Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.105.4.1
      1 /*	$NetBSD: kern_time.c,v 1.105.4.1 2006/09/11 18:07:25 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.105.4.1 2006/09/11 18:07:25 ad Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/sa.h>
     83 #include <sys/savar.h>
     84 #include <sys/vnode.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/syslog.h>
     87 #ifdef __HAVE_TIMECOUNTER
     88 #include <sys/timetc.h>
     89 #else /* !__HAVE_TIMECOUNTER */
     90 #include <sys/timevar.h>
     91 #endif /* !__HAVE_TIMECOUNTER */
     92 #include <sys/kauth.h>
     93 
     94 #include <sys/mount.h>
     95 #include <sys/syscallargs.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #if defined(NFS) || defined(NFSSERVER)
    100 #include <nfs/rpcv2.h>
    101 #include <nfs/nfsproto.h>
    102 #include <nfs/nfs.h>
    103 #include <nfs/nfs_var.h>
    104 #endif
    105 
    106 #include <machine/cpu.h>
    107 
    108 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    109     &pool_allocator_nointr);
    110 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    111     &pool_allocator_nointr);
    112 
    113 static void timerupcall(struct lwp *, void *);
    114 #ifdef __HAVE_TIMECOUNTER
    115 static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    116 #endif /* __HAVE_TIMECOUNTER */
    117 
    118 /* Time of day and interval timer support.
    119  *
    120  * These routines provide the kernel entry points to get and set
    121  * the time-of-day and per-process interval timers.  Subroutines
    122  * here provide support for adding and subtracting timeval structures
    123  * and decrementing interval timers, optionally reloading the interval
    124  * timers when they expire.
    125  */
    126 
    127 /* This function is used by clock_settime and settimeofday */
    128 int
    129 settime(struct proc *p, struct timespec *ts)
    130 {
    131 	struct timeval delta, tv;
    132 #ifdef __HAVE_TIMECOUNTER
    133 	struct timeval now;
    134 	struct timespec ts1;
    135 #endif /* !__HAVE_TIMECOUNTER */
    136 	struct cpu_info *ci;
    137 	int s;
    138 
    139 	/*
    140 	 * Don't allow the time to be set forward so far it will wrap
    141 	 * and become negative, thus allowing an attacker to bypass
    142 	 * the next check below.  The cutoff is 1 year before rollover
    143 	 * occurs, so even if the attacker uses adjtime(2) to move
    144 	 * the time past the cutoff, it will take a very long time
    145 	 * to get to the wrap point.
    146 	 *
    147 	 * XXX: we check against INT_MAX since on 64-bit
    148 	 *	platforms, sizeof(int) != sizeof(long) and
    149 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    150 	 */
    151 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    152 		struct proc *pp;
    153 
    154 		rw_enter(&proclist_lock, RW_READER);
    155 		pp = p->p_pptr;
    156 		mutex_enter(&pp->p_crmutex);
    157 		log(LOG_WARNING, "pid %d (%s) "
    158 		    "invoked by uid %d ppid %d (%s) "
    159 		    "tried to set clock forward to %ld\n",
    160 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    161 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    162 		mutex_exit(&pp->p_crmutex);
    163 		rw_exit(&proclist_lock);
    164 		return (EPERM);
    165 	}
    166 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    167 
    168 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    169 	s = splclock();
    170 #ifdef __HAVE_TIMECOUNTER
    171 	microtime(&now);
    172 	timersub(&tv, &now, &delta);
    173 #else /* !__HAVE_TIMECOUNTER */
    174 	timersub(&tv, &time, &delta);
    175 #endif /* !__HAVE_TIMECOUNTER */
    176 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    177 		splx(s);
    178 		return (EPERM);
    179 	}
    180 #ifdef notyet
    181 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    182 		splx(s);
    183 		return (EPERM);
    184 	}
    185 #endif
    186 
    187 #ifdef __HAVE_TIMECOUNTER
    188 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    189 	tc_setclock(&ts1);
    190 #else /* !__HAVE_TIMECOUNTER */
    191 	time = tv;
    192 #endif /* !__HAVE_TIMECOUNTER */
    193 
    194 	(void) spllowersoftclock();
    195 
    196 	timeradd(&boottime, &delta, &boottime);
    197 
    198 	/*
    199 	 * XXXSMP
    200 	 * This is wrong.  We should traverse a list of all
    201 	 * CPUs and add the delta to the runtime of those
    202 	 * CPUs which have a process on them.
    203 	 */
    204 	ci = curcpu();
    205 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    206 	    &ci->ci_schedstate.spc_runtime);
    207 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    208 	nqnfs_lease_updatetime(delta.tv_sec);
    209 #endif
    210 	splx(s);
    211 	resettodr();
    212 	return (0);
    213 }
    214 
    215 /* ARGSUSED */
    216 int
    217 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    218 {
    219 	struct sys_clock_gettime_args /* {
    220 		syscallarg(clockid_t) clock_id;
    221 		syscallarg(struct timespec *) tp;
    222 	} */ *uap = v;
    223 	clockid_t clock_id;
    224 	struct timespec ats;
    225 
    226 	clock_id = SCARG(uap, clock_id);
    227 	switch (clock_id) {
    228 	case CLOCK_REALTIME:
    229 		nanotime(&ats);
    230 		break;
    231 	case CLOCK_MONOTONIC:
    232 #ifdef __HAVE_TIMECOUNTER
    233 		nanouptime(&ats);
    234 #else /* !__HAVE_TIMECOUNTER */
    235 		{
    236 		int s;
    237 
    238 		/* XXX "hz" granularity */
    239 		s = splclock();
    240 		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
    241 		splx(s);
    242 		}
    243 #endif /* !__HAVE_TIMECOUNTER */
    244 		break;
    245 	default:
    246 		return (EINVAL);
    247 	}
    248 
    249 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    250 }
    251 
    252 /* ARGSUSED */
    253 int
    254 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    255 {
    256 	struct sys_clock_settime_args /* {
    257 		syscallarg(clockid_t) clock_id;
    258 		syscallarg(const struct timespec *) tp;
    259 	} */ *uap = v;
    260 	int error;
    261 
    262 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    263 	    &l->l_acflag)) != 0)
    264 		return (error);
    265 
    266 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    267 }
    268 
    269 
    270 int
