdef __HAVE_TIMECOUNTER
948 getmicrotime(&now);
949 timersub(&pt->pt_time.it_value, &now,
950 &pt->pt_time.it_value);
951 #else /* !__HAVE_TIMECOUNTER */
952 timersub(&pt->pt_time.it_value, &time,
953 &pt->pt_time.it_value);
954 #endif /* !__HAVE_TIMECOUNTER */
955 if (!timerisset(&pt->pt_time.it_value) ||
956 pt->pt_time.it_value.tv_sec < 0) {
957 pt->pt_time.it_value.tv_sec = 0;
958 pt->pt_time.it_value.tv_usec = 1;
959 }
960 }
961 }
962 }
963
964 timer_settime(pt);
965 splx(s);
966
967 if (ovalue) {
968 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
969 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
970 }
971
972 return (0);
973 }
974
975 /* Return the time remaining until a POSIX timer fires. */
976 int
977 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
978 {
979 struct sys_timer_gettime_args /* {
980 syscallarg(timer_t) timerid;
981 syscallarg(struct itimerspec *) value;
982 } */ *uap = v;
983 struct itimerspec its;
984 int error;
985
986 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
987 &its)) != 0)
988 return error;
989
990 return copyout(&its, SCARG(uap, value), sizeof(its));
991 }
992
993 int
994 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
995 {
996 int s;
997 struct ptimer *pt;
998 struct itimerval aitv;
999
1000 if ((p->p_timers == NULL) ||
1001 (timerid < 2) || (timerid >= TIMER_MAX) ||
1002 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1003 return (EINVAL);
1004
1005 s = splclock();
1006 timer_gettime(pt, &aitv);
1007 splx(s);
1008
1009 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1010 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1011
1012 return 0;
1013 }
1014
1015 /*
1016 * Return the count of the number of times a periodic timer expired
1017 * while a notification was already pending. The counter is reset when
1018 * a timer expires and a notification can be posted.
1019 */
1020 int
1021 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1022 {
1023 struct sys_timer_getoverrun_args /* {
1024 syscallarg(timer_t) timerid;
1025 } */ *uap = v;
1026 struct proc *p = l->l_proc;
1027 int timerid;
1028 struct ptimer *pt;
1029
1030 timerid = SCARG(uap, timerid);
1031
1032 if ((p->p_timers == NULL) ||
1033 (timerid < 2) || (timerid >= TIMER_MAX) ||
1034 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1035 return (EINVAL);
1036
1037 *retval = pt->pt_poverruns;
1038
1039 return (0);
1040 }
1041
1042 /* Glue function that triggers an upcall; called from userret(). */
1043 static void
1044 timerupcall(struct lwp *l, void *arg)
1045 {
1046 struct ptimers *pt = (struct ptimers *)arg;
1047 unsigned int i, fired, done;
1048
1049 KDASSERT(l->l_proc->p_sa);
1050 /* Bail out if we do not own the virtual processor */
1051 if (l->l_savp->savp_lwp != l)
1052 return ;
1053
1054 KERNEL_PROC_LOCK(l);
1055
1056 fired = pt->pts_fired;
1057 done = 0;
1058 while ((i = ffs(fired)) != 0) {
1059 siginfo_t *si;
1060 int mask = 1 << --i;
1061 int f;
1062
1063 f = l->l_flag & L_SA;
1064 l->l_flag &= ~L_SA;
1065 si = siginfo_alloc(PR_WAITOK);
1066 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1067 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1068 sizeof(*si), si, siginfo_free) != 0) {
1069 siginfo_free(si);
1070 /* XXX What do we do here?? */
1071 } else
1072 done |= mask;
1073 fired &= ~mask;
1074 l->l_flag |= f;
1075 }
1076 pt->pts_fired &= ~done;
1077 if (pt->pts_fired == 0)
1078 l->l_proc->p_userret = NULL;
1079
1080 KERNEL_PROC_UNLOCK(l);
1081 }
1082
1083 /*
1084 * Real interval timer expired:
1085 * send process whose timer expired an alarm signal.
1086 * If time is not set up to reload, then just return.
1087 * Else compute next time timer should go off which is > current time.
1088 * This is where delay in processing this timeout causes multiple
1089 * SIGALRM calls to be compressed into one.
1090 */
1091 void
1092 realtimerexpire(void *arg)
1093 {
1094 #ifdef __HAVE_TIMECOUNTER
1095 struct timeval now;
1096 #endif
1097 struct ptimer *pt;
1098 int s;
1099
1100 pt = (struct ptimer *)arg;
1101
1102 itimerfire(pt);
1103
1104 if (!timerisset(&pt->pt_time.it_interval)) {
1105 timerclear(&pt->pt_time.it_value);
1106 return;
1107 }
1108 #ifdef __HAVE_TIMECOUNTER
1109 for (;;) {
1110 s = splclock(); /* XXX need spl now? */
1111 timeradd(&pt->pt_time.it_value,
1112 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1113 getmicrotime(&now);
1114 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1115 /*
1116 * Don't need to check hzto() return value, here.
1117 * callout_reset() does it for us.
1118 */
1119 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1120 realtimerexpire, pt);
1121 splx(s);
1122 return;
1123 }
1124 splx(s);
1125 pt->pt_overruns++;
1126 }
1127 #else /* !__HAVE_TIMECOUNTER */
1128 for (;;) {
1129 s = splclock();
1130 timeradd(&pt->pt_time.it_value,
1131 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1132 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1133 /*
1134 * Don't need to check hzto() return value, here.
1135 * callout_reset() does it for us.
1136 */
1137 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1138 realtimerexpire, pt);
1139 splx(s);
1140 return;
1141 }
1142 splx(s);
1143 pt->pt_overruns++;
1144 }
1145 #endif /* !__HAVE_TIMECOUNTER */
1146 }
1147
1148 /* BSD routine to get the value of an interval timer. */
1149 /* ARGSUSED */
1150 int
1151 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1152 {
1153 struct sys_getitimer_args /* {
1154 syscallarg(int) which;
1155 syscallarg(struct itimerval *) itv;
1156 } */ *uap = v;
1157 struct proc *p = l->l_proc;
1158 struct itimerval aitv;
1159 int error;
1160
1161 error = dogetitimer(p, SCARG(uap, which), &aitv);
1162 if (error)
1163 return error;
1164 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1165 }
1166
1167 int
1168 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1169 {
1170 int s;
1171
1172 if ((u_int)which > ITIMER_PROF)
1173 return (EINVAL);
1174
1175 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1176 timerclear(&itvp->it_value);
1177 timerclear(&itvp->it_interval);
1178 } else {
1179 s = splclock();
1180 timer_gettime(p->p_timers->pts_timers[which], itvp);
1181 splx(s);
1182 }
1183
1184 return 0;
1185 }
1186
1187 /* BSD routine to set/arm an interval timer. */
1188 /* ARGSUSED */
1189 int
1190 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1191 {
1192 struct sys_setitimer_args /* {
1193 syscallarg(int) which;
1194 syscallarg(const struct itimerval *) itv;
1195 syscallarg(struct itimerval *) oitv;
1196 } */ *uap = v;
1197 struct proc *p = l->l_proc;
1198 int which = SCARG(uap, which);
1199 struct sys_getitimer_args getargs;
1200 const struct itimerval *itvp;
1201 struct itimerval aitv;
1202 int error;
1203
1204 if ((u_int)which > ITIMER_PROF)
1205 return (EINVAL);
1206 itvp = SCARG(uap, itv);
1207 if (itvp &&
1208 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1209 return (error);
1210 if (SCARG(uap, oitv) != NULL) {
1211 SCARG(&getargs, which) = which;
1212 SCARG(&getargs, itv) = SCARG(uap, oitv);
1213 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1214 return (error);
1215 }
1216 if (itvp == 0)
1217 return (0);
1218
1219 return dosetitimer(p, which, &aitv);
1220 }
1221
1222 int
1223 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1224 {
1225 #ifdef __HAVE_TIMECOUNTER
1226 struct timeval now;
1227 #endif
1228 struct ptimer *pt;
1229 int s;
1230
1231 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1232 return (EINVAL);
1233
1234 /*
1235 * Don't bother allocating data structures if the process just
1236 * wants to clear the timer.
1237 */
1238 if (!timerisset(&itvp->it_value) &&
1239 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1240 return (0);
1241
1242 if (p->p_timers == NULL)
1243 timers_alloc(p);
1244 if (p->p_timers->pts_timers[which] == NULL) {
1245 pt = pool_get(&ptimer_pool, PR_WAITOK);
1246 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1247 pt->pt_ev.sigev_value.sival_int = which;
1248 pt->pt_overruns = 0;
1249 pt->pt_proc = p;
1250 pt->pt_type = which;
1251 pt->pt_entry = which;
1252 switch (which) {
1253 case ITIMER_REAL:
1254 callout_init(&pt->pt_ch);
1255 pt->pt_ev.sigev_signo = SIGALRM;
1256 break;
1257 case ITIMER_VIRTUAL:
1258 pt->pt_active = 0;
1259 pt->pt_ev.sigev_signo = SIGVTALRM;
1260 break;
1261 case ITIMER_PROF:
1262 pt->pt_active = 0;
1263 pt->pt_ev.sigev_signo = SIGPROF;
1264 break;
1265 }
1266 } else
1267 pt = p->p_timers->pts_timers[which];
1268
1269 pt->pt_time = *itvp;
1270 p->p_timers->pts_timers[which] = pt;
1271
1272 s = splclock();
1273 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1274 /* Convert to absolute time */
1275 #ifdef __HAVE_TIMECOUNTER
1276 /* XXX need to wrap in splclock for timecounters case? */
1277 getmicrotime(&now);
1278 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1279 #else /* !__HAVE_TIMECOUNTER */
1280 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1281 #endif /* !__HAVE_TIMECOUNTER */
1282 }
1283 timer_settime(pt);
1284 splx(s);
1285
1286 return (0);
1287 }
1288
1289 /* Utility routines to manage the array of pointers to timers. */
1290 void
1291 timers_alloc(struct proc *p)
1292 {
1293 int i;
1294 struct ptimers *pts;
1295
1296 pts = pool_get(&ptimers_pool, PR_WAITOK);
1297 LIST_INIT(&pts->pts_virtual);
1298 LIST_INIT(&pts->pts_prof);
1299 for (i = 0; i < TIMER_MAX; i++)
1300 pts->pts_timers[i] = NULL;
1301 pts->pts_fired = 0;
1302 p->p_timers = pts;
1303 }
1304
1305 /*
1306 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1307 * then clean up all timers and free all the data structures. If
1308 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1309 * by timer_create(), not the BSD setitimer() timers, and only free the
1310 * structure if none of those remain.
1311 */
1312 void
1313 timers_free(struct proc *p, int which)
1314 {
1315 int i, s;
1316 struct ptimers *pts;
1317 struct ptimer *pt, *ptn;
1318 struct timeval tv;
1319
1320 if (p->p_timers) {
1321 pts = p->p_timers;
1322 if (which == TIMERS_ALL)
1323 i = 0;
1324 else {
1325 s = splclock();
1326 timerclear(&tv);
1327 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1328 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1329 ptn = LIST_NEXT(ptn, pt_list))
1330 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1331 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1332 if (ptn) {
1333 timeradd(&tv, &ptn->pt_time.it_value,
1334 &ptn->pt_time.it_value);
1335 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1336 ptn, pt_list);
1337 }
1338
1339 timerclear(&tv);
1340 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1341 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1342 ptn = LIST_NEXT(ptn, pt_list))
1343 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1344 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1345 if (ptn) {
1346 timeradd(&tv, &ptn->pt_time.it_value,
1347 &ptn->pt_time.it_value);
1348 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1349 pt_list);
1350 }
1351 splx(s);
1352 i = 3;
1353 }
1354 for ( ; i < TIMER_MAX; i++)
1355 if ((pt = pts->pts_timers[i]) != NULL) {
1356 if (pt->pt_type == CLOCK_REALTIME)
1357 callout_stop(&pt->pt_ch);
1358 pts->pts_timers[i] = NULL;
1359 pool_put(&ptimer_pool, pt);
1360 }
1361 if ((pts->pts_timers[0] == NULL) &&
1362 (pts->pts_timers[1] == NULL) &&
1363 (pts->pts_timers[2] == NULL)) {
1364 p->p_timers = NULL;
1365 pool_put(&ptimers_pool, pts);
1366 }
1367 }
1368 }
1369
1370 /*
1371 * Check that a proposed value to load into the .it_value or
1372 * .it_interval part of an interval timer is acceptable, and
1373 * fix it to have at least minimal value (i.e. if it is less
1374 * than the resolution of the clock, round it up.)
1375 */
1376 int
1377 itimerfix(struct timeval *tv)
1378 {
1379
1380 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1381 return (EINVAL);
1382 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1383 tv->tv_usec = tick;
1384 return (0);
1385 }
1386
1387 #ifdef __HAVE_TIMECOUNTER
1388 int
1389 itimespecfix(struct timespec *ts)
1390 {
1391
1392 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1393 return (EINVAL);
1394 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1395 ts->tv_nsec = tick * 1000;
1396 return (0);
1397 }
1398 #endif /* __HAVE_TIMECOUNTER */
1399
1400 /*
1401 * Decrement an interval timer by a specified number
1402 * of microseconds, which must be less than a second,
1403 * i.e. < 1000000. If the timer expires, then reload
1404 * it. In this case, carry over (usec - old value) to
1405 * reduce the value reloaded into the timer so that
1406 * the timer does not drift. This routine assumes
1407 * that it is called in a context where the timers
1408 * on which it is operating cannot change in value.
1409 */
1410 int
1411 itimerdecr(struct ptimer *pt, int usec)
1412 {
1413 struct itimerval *itp;
1414
1415 itp = &pt->pt_time;
1416 if (itp->it_value.tv_usec < usec) {
1417 if (itp->it_value.tv_sec == 0) {
1418 /* expired, and already in next interval */
1419 usec -= itp->it_value.tv_usec;
1420 goto expire;
1421 }
1422 itp->it_value.tv_usec += 1000000;
1423 itp->it_value.tv_sec--;
1424 }
1425 itp->it_value.tv_usec -= usec;
1426 usec = 0;
1427 if (timerisset(&itp->it_value))
1428 return (1);
1429 /* expired, exactly at end of interval */
1430 expire:
1431 if (timerisset(&itp->it_interval)) {
1432 itp->it_value = itp->it_interval;
1433 itp->it_value.tv_usec -= usec;
1434 if (itp->it_value.tv_usec < 0) {
1435 itp->it_value.tv_usec += 1000000;
1436 itp->it_value.tv_sec--;
1437 }
1438 timer_settime(pt);
1439 } else
1440 itp->it_value.tv_usec = 0; /* sec is already 0 */
1441 return (0);
1442 }
1443
1444 void
1445 itimerfire(struct ptimer *pt)
1446 {
1447 struct proc *p = pt->pt_proc;
1448 struct sadata_vp *vp;
1449 int s;
1450 unsigned int i;
1451
1452 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1453 /*
1454 * No RT signal infrastructure exists at this time;
1455 * just post the signal number and throw away the
1456 * value.
1457 */
1458 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1459 pt->pt_overruns++;
1460 else {
1461 ksiginfo_t ksi;
1462 (void)memset(&ksi, 0, sizeof(ksi));
1463 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1464 ksi.ksi_code = SI_TIMER;
1465 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1466 pt->pt_poverruns = pt->pt_overruns;
1467 pt->pt_overruns = 0;
1468 kpsignal(p, &ksi, NULL);
1469 }
1470 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1471 /* Cause the process to generate an upcall when it returns. */
1472
1473 if (p->p_userret == NULL) {
1474 /*
1475 * XXX stop signals can be processed inside tsleep,
1476 * which can be inside sa_yield's inner loop, which
1477 * makes testing for sa_idle alone insuffucent to
1478 * determine if we really should call setrunnable.
1479 */
1480 pt->pt_poverruns = pt->pt_overruns;
1481 pt->pt_overruns = 0;
1482 i = 1 << pt->pt_entry;
1483 p->p_timers->pts_fired = i;
1484 p->p_userret = timerupcall;
1485 p->p_userret_arg = p->p_timers;
1486
1487 SCHED_LOCK(s);
1488 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1489 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1490 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1491 sched_wakeup(vp->savp_lwp);
1492 break;
1493 }
1494 }
1495 SCHED_UNLOCK(s);
1496 } else if (p->p_userret == timerupcall) {
1497 i = 1 << pt->pt_entry;
1498 if ((p->p_timers->pts_fired & i) == 0) {
1499 pt->pt_poverruns = pt->pt_overruns;
1500 pt->pt_overruns = 0;
1501 p->p_timers->pts_fired |= i;
1502 } else
1503 pt->pt_overruns++;
1504 } else {
1505 pt->pt_overruns++;
1506 if ((p->p_flag & P_WEXIT) == 0)
1507 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1508 p->p_pid, pt->pt_overruns,
1509 pt->pt_ev.sigev_value.sival_int,
1510 p->p_userret);
1511 }
1512 }
1513
1514 }
1515
1516 /*
1517 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1518 * for usage and rationale.
1519 */
1520 int
1521 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1522 {
1523 struct timeval tv, delta;
1524 int rv = 0;
1525 #ifndef __HAVE_TIMECOUNTER
1526 int s;
1527 #endif
1528
1529 #ifdef __HAVE_TIMECOUNTER
1530 getmicrouptime(&tv);
1531 #else /* !__HAVE_TIMECOUNTER */
1532 s = splclock();
1533 tv = mono_time;
1534 splx(s);
1535 #endif /* !__HAVE_TIMECOUNTER */
1536 timersub(&tv, lasttime, &delta);
1537
1538 /*
1539 * check for 0,0 is so that the message will be seen at least once,
1540 * even if interval is huge.
1541 */
1542 if (timercmp(&delta, mininterval, >=) ||
1543 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1544 *lasttime = tv;
1545 rv = 1;
1546 }
1547
1548 return (rv);
1549 }
1550
1551 /*
1552 * ppsratecheck(): packets (or events) per second limitation.
1553 */
1554 int
1555 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1556 {
1557 struct timeval tv, delta;
1558 int rv;
1559 #ifndef __HAVE_TIMECOUNTER
1560 int s;
1561 #endif
1562
1563 #ifdef __HAVE_TIMECOUNTER
1564 getmicrouptime(&tv);
1565 #else /* !__HAVE_TIMECOUNTER */
1566 s = splclock();
1567 tv = mono_time;
1568 splx(s);
1569 #endif /* !__HAVE_TIMECOUNTER */
1570 timersub(&tv, lasttime, &delta);
1571
1572 /*
1573 * check for 0,0 is so that the message will be seen at least once.
1574 * if more than one second have passed since the last update of
1575 * lasttime, reset the counter.
1576 *
1577 * we do increment *curpps even in *curpps < maxpps case, as some may
1578 * try to use *curpps for stat purposes as well.
1579 */
1580 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1581 delta.tv_sec >= 1) {
1582 *lasttime = tv;
1583 *curpps = 0;
1584 }
1585 if (maxpps < 0)
1586 rv = 1;
1587 else if (*curpps < maxpps)
1588 rv = 1;
1589 else
1590 rv = 0;
1591
1592 #if 1 /*DIAGNOSTIC?*/
1593 /* be careful about wrap-around */
1594 if (*curpps + 1 > *curpps)
1595 *curpps = *curpps + 1;
1596 #else
1597 /*
1598 * assume that there's not too many calls to this function.
1599 * not sure if the assumption holds, as it depends on *caller's*
1600 * behavior, not the behavior of this function.
1601 * IMHO it is wrong to make assumption on the caller's behavior,
1602 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1603 */
1604 *curpps = *curpps + 1;
1605 #endif
1606
1607 return (rv);
1608 }
1609