Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.105.4.4
      1 /*	$NetBSD: kern_time.c,v 1.105.4.4 2006/11/18 21:39:22 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.105.4.4 2006/11/18 21:39:22 ad Exp $");
     72 
     73 #include "fs_nfs.h"
     74 #include "opt_nfs.h"
     75 #include "opt_nfsserver.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/resourcevar.h>
     79 #include <sys/kernel.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/sa.h>
     83 #include <sys/savar.h>
     84 #include <sys/vnode.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/syslog.h>
     87 #ifdef __HAVE_TIMECOUNTER
     88 #include <sys/timetc.h>
     89 #else /* !__HAVE_TIMECOUNTER */
     90 #include <sys/timevar.h>
     91 #endif /* !__HAVE_TIMECOUNTER */
     92 #include <sys/kauth.h>
     93 
     94 #include <sys/mount.h>
     95 #include <sys/syscallargs.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #if defined(NFS) || defined(NFSSERVER)
    100 #include <nfs/rpcv2.h>
    101 #include <nfs/nfsproto.h>
    102 #include <nfs/nfs.h>
    103 #include <nfs/nfs_var.h>
    104 #endif
    105 
    106 #include <machine/cpu.h>
    107 
    108 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    109     &pool_allocator_nointr);
    110 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    111     &pool_allocator_nointr);
    112 
    113 static void timerupcall(struct lwp *, void *);
    114 #ifdef __HAVE_TIMECOUNTER
    115 static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    116 #endif /* __HAVE_TIMECOUNTER */
    117 
    118 /* Time of day and interval timer support.
    119  *
    120  * These routines provide the kernel entry points to get and set
    121  * the time-of-day and per-process interval timers.  Subroutines
    122  * here provide support for adding and subtracting timeval structures
    123  * and decrementing interval timers, optionally reloading the interval
    124  * timers when they expire.
    125  */
    126 
    127 /* This function is used by clock_settime and settimeofday */
    128 int
    129 settime(struct proc *p, struct timespec *ts)
    130 {
    131 	struct timeval delta, tv;
    132 #ifdef __HAVE_TIMECOUNTER
    133 	struct timeval now;
    134 	struct timespec ts1;
    135 #endif /* !__HAVE_TIMECOUNTER */
    136 	struct cpu_info *ci;
    137 	int s;
    138 
    139 	/*
    140 	 * Don't allow the time to be set forward so far it will wrap
    141 	 * and become negative, thus allowing an attacker to bypass
    142 	 * the next check below.  The cutoff is 1 year before rollover
    143 	 * occurs, so even if the attacker uses adjtime(2) to move
    144 	 * the time past the cutoff, it will take a very long time
    145 	 * to get to the wrap point.
    146 	 *
    147 	 * XXX: we check against INT_MAX since on 64-bit
    148 	 *	platforms, sizeof(int) != sizeof(long) and
    149 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    150 	 */
    151 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    152 		struct proc *pp;
    153 
    154 		rw_enter(&proclist_lock, RW_READER);
    155 		pp = p->p_pptr;
    156 		mutex_enter(&pp->p_mutex);
    157 		log(LOG_WARNING, "pid %d (%s) "
    158 		    "invoked by uid %d ppid %d (%s) "
    159 		    "tried to set clock forward to %ld\n",
    160 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    161 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    162 		mutex_exit(&pp->p_mutex);
    163 		rw_exit(&proclist_lock);
    164 		return (EPERM);
    165 	}
    166 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    167 
    168 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    169 	s = splclock();
    170 #ifdef __HAVE_TIMECOUNTER
    171 	microtime(&now);
    172 	timersub(&tv, &now, &delta);
    173 #else /* !__HAVE_TIMECOUNTER */
    174 	timersub(&tv, &time, &delta);
    175 #endif /* !__HAVE_TIMECOUNTER */
    176 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    177 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    178 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    179 		splx(s);
    180 		return (EPERM);
    181 	}
    182 #ifdef notyet
    183 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    184 		splx(s);
    185 		return (EPERM);
    186 	}
    187 #endif
    188 
    189 #ifdef __HAVE_TIMECOUNTER
    190 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    191 	tc_setclock(&ts1);
    192 #else /* !__HAVE_TIMECOUNTER */
    193 	time = tv;
    194 #endif /* !__HAVE_TIMECOUNTER */
    195 
    196 	(void) spllowersoftclock();
    197 
    198 	timeradd(&boottime, &delta, &boottime);
    199 
    200 	/*
    201 	 * XXXSMP
    202 	 * This is wrong.  We should traverse a list of all
    203 	 * CPUs and add the delta to the runtime of those
    204 	 * CPUs which have a process on them.