    271 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    272 {
    273 	struct timespec ats;
    274 	int error;
    275 
    276 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    277 		return (error);
    278 
    279 	switch (clock_id) {
    280 	case CLOCK_REALTIME:
    281 		if ((error = settime(p, &ats)) != 0)
    282 			return (error);
    283 		break;
    284 	case CLOCK_MONOTONIC:
    285 		return (EINVAL);	/* read-only clock */
    286 	default:
    287 		return (EINVAL);
    288 	}
    289 
    290 	return 0;
    291 }
    292 
    293 int
    294 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    295 {
    296 	struct sys_clock_getres_args /* {
    297 		syscallarg(clockid_t) clock_id;
    298 		syscallarg(struct timespec *) tp;
    299 	} */ *uap = v;
    300 	clockid_t clock_id;
    301 	struct timespec ts;
    302 	int error = 0;
    303 
    304 	clock_id = SCARG(uap, clock_id);
    305 	switch (clock_id) {
    306 	case CLOCK_REALTIME:
    307 	case CLOCK_MONOTONIC:
    308 		ts.tv_sec = 0;
    309 #ifdef __HAVE_TIMECOUNTER
    310 		if (tc_getfrequency() > 1000000000)
    311 			ts.tv_nsec = 1;
    312 		else
    313 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    314 #else /* !__HAVE_TIMECOUNTER */
    315 		ts.tv_nsec = 1000000000 / hz;
    316 #endif /* !__HAVE_TIMECOUNTER */
    317 		break;
    318 	default:
    319 		return (EINVAL);
    320 	}
    321 
    322 	if (SCARG(uap, tp))
    323 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    324 
    325 	return error;
    326 }
    327 
    328 /* ARGSUSED */
    329 int
    330 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    331 {
    332 #ifdef __HAVE_TIMECOUNTER
    333 	static int nanowait;
    334 	struct sys_nanosleep_args/* {
    335 		syscallarg(struct timespec *) rqtp;
    336 		syscallarg(struct timespec *) rmtp;
    337 	} */ *uap = v;
    338 	struct timespec rmt, rqt;
    339 	int error, timo;
    340 
    341 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    342 	if (error)
    343 		return (error);
    344 
    345 	if (itimespecfix(&rqt))
    346 		return (EINVAL);
    347 
    348 	timo = tstohz(&rqt);
    349 	/*
    350 	 * Avoid inadvertantly sleeping forever
    351 	 */
    352 	if (timo == 0)
    353 		timo = 1;
    354 
    355 	getnanouptime(&rmt);
    356 
    357 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    358 	if (error == ERESTART)
    359 		error = EINTR;
    360 	if (error == EWOULDBLOCK)
    361 		error = 0;
    362 
    363 	if (SCARG(uap, rmtp)) {
    364 		int error1;
    365 		struct timespec rmtend;
    366 
    367 		getnanouptime(&rmtend);
    368 
    369 		timespecsub(&rmtend, &rmt, &rmt);
    370 		timespecsub(&rqt, &rmt, &rmt);
    371 		if (rmt.tv_sec < 0)
    372 			timespecclear(&rmt);
    373 
    374 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    375 			sizeof(rmt));
    376 		if (error1)
    377 			return (error1);
    378 	}
    379 
    380 	return error;
    381 #else /* !__HAVE_TIMECOUNTER */
    382 	static int nanowait;
    383 	struct sys_nanosleep_args/* {
    384 		syscallarg(struct timespec *) rqtp;
    385 		syscallarg(struct timespec *) rmtp;
    386 	} */ *uap = v;
    387 	struct timespec rqt;
    388 	struct timespec rmt;
    389 	struct timeval atv, utv;
    390 	int error, s, timo;
    391 
    392 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    393 	if (error)
    394 		return (error);
    395 
    396 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    397 	if (itimerfix(&atv))
    398 		return (EINVAL);
    399 
    400 	s = splclock();
    401 	timeradd(&atv,&time,&atv);
    402 	timo = hzto(&atv);
    403 	/*
    404 	 * Avoid inadvertantly sleeping forever
    405 	 */
    406 	if (timo == 0)
    407 		timo = 1;
    408 	splx(s);
    409 
    410 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    411 	if (error == ERESTART)
    412 		error = EINTR;
    413 	if (error == EWOULDBLOCK)
    414 		error = 0;
    415 
    416 	if (SCARG(uap, rmtp)) {
    417 		int error1;
    418 
    419 		s = splclock();
    420 		utv = time;
    421 		splx(s);
    422 
    423 		timersub(&atv, &utv, &utv);
    424 		if (utv.tv_sec < 0)
    425 			timerclear(&utv);
    426 
    427 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    428 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    429 			sizeof(rmt));
    430 		if (error1)
    431 			return (error1);
    432 	}
    433 
    434 	return error;
    435 #endif /* !__HAVE_TIMECOUNTER */
    436 }
    437 
    438 /* ARGSUSED */
    439 int
    440 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    441 {
    442 	struct sys_gettimeofday_args /* {
    443 		syscallarg(struct timeval *) tp;
    444 		syscallarg(void *) tzp;		really "struct timezone *"
    445 	} */ *uap = v;
    446 	struct timeval atv;
    447 	int error = 0;
    448 	struct timezone tzfake;
    449 
    450 	if (SCARG(uap, tp)) {
    451 		microtime(&atv);
    452 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    453 		if (error)
    454 			return (error);
    455 	}
    456 	if (SCARG(uap, tzp)) {
    457 		/*
    458 		 * NetBSD has no kernel notion of time zone, so we just
    459 		 * fake up a timezone struct and return it if demanded.
    460 		 */
    461 		tzfake.tz_minuteswest = 0;
    462 		tzfake.tz_dsttime = 0;
    463 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    464 	}
    465 	return (error);
    466 }
    467 
    468 /* ARGSUSED */
    469 int
    470 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    471 {
    472 	struct sys_settimeofday_args /* {
    473 		syscallarg(const struct timeval *) tv;
    474 		syscallarg(const void *) tzp;	really "const struct timezone *"
    475 	} */ *uap = v;
    476 	int error;
    477 
    478 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    479 	    &l->l_acflag)) != 0)
    480 		return (error);
    481 
    482 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
    483 }
    484 
    485 int
    486 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    487     struct proc *p)
    488 {
    489 	struct timeval atv;
    490 	struct timespec ts;
    491 	int error;
    492 
    493 	/* Verify all parameters before changing time. */
    494 	/*
    495 	 * NetBSD has no kernel notion of time zone, and only an
    496 	 * obsolete program would try to set it, so we log a warning.
    497 	 */
    498 	if (utzp)
    499 		log(LOG_WARNING, "pid %d attempted to set the "
    500 		    "(obsolete) kernel time zone\n", p->p_pid);
    501 
    502 	if (utv == NULL)
    503 		return 0;
    504 
    505 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    506 		return error;
    507 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    508 	return settime(p, &ts);
    509 }
    510 
    511 #ifndef __HAVE_TIMECOUNTER
    512 int	tickdelta;			/* current clock skew, us. per tick */
    513 long	timedelta;			/* unapplied time correction, us. */
    514 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    515 #endif
    516 
    517 int	time_adjusted;			/* set if an adjustment is made */
    518 
    519 /* ARGSUSED */
    520 int
    521 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    522 {
    523 	struct sys_adjtime_args /* {
    524 		syscallarg(const struct timeval *) delta;
    525 		syscallarg(struct timeval *) olddelta;
    526 	} */ *uap = v;
    527 	int error;
    528 
    529 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    530 	    &l->l_acflag)) != 0)
    531 		return (error);
    532 
    533 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    534 }
    535 
    536 int
    537 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    538 {
    539 	struct timeval atv;
    540 	int error = 0;
    541 
    542 #ifdef __HAVE_TIMECOUNTER
    543 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    544 #else /* !__HAVE_TIMECOUNTER */
    545 	long ndelta, ntickdelta, odelta;
    546 	int s;
    547 #endif /* !__HAVE_TIMECOUNTER */
    548 
    549 #ifdef __HAVE_TIMECOUNTER
    550 	if (olddelta) {
    551 		atv.tv_sec = time_adjtime / 1000000;
    552 		atv.tv_usec = time_adjtime % 1000000;
    553 		if (atv.tv_usec < 0) {
    554 			atv.tv_usec += 1000000;
    555 			atv.tv_sec--;
    556 		}
    557 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    558 		if (error)
    559 			return (error);
    560 	}
    561 
    562 	if (delta) {
    563 		error = copyin(delta, &atv, sizeof(struct timeval));
    564 		if (error)
    565 			return (error);
    566 
    567 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    568 			atv.tv_usec;
    569 
    570 		if (time_adjtime)
    571 			/* We need to save the system time during shutdown */
    572 			time_adjusted |= 1;
    573 	}
    574 #else /* !__HAVE_TIMECOUNTER */
    575 	error = copyin(delta, &atv, sizeof(struct timeval));
    576 	if (error)
    577 		return (error);
    578 
    579 	/*
    580 	 * Compute the total correction and the rate at which to apply it.
    581 	 * Round the adjustment down to a whole multiple of the per-tick
    582 	 * delta, so that after some number of incremental changes in
    583 	 * hardclock(), tickdelta will become zero, lest the correction
    584 	 * overshoot and start taking us away from the desired final time.
    585 	 */
    586 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    587 	if (ndelta > bigadj || ndelta < -bigadj)
    588 		ntickdelta = 10 * tickadj;
    589 	else
    590 		ntickdelta = tickadj;
    591 	if (ndelta % ntickdelta)
    592 		ndelta = ndelta / ntickdelta * ntickdelta;
    593 
    594 	/*
    595 	 * To make hardclock()'s job easier, make the per-tick delta negative
    596 	 * if we want time to run slower; then hardclock can simply compute
    597 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    598 	 */
    599 	if (ndelta < 0)
    600 		ntickdelta = -ntickdelta;
    601 	if (ndelta != 0)
    602 		/* We need to save the system clock time during shutdown */
    603 		time_adjusted |= 1;
    604 	s = splclock();
    605 	odelta = timedelta;
    606 	timedelta = ndelta;
    607 	tickdelta = ntickdelta;
    608 	splx(s);
    609 
    610 	if (olddelta) {
    611 		atv.tv_sec = odelta / 1000000;
    612 		atv.tv_usec = odelta % 1000000;
    613 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    614 	}
    615 #endif /* __HAVE_TIMECOUNTER */
    616 
    617 	return error;
    618 }
    619 
    620 /*
    621  * Interval timer support. Both the BSD getitimer() family and the POSIX
    622  * timer_*() family of routines are supported.
    623  *
    624  * All timers are kept in an array pointed to by p_timers, which is
    625  * allocated on demand - many processes don't use timers at all. The
    626  * first three elements in this array are reserved for the BSD timers:
    627  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    628  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    629  * syscall.
    630  *
    631  * Realtime timers are kept in the ptimer structure as an absolute
    632  * time; virtual time timers are kept as a linked list of deltas.
    633  * Virtual time timers are processed in the hardclock() routine of
    634  * kern_clock.c.  The real time timer is processed by a callout
    635  * routine, called from the softclock() routine.  Since a callout may
    636  * be delayed in real time due to interrupt processing in the system,
    637  * it is possible for the real time timeout routine (realtimeexpire,
    638  * given below), to be delayed in real time past when it is supposed
    639  * to occur.  It does not suffice, therefore, to reload the real timer
    640  * .it_value from the real time timers .it_interval.  Rather, we
    641  * compute the next time in absolute time the timer should go off.  */
    642 
    643 /* Allocate a POSIX realtime timer. */
    644 int
    645 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    646 {
    647 	struct sys_timer_create_args /* {
    648 		syscallarg(clockid_t) clock_id;
    649 		syscallarg(struct sigevent *) evp;
    650 		syscallarg(timer_t *) timerid;
    651 	} */ *uap = v;
    652 
    653 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    654 	    SCARG(uap, evp), copyin, l);
    655 }
    656 
    657 int
    658 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    659     copyin_t fetch_event, struct lwp *l)
    660 {
    661 	int error;
    662 	timer_t timerid;
    663 	struct ptimer *pt;
    664 	struct proc *p;
    665 
    666 	p = l->l_proc;
    667 
    668 	if (id < CLOCK_REALTIME ||
    669 	    id > CLOCK_PROF)
    670 		return (EINVAL);
    671 
    672 	if (p->p_timers == NULL)
    673 		timers_alloc(p);
    674 
    675 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    676 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    677 		if (p->p_timers->pts_timers[timerid] == NULL)
    678 			break;
    679 
    680 	if (timerid == TIMER_MAX)
    681 		return EAGAIN;
    682 
    683 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    684 	if (evp) {
    685 		if (((error =
    686 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    687 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    688 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    689 			pool_put(&ptimer_pool, pt);
    690 			return (error ? error : EINVAL);
    691 		}
    692 	} else {
    693 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    694 		switch (id) {
    695 		case CLOCK_REALTIME:
    696 			pt->pt_ev.sigev_signo = SIGALRM;
    697 			break;
    698 		case CLOCK_VIRTUAL:
    699 			pt->pt_ev.sigev_signo = SIGVTALRM;
    700 			break;
    701 		case CLOCK_PROF:
    702 			pt->pt_ev.sigev_signo = SIGPROF;
    703 			break;
    704 		}
    705 		pt->pt_ev.sigev_value.sival_int = timerid;
    706 	}
    707 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    708 	pt->pt_info.ksi_errno = 0;
    709 	pt->pt_info.ksi_code = 0;
    710 	pt->pt_info.ksi_pid = p->p_pid;
    711 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    712 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    713 
    714 	pt->pt_type = id;
    715 	pt->pt_proc = p;
    716 	pt->pt_overruns = 0;
    717 	pt->pt_poverruns = 0;
    718 	pt->pt_entry = timerid;
    719 	timerclear(&pt->pt_time.it_value);
    720 	if (id == CLOCK_REALTIME)
    721 		callout_init(&pt->pt_ch);
    722 	else
    723 		pt->pt_active = 0;
    724 
    725 	p->p_timers->pts_timers[timerid] = pt;
    726 
    727 	return copyout(&timerid, tid, sizeof(timerid));
    728 }
    729 
    730 /* Delete a POSIX realtime timer */
    731 int
    732 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    733 {
    734 	struct sys_timer_delete_args /*  {
    735 		syscallarg(timer_t) timerid;
    736 	} */ *uap = v;
    737 	struct proc *p = l->l_proc;
    738 	timer_t timerid;
    739 	struct ptimer *pt, *ptn;
    740 	int s;
    741 
    742 	timerid = SCARG(uap, timerid);
    743 
    744 	if ((p->p_timers == NULL) ||
    745 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    746 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    747 		return (EINVAL);
    748 
    749 	if (pt->pt_type == CLOCK_REALTIME)
    750 		callout_stop(&pt->pt_ch);
    751 	else if (pt->pt_active) {
    752 		s = splclock();
    753 		ptn = LIST_NEXT(pt, pt_list);
    754 		LIST_REMOVE(pt, pt_list);
    755 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    756 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    757 			    &ptn->pt_time.it_value);
    758 		splx(s);
    759 	}
    760 
    761 	p->p_timers->pts_timers[timerid] = NULL;
    762 	pool_put(&ptimer_pool, pt);
    763 
    764 	return (0);
    765 }
    766 
    767 /*
    768  * Set up the given timer. The value in pt->pt_time.it_value is taken
    769  * to be an absolute time for CLOCK_REALTIME timers and a relative
    770  * time for virtual timers.
    771  * Must be called at splclock().
    772  */
    773 void
    774 timer_settime(struct ptimer *pt)
    775 {
    776 	struct ptimer *ptn, *pptn;
    777 	struct ptlist *ptl;
    778 
    779 	if (pt->pt_type == CLOCK_REALTIME) {
    780 		callout_stop(&pt->pt_ch);
    781 		if (timerisset(&pt->pt_time.it_value)) {
    782 			/*
    783 			 * Don't need to check hzto() return value, here.
    784 			 * callout_reset() does it for us.
    785 			 */
    786 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    787 			    realtimerexpire, pt);
    788 		}
    789 	} else {
    790 		if (pt->pt_active) {
    791 			ptn = LIST_NEXT(pt, pt_list);
    792 			LIST_REMOVE(pt, pt_list);
    793 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    794 				timeradd(&pt->pt_time.it_value,
    795 				    &ptn->pt_time.it_value,
    796 				    &ptn->pt_time.it_value);
    797 		}
    798 		if (timerisset(&pt->pt_time.it_value)) {
    799 			if (pt->pt_type == CLOCK_VIRTUAL)
    800 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    801 			else
    802 				ptl = &pt->pt_proc->p_timers->pts_prof;
    803 
    804 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    805 			     ptn && timercmp(&pt->pt_time.it_value,
    806 				 &ptn->pt_time.it_value, >);
    807 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    808 				timersub(&pt->pt_time.it_value,
    809 				    &ptn->pt_time.it_value,
    810 				    &pt->pt_time.it_value);
    811 
    812 			if (pptn)
    813 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    814 			else
    815 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    816 
    817 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    818 				timersub(&ptn->pt_time.it_value,
    819 				    &pt->pt_time.it_value,
    820 				    &ptn->pt_time.it_value);
    821 
    822 			pt->pt_active = 1;
    823 		} else
    824 			pt->pt_active = 0;
    825 	}
    826 }
    827 
    828 void
    829 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    830 {
    831 #ifdef __HAVE_TIMECOUNTER
    832 	struct timeval now;
    833 #endif
    834 	struct ptimer *ptn;
    835 
    836 	*aitv = pt->pt_time;
    837 	if (pt->pt_type == CLOCK_REALTIME) {
    838 		/*
    839 		 * Convert from absolute to relative time in .it_value
    840 		 * part of real time timer.  If time for real time
    841 		 * timer has passed return 0, else return difference
    842 		 * between current time and time for the timer to go
    843 		 * off.
    844 		 */
    845 		if (timerisset(&aitv->it_value)) {
    846 #ifdef __HAVE_TIMECOUNTER
    847 			getmicrotime(&now);
    848 			if (timercmp(&aitv->it_value, &now, <))
    849 				timerclear(&aitv->it_value);
    850 			else
    851 				timersub(&aitv->it_value, &now,
    852 				    &aitv->it_value);
    853 #else /* !__HAVE_TIMECOUNTER */
    854 			if (timercmp(&aitv->it_value, &time, <))
    855 				timerclear(&aitv->it_value);
    856 			else
    857 				timersub(&aitv->it_value, &time,
    858 				    &aitv->it_value);
    859 #endif /* !__HAVE_TIMECOUNTER */
    860 		}
    861 	} else if (pt->pt_active) {
    862 		if (pt->pt_type == CLOCK_VIRTUAL)
    863 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    864 		else
    865 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    866 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    867 			timeradd(&aitv->it_value,
    868 			    &ptn->pt_time.it_value, &aitv->it_value);
    869 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    870 	} else
    871 		timerclear(&aitv->it_value);
    872 }
    873 
    874 
    875 
    876 /* Set and arm a POSIX realtime timer */
    877 int
    878 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    879 {
    880 	struct sys_timer_settime_args /* {
    881 		syscallarg(timer_t) timerid;
    882 		syscallarg(int) flags;
    883 		syscallarg(const struct itimerspec *) value;
    884 		syscallarg(struct itimerspec *) ovalue;
    885 	} */ *uap = v;
    886 	int error;
    887 	struct itimerspec value, ovalue, *ovp = NULL;
    888 
    889 	if ((error = copyin(SCARG(uap, value), &value,
    890 	    sizeof(struct itimerspec))) != 0)
    891 		return (error);
    892 
    893 	if (SCARG(uap, ovalue))
    894 		ovp = &ovalue;
    895 
    896 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    897 	    SCARG(uap, flags), l->l_proc)) != 0)
    898 		return error;
    899 
    900 	if (ovp)
    901 		return copyout(&ovalue, SCARG(uap, ovalue),
    902 		    sizeof(struct itimerspec));
    903 	return 0;
    904 }
    905 
    906 int
    907 dotimer_settime(int timerid, struct itimerspec *value,
    908     struct itimerspec *ovalue, int flags, struct proc *p)
    909 {
    910 #ifdef __HAVE_TIMECOUNTER
    911 	struct timeval now;
    912 #endif
    913 	struct itimerval val, oval;
    914 	struct ptimer *pt;
    915 	int s;
    916 
    917 	if ((p->p_timers == NULL) ||
    918 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    919 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    920 		return (EINVAL);
    921 
    922 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    923 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    924 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    925 		return (EINVAL);
    926 
    927 	oval = pt->pt_time;
    928 	pt->pt_time = val;
    929 
    930 	s = splclock();
    931 	/*
    932 	 * If we've been passed a relative time for a realtime timer,
    933 	 * convert it to absolute; if an absolute time for a virtual
    934 	 * timer, convert it to relative and make sure we don't set it
    935 	 * to zero, which would cancel the timer, or let it go
    936 	 * negative, which would confuse the comparison tests.
    937 	 */
    938 	if (timerisset(&pt->pt_time.it_value)) {
    939 		if (pt->pt_type == CLOCK_REALTIME) {
    940 #ifdef __HAVE_TIMECOUNTER
    941 			if ((flags & TIMER_ABSTIME) == 0) {
    942 				getmicrotime(&now);
    943 				timeradd(&pt->pt_time.it_value, &now,
    944 				    &pt->pt_time.it_value);
    945 			}
    946 #else /* !__HAVE_TIMECOUNTER */
    947 			if ((flags & TIMER_ABSTIME) == 0)
    948 				timeradd(&pt->pt_time.it_value, &time,
    949 				    &pt->pt_time.it_value);
    950 #endif /* !__HAVE_TIMECOUNTER */
    951 		} else {
    952 			if ((flags & TIMER_ABSTIME) != 0) {
    953 #ifdef __HAVE_TIMECOUNTER
    954 				getmicrotime(&now);
    955 				timersub(&pt->pt_time.it_value, &now,
    956 				    &pt->pt_time.it_value);
    957 #else /* !__HAVE_TIMECOUNTER */
    958 				timersub(&pt->pt_time.it_value, &time,
    959 				    &pt->pt_time.it_value);
    960 #endif /* !__HAVE_TIMECOUNTER */
    961 				if (!timerisset(&pt->pt_time.it_value) ||
    962 				    pt->pt_time.it_value.tv_sec < 0) {
    963 					pt->pt_time.it_value.tv_sec = 0;
    964 					pt->pt_time.it_value.tv_usec = 1;
    965 				}
    966 			}
    967 		}
    968 	}
    969 
    970 	timer_settime(pt);
    971 	splx(s);
    972 
    973 	if (ovalue) {
    974 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    975 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    976 	}
    977 
    978 	return (0);
    979 }
    980 
    981 /* Return the time remaining until a POSIX timer fires. */
    982 int
    983 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    984 {
    985 	struct sys_timer_gettime_args /* {
    986 		syscallarg(timer_t) timerid;
    987 		syscallarg(struct itimerspec *) value;
    988 	} */ *uap = v;
    989 	struct itimerspec its;
    990 	int error;
    991 
    992 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    993 	    &its)) != 0)
    994 		return error;
    995 
    996 	return copyout(&its, SCARG(uap, value), sizeof(its));
    997 }
    998 
    999 int
   1000 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
   1001 {
   1002 	int s;
   1003 	struct ptimer *pt;
   1004 	struct itimerval aitv;
   1005 
   1006 	if ((p->p_timers == NULL) ||
   1007 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1008 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1009 		return (EINVAL);
   1010 
   1011 	s = splclock();
   1012 	timer_gettime(pt, &aitv);
   1013 	splx(s);
   1014 
   1015 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
   1016 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
   1017 
   1018 	return 0;
   1019 }
   1020 
   1021 /*
   1022  * Return the count of the number of times a periodic timer expired
   1023  * while a notification was already pending. The counter is reset when
   1024  * a timer expires and a notification can be posted.
   1025  */
   1026 int
   1027 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1028 {
   1029 	struct sys_timer_getoverrun_args /* {
   1030 		syscallarg(timer_t) timerid;
   1031 	} */ *uap = v;
   1032 	struct proc *p = l->l_proc;
   1033 	int timerid;
   1034 	struct ptimer *pt;
   1035 
   1036 	timerid = SCARG(uap, timerid);
   1037 
   1038 	if ((p->p_timers == NULL) ||
   1039 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1040 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1041 		return (EINVAL);
   1042 
   1043 	*retval = pt->pt_poverruns;
   1044 
   1045 	return (0);
   1046 }
   1047 
   1048 /* Glue function that triggers an upcall; called from userret(). */
   1049 static void
   1050 timerupcall(struct lwp *l, void *arg)
   1051 {
   1052 	struct ptimers *pt = (struct ptimers *)arg;
   1053 	unsigned int i, fired, done;
   1054 
   1055 	KDASSERT(l->l_proc->p_sa);
   1056 	/* Bail out if we do not own the virtual processor */
   1057 	if (l->l_savp->savp_lwp != l)
   1058 		return ;
   1059 
   1060 	KERNEL_PROC_LOCK(l);
   1061 
   1062 	fired = pt->pts_fired;
   1063 	done = 0;
   1064 	while ((i = ffs(fired)) != 0) {
   1065 		siginfo_t *si;
   1066 		int mask = 1 << --i;
   1067 		int f;
   1068 
   1069 		f = l->l_flag & L_SA;
   1070 		l->l_flag &= ~L_SA;
   1071 		si = siginfo_alloc(PR_WAITOK);
   1072 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
   1073 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
   1074 		    sizeof(*si), si, siginfo_free) != 0) {
   1075 			siginfo_free(si);
   1076 			/* XXX What do we do here?? */
   1077 		} else
   1078 			done |= mask;
   1079 		fired &= ~mask;
   1080 		l->l_flag |= f;
   1081 	}
   1082 	pt->pts_fired &= ~done;
   1083 	if (pt->pts_fired == 0)
   1084 		l->l_proc->p_userret = NULL;
   1085 
   1086 	KERNEL_PROC_UNLOCK(l);
   1087 }
   1088 
   1089 /*
   1090  * Real interval timer expired:
   1091  * send process whose timer expired an alarm signal.
   1092  * If time is not set up to reload, then just return.
   1093  * Else compute next time timer should go off which is > current time.
   1094  * This is where delay in processing this timeout causes multiple
   1095  * SIGALRM calls to be compressed into one.
   1096  */
   1097 void
   1098 realtimerexpire(void *arg)
   1099 {
   1100 #ifdef __HAVE_TIMECOUNTER
   1101 	struct timeval now;
   1102 #endif
   1103 	struct ptimer *pt;
   1104 	int s;
   1105 
   1106 	pt = (struct ptimer *)arg;
   1107 
   1108 	itimerfire(pt);
   1109 
   1110 	if (!timerisset(&pt->pt_time.it_interval)) {
   1111 		timerclear(&pt->pt_time.it_value);
   1112 		return;
   1113 	}
   1114 #ifdef __HAVE_TIMECOUNTER
   1115 	for (;;) {
   1116 		s = splclock();	/* XXX need spl now? */
   1117 		timeradd(&pt->pt_time.it_value,
   1118 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1119 		getmicrotime(&now);
   1120 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1121 			/*
   1122 			 * Don't need to check hzto() return value, here.
   1123 			 * callout_reset() does it for us.
   1124 			 */
   1125 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1126 			    realtimerexpire, pt);
   1127 			splx(s);
   1128 			return;
   1129 		}
   1130 		splx(s);
   1131 		pt->pt_overruns++;
   1132 	}
   1133 #else /* !__HAVE_TIMECOUNTER */
   1134 	for (;;) {
   1135 		s = splclock();
   1136 		timeradd(&pt->pt_time.it_value,
   1137 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1138 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1139 			/*
   1140 			 * Don't need to check hzto() return value, here.
   1141 			 * callout_reset() does it for us.
   1142 			 */
   1143 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1144 			    realtimerexpire, pt);
   1145 			splx(s);
   1146 			return;
   1147 		}
   1148 		splx(s);
   1149 		pt->pt_overruns++;
   1150 	}
   1151 #endif /* !__HAVE_TIMECOUNTER */
   1152 }
   1153 
   1154 /* BSD routine to get the value of an interval timer. */
   1155 /* ARGSUSED */
   1156 int
   1157 sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1158 {
   1159 	struct sys_getitimer_args /* {
   1160 		syscallarg(int) which;
   1161 		syscallarg(struct itimerval *) itv;
   1162 	} */ *uap = v;
   1163 	struct proc *p = l->l_proc;
   1164 	struct itimerval aitv;
   1165 	int error;
   1166 
   1167 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1168 	if (error)
   1169 		return error;
   1170 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1171 }
   1172 
   1173 int
   1174 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1175 {
   1176 	int s;
   1177 
   1178 	if ((u_int)which > ITIMER_PROF)
   1179 		return (EINVAL);
   1180 
   1181 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1182 		timerclear(&itvp->it_value);
   1183 		timerclear(&itvp->it_interval);
   1184 	} else {
   1185 		s = splclock();
   1186 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1187 		splx(s);
   1188 	}
   1189 
   1190 	return 0;
   1191 }
   1192 
   1193 /* BSD routine to set/arm an interval timer. */
   1194 /* ARGSUSED */
   1195 int
   1196 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1197 {
   1198 	struct sys_setitimer_args /* {
   1199 		syscallarg(int) which;
   1200 		syscallarg(const struct itimerval *) itv;
   1201 		syscallarg(struct itimerval *) oitv;
   1202 	} */ *uap = v;
   1203 	struct proc *p = l->l_proc;
   1204 	int which = SCARG(uap, which);
   1205 	struct sys_getitimer_args getargs;
   1206 	const struct itimerval *itvp;
   1207 	struct itimerval aitv;
   1208 	int error;
   1209 
   1210 	if ((u_int)which > ITIMER_PROF)
   1211 		return (EINVAL);
   1212 	itvp = SCARG(uap, itv);
   1213 	if (itvp &&
   1214 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1215 		return (error);
   1216 	if (SCARG(uap, oitv) != NULL) {
   1217 		SCARG(&getargs, which) = which;
   1218 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1219 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1220 			return (error);
   1221 	}
   1222 	if (itvp == 0)
   1223 		return (0);
   1224 
   1225 	return dosetitimer(p, which, &aitv);
   1226 }
   1227 
   1228 int
   1229 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1230 {
   1231 #ifdef __HAVE_TIMECOUNTER
   1232 	struct timeval now;
   1233 #endif
   1234 	struct ptimer *pt;
   1235 	int s;
   1236 
   1237 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1238 		return (EINVAL);
   1239 
   1240 	/*
   1241 	 * Don't bother allocating data structures if the process just
   1242 	 * wants to clear the timer.
   1243 	 */
   1244 	if (!timerisset(&itvp->it_value) &&
   1245 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1246 		return (0);
   1247 
   1248 	if (p->p_timers == NULL)
   1249 		timers_alloc(p);
   1250 	if (p->p_timers->pts_timers[which] == NULL) {
   1251 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1252 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1253 		pt->pt_ev.sigev_value.sival_int = which;
   1254 		pt->pt_overruns = 0;
   1255 		pt->pt_proc = p;
   1256 		pt->pt_type = which;
   1257 		pt->pt_entry = which;
   1258 		switch (which) {
   1259 		case ITIMER_REAL:
   1260 			callout_init(&pt->pt_ch);
   1261 			pt->pt_ev.sigev_signo = SIGALRM;
   1262 			break;
   1263 		case ITIMER_VIRTUAL:
   1264 			pt->pt_active = 0;
   1265 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1266 			break;
   1267 		case ITIMER_PROF:
   1268 			pt->pt_active = 0;
   1269 			pt->pt_ev.sigev_signo = SIGPROF;
   1270 			break;
   1271 		}
   1272 	} else
   1273 		pt = p->p_timers->pts_timers[which];
   1274 
   1275 	pt->pt_time = *itvp;
   1276 	p->p_timers->pts_timers[which] = pt;
   1277 
   1278 	s = splclock();
   1279 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1280 		/* Convert to absolute time */
   1281 #ifdef __HAVE_TIMECOUNTER
   1282 		/* XXX need to wrap in splclock for timecounters case? */
   1283 		getmicrotime(&now);
   1284 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1285 #else /* !__HAVE_TIMECOUNTER */
   1286 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1287 #endif /* !__HAVE_TIMECOUNTER */
   1288 	}
   1289 	timer_settime(pt);
   1290 	splx(s);
   1291 
   1292 	return (0);
   1293 }
   1294 
   1295 /* Utility routines to manage the array of pointers to timers. */
   1296 void
   1297 timers_alloc(struct proc *p)
   1298 {
   1299 	int i;
   1300 	struct ptimers *pts;
   1301 
   1302 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1303 	LIST_INIT(&pts->pts_virtual);
   1304 	LIST_INIT(&pts->pts_prof);
   1305 	for (i = 0; i < TIMER_MAX; i++)
   1306 		pts->pts_timers[i] = NULL;
   1307 	pts->pts_fired = 0;
   1308 	p->p_timers = pts;
   1309 }
   1310 
   1311 /*
   1312  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1313  * then clean up all timers and free all the data structures. If
   1314  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1315  * by timer_create(), not the BSD setitimer() timers, and only free the
   1316  * structure if none of those remain.
   1317  */
   1318 void
   1319 timers_free(struct proc *p, int which)
   1320 {
   1321 	int i, s;
   1322 	struct ptimers *pts;
   1323 	struct ptimer *pt, *ptn;
   1324 	struct timeval tv;
   1325 
   1326 	if (p->p_timers) {
   1327 		pts = p->p_timers;
   1328 		if (which == TIMERS_ALL)
   1329 			i = 0;
   1330 		else {
   1331 			s = splclock();
   1332 			timerclear(&tv);
   1333 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1334 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1335 			     ptn = LIST_NEXT(ptn, pt_list))
   1336 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1337 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1338 			if (ptn) {
   1339 				timeradd(&tv, &ptn->pt_time.it_value,
   1340 				    &ptn->pt_time.it_value);
   1341 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1342 				    ptn, pt_list);
   1343 			}
   1344 
   1345 			timerclear(&tv);
   1346 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1347 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1348 			     ptn = LIST_NEXT(ptn, pt_list))
   1349 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1350 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1351 			if (ptn) {
   1352 				timeradd(&tv, &ptn->pt_time.it_value,
   1353 				    &ptn->pt_time.it_value);
   1354 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1355 				    pt_list);
   1356 			}
   1357 			splx(s);
   1358 			i = 3;
   1359 		}
   1360 		for ( ; i < TIMER_MAX; i++)
   1361 			if ((pt = pts->pts_timers[i]) != NULL) {
   1362 				if (pt->pt_type == CLOCK_REALTIME)
   1363 					callout_stop(&pt->pt_ch);
   1364 				pts->pts_timers[i] = NULL;
   1365 				pool_put(&ptimer_pool, pt);
   1366 			}
   1367 		if ((pts->pts_timers[0] == NULL) &&
   1368 		    (pts->pts_timers[1] == NULL) &&
   1369 		    (pts->pts_timers[2] == NULL)) {
   1370 			p->p_timers = NULL;
   1371 			pool_put(&ptimers_pool, pts);
   1372 		}
   1373 	}
   1374 }
   1375 
   1376 /*
   1377  * Check that a proposed value to load into the .it_value or
   1378  * .it_interval part of an interval timer is acceptable, and
   1379  * fix it to have at least minimal value (i.e. if it is less
   1380  * than the resolution of the clock, round it up.)
   1381  */
   1382 int
   1383 itimerfix(struct timeval *tv)
   1384 {
   1385 
   1386 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1387 		return (EINVAL);
   1388 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1389 		tv->tv_usec = tick;
   1390 	return (0);
   1391 }
   1392 
   1393 #ifdef __HAVE_TIMECOUNTER
   1394 int
   1395 itimespecfix(struct timespec *ts)
   1396 {
   1397 
   1398 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1399 		return (EINVAL);
   1400 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1401 		ts->tv_nsec = tick * 1000;
   1402 	return (0);
   1403 }
   1404 #endif /* __HAVE_TIMECOUNTER */
   1405 
   1406 /*
   1407  * Decrement an interval timer by a specified number
   1408  * of microseconds, which must be less than a second,
   1409  * i.e. < 1000000.  If the timer expires, then reload
   1410  * it.  In this case, carry over (usec - old value) to
   1411  * reduce the value reloaded into the timer so that
   1412  * the timer does not drift.  This routine assumes
   1413  * that it is called in a context where the timers
   1414  * on which it is operating cannot change in value.
   1415  */
   1416 int
   1417 itimerdecr(struct ptimer *pt, int usec)
   1418 {
   1419 	struct itimerval *itp;
   1420 
   1421 	itp = &pt->pt_time;
   1422 	if (itp->it_value.tv_usec < usec) {
   1423 		if (itp->it_value.tv_sec == 0) {
   1424 			/* expired, and already in next interval */
   1425 			usec -= itp->it_value.tv_usec;
   1426 			goto expire;
   1427 		}
   1428 		itp->it_value.tv_usec += 1000000;
   1429 		itp->it_value.tv_sec--;
   1430 	}
   1431 	itp->it_value.tv_usec -= usec;
   1432 	usec = 0;
   1433 	if (timerisset(&itp->it_value))
   1434 		return (1);
   1435 	/* expired, exactly at end of interval */
   1436 expire:
   1437 	if (timerisset(&itp->it_interval)) {
   1438 		itp->it_value = itp->it_interval;
   1439 		itp->it_value.tv_usec -= usec;
   1440 		if (itp->it_value.tv_usec < 0) {
   1441 			itp->it_value.tv_usec += 1000000;
   1442 			itp->it_value.tv_sec--;
   1443 		}
   1444 		timer_settime(pt);
   1445 	} else
   1446 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1447 	return (0);
   1448 }
   1449 
   1450 void
   1451 itimerfire(struct ptimer *pt)
   1452 {
   1453 	struct proc *p = pt->pt_proc;
   1454 	struct sadata_vp *vp;
   1455 	int s;
   1456 	unsigned int i;
   1457 
   1458 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1459 		/*
   1460 		 * No RT signal infrastructure exists at this time;
   1461 		 * just post the signal number and throw away the
   1462 		 * value.
   1463 		 */
   1464 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1465 			pt->pt_overruns++;
   1466 		else {
   1467 			ksiginfo_t ksi;
   1468 			(void)memset(&ksi, 0, sizeof(ksi));
   1469 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1470 			ksi.ksi_code = SI_TIMER;
   1471 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1472 			pt->pt_poverruns = pt->pt_overruns;
   1473 			pt->pt_overruns = 0;
   1474 			kpsignal(p, &ksi, NULL);
   1475 		}
   1476 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1477 		/* Cause the process to generate an upcall when it returns. */
   1478 
   1479 		if (p->p_userret == NULL) {
   1480 			/*
   1481 			 * XXX stop signals can be processed inside tsleep,
   1482 			 * which can be inside sa_yield's inner loop, which
   1483 			 * makes testing for sa_idle alone insuffucent to
   1484 			 * determine if we really should call setrunnable.
   1485 			 */
   1486 			pt->pt_poverruns = pt->pt_overruns;
   1487 			pt->pt_overruns = 0;
   1488 			i = 1 << pt->pt_entry;
   1489 			p->p_timers->pts_fired = i;
   1490 			p->p_userret = timerupcall;
   1491 			p->p_userret_arg = p->p_timers;
   1492 
   1493 			SCHED_LOCK(s);
   1494 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1495 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1496 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1497 					sched_wakeup(vp->savp_lwp);
   1498 					break;
   1499 				}
   1500 			}
   1501 			SCHED_UNLOCK(s);
   1502 		} else if (p->p_userret == timerupcall) {
   1503 			i = 1 << pt->pt_entry;
   1504 			if ((p->p_timers->pts_fired & i) == 0) {
   1505 				pt->pt_poverruns = pt->pt_overruns;
   1506 				pt->pt_overruns = 0;
   1507 				p->p_timers->pts_fired |= i;
   1508 			} else
   1509 				pt->pt_overruns++;
   1510 		} else {
   1511 			pt->pt_overruns++;
   1512 			if ((p->p_flag & P_WEXIT) == 0)
   1513 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1514 				    p->p_pid, pt->pt_overruns,
   1515 				    pt->pt_ev.sigev_value.sival_int,
   1516 				    p->p_userret);
   1517 		}
   1518 	}
   1519 
   1520 }
   1521 
   1522 /*
   1523  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1524  * for usage and rationale.
   1525  */
   1526 int
   1527 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1528 {
   1529 	struct timeval tv, delta;
   1530 	int rv = 0;
   1531 #ifndef __HAVE_TIMECOUNTER
   1532 	int s;
   1533 #endif
   1534 
   1535 #ifdef __HAVE_TIMECOUNTER
   1536 	getmicrouptime(&tv);
   1537 #else /* !__HAVE_TIMECOUNTER */
   1538 	s = splclock();
   1539 	tv = mono_time;
   1540 	splx(s);
   1541 #endif /* !__HAVE_TIMECOUNTER */
   1542 	timersub(&tv, lasttime, &delta);
   1543 
   1544 	/*
   1545 	 * check for 0,0 is so that the message will be seen at least once,
   1546 	 * even if interval is huge.
   1547 	 */
   1548 	if (timercmp(&delta, mininterval, >=) ||
   1549 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1550 		*lasttime = tv;
   1551 		rv = 1;
   1552 	}
   1553 
   1554 	return (rv);
   1555 }
   1556 
   1557 /*
   1558  * ppsratecheck(): packets (or events) per second limitation.
   1559  */
   1560 int
   1561 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1562 {
   1563 	struct timeval tv, delta;
   1564 	int rv;
   1565 #ifndef __HAVE_TIMECOUNTER
   1566 	int s;
   1567 #endif
   1568 
   1569 #ifdef __HAVE_TIMECOUNTER
   1570 	getmicrouptime(&tv);
   1571 #else /* !__HAVE_TIMECOUNTER */
   1572 	s = splclock();
   1573 	tv = mono_time;
   1574 	splx(s);
   1575 #endif /* !__HAVE_TIMECOUNTER */
   1576 	timersub(&tv, lasttime, &delta);
   1577 
   1578 	/*
   1579 	 * check for 0,0 is so that the message will be seen at least once.
   1580 	 * if more than one second have passed since the last update of
   1581 	 * lasttime, reset the counter.
   1582 	 *
   1583 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1584 	 * try to use *curpps for stat purposes as well.
   1585 	 */
   1586 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1587 	    delta.tv_sec >= 1) {
   1588 		*lasttime = tv;
   1589 		*curpps = 0;
   1590 	}
   1591 	if (maxpps < 0)
   1592 		rv = 1;
   1593 	else if (*curpps < maxpps)
   1594 		rv = 1;
   1595 	else
   1596 		rv = 0;
   1597 
   1598 #if 1 /*DIAGNOSTIC?*/
   1599 	/* be careful about wrap-around */
   1600 	if (*curpps + 1 > *curpps)
   1601 		*curpps = *curpps + 1;
   1602 #else
   1603 	/*
   1604 	 * assume that there's not too many calls to this function.
   1605 	 * not sure if the assumption holds, as it depends on *caller's*
   1606 	 * behavior, not the behavior of this function.
   1607 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1608 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1609 	 */
   1610 	*curpps = *curpps + 1;
   1611 #endif
   1612 
   1613 	return (rv);
   1614 }
   1615