    205 	 */
    206 	ci = curcpu();
    207 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    208 	    &ci->ci_schedstate.spc_runtime);
    209 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    210 	nqnfs_lease_updatetime(delta.tv_sec);
    211 #endif
    212 	splx(s);
    213 	resettodr();
    214 	return (0);
    215 }
    216 
    217 /* ARGSUSED */
    218 int
    219 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    220 {
    221 	struct sys_clock_gettime_args /* {
    222 		syscallarg(clockid_t) clock_id;
    223 		syscallarg(struct timespec *) tp;
    224 	} */ *uap = v;
    225 	clockid_t clock_id;
    226 	struct timespec ats;
    227 
    228 	clock_id = SCARG(uap, clock_id);
    229 	switch (clock_id) {
    230 	case CLOCK_REALTIME:
    231 		nanotime(&ats);
    232 		break;
    233 	case CLOCK_MONOTONIC:
    234 #ifdef __HAVE_TIMECOUNTER
    235 		nanouptime(&ats);
    236 #else /* !__HAVE_TIMECOUNTER */
    237 		{
    238 		int s;
    239 
    240 		/* XXX "hz" granularity */
    241 		s = splclock();
    242 		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
    243 		splx(s);
    244 		}
    245 #endif /* !__HAVE_TIMECOUNTER */
    246 		break;
    247 	default:
    248 		return (EINVAL);
    249 	}
    250 
    251 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    252 }
    253 
    254 /* ARGSUSED */
    255 int
    256 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    257 {
    258 	struct sys_clock_settime_args /* {
    259 		syscallarg(clockid_t) clock_id;
    260 		syscallarg(const struct timespec *) tp;
    261 	} */ *uap = v;
    262 	int error;
    263 
    264 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    265 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    266 		return (error);
    267 
    268 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    269 }
    270 
    271 
    272 int
    273 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    274 {
    275 	struct timespec ats;
    276 	int error;
    277 
    278 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    279 		return (error);
    280 
    281 	switch (clock_id) {
    282 	case CLOCK_REALTIME:
    283 		if ((error = settime(p, &ats)) != 0)
    284 			return (error);
    285 		break;
    286 	case CLOCK_MONOTONIC:
    287 		return (EINVAL);	/* read-only clock */
    288 	default:
    289 		return (EINVAL);
    290 	}
    291 
    292 	return 0;
    293 }
    294 
    295 int
    296 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    297 {
    298 	struct sys_clock_getres_args /* {
    299 		syscallarg(clockid_t) clock_id;
    300 		syscallarg(struct timespec *) tp;
    301 	} */ *uap = v;
    302 	clockid_t clock_id;
    303 	struct timespec ts;
    304 	int error = 0;
    305 
    306 	clock_id = SCARG(uap, clock_id);
    307 	switch (clock_id) {
    308 	case CLOCK_REALTIME:
    309 	case CLOCK_MONOTONIC:
    310 		ts.tv_sec = 0;
    311 #ifdef __HAVE_TIMECOUNTER
    312 		if (tc_getfrequency() > 1000000000)
    313 			ts.tv_nsec = 1;
    314 		else
    315 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    316 #else /* !__HAVE_TIMECOUNTER */
    317 		ts.tv_nsec = 1000000000 / hz;
    318 #endif /* !__HAVE_TIMECOUNTER */
    319 		break;
    320 	default:
    321 		return (EINVAL);
    322 	}
    323 
    324 	if (SCARG(uap, tp))
    325 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    326 
    327 	return error;
    328 }
    329 
    330 /* ARGSUSED */
    331 int
    332 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    333 {
    334 #ifdef __HAVE_TIMECOUNTER
    335 	static int nanowait;
    336 	struct sys_nanosleep_args/* {
    337 		syscallarg(struct timespec *) rqtp;
    338 		syscallarg(struct timespec *) rmtp;
    339 	} */ *uap = v;
    340 	struct timespec rmt, rqt;
    341 	int error, timo;
    342 
    343 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    344 	if (error)
    345 		return (error);
    346 
    347 	if (itimespecfix(&rqt))
    348 		return (EINVAL);
    349 
    350 	timo = tstohz(&rqt);
    351 	/*
    352 	 * Avoid inadvertantly sleeping forever
    353 	 */
    354 	if (timo == 0)
    355 		timo = 1;
    356 
    357 	getnanouptime(&rmt);
    358 
    359 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    360 	if (error == ERESTART)
    361 		error = EINTR;
    362 	if (error == EWOULDBLOCK)
    363 		error = 0;
    364 
    365 	if (SCARG(uap, rmtp)) {
    366 		int error1;
    367 		struct timespec rmtend;
    368 
    369 		getnanouptime(&rmtend);
    370 
    371 		timespecsub(&rmtend, &rmt, &rmt);
    372 		timespecsub(&rqt, &rmt, &rmt);
    373 		if (rmt.tv_sec < 0)
    374 			timespecclear(&rmt);
    375 
    376 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    377 			sizeof(rmt));
    378 		if (error1)
    379 			return (error1);
    380 	}
    381 
    382 	return error;
    383 #else /* !__HAVE_TIMECOUNTER */
    384 	static int nanowait;
    385 	struct sys_nanosleep_args/* {
    386 		syscallarg(struct timespec *) rqtp;
    387 		syscallarg(struct timespec *) rmtp;
    388 	} */ *uap = v;
    389 	struct timespec rqt;
    390 	struct timespec rmt;
    391 	struct timeval atv, utv;
    392 	int error, s, timo;
    393 
    394 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    395 	if (error)
    396 		return (error);
    397 
    398 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    399 	if (itimerfix(&atv))
    400 		return (EINVAL);
    401 
    402 	s = splclock();
    403 	timeradd(&atv,&time,&atv);
    404 	timo = hzto(&atv);
    405 	/*
    406 	 * Avoid inadvertantly sleeping forever
    407 	 */
    408 	if (timo == 0)
    409 		timo = 1;
    410 	splx(s);
    411 
    412 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    413 	if (error == ERESTART)
    414 		error = EINTR;
    415 	if (error == EWOULDBLOCK)
    416 		error = 0;
    417 
    418 	if (SCARG(uap, rmtp)) {
    419 		int error1;
    420 
    421 		s = splclock();
    422 		utv = time;
    423 		splx(s);
    424 
    425 		timersub(&atv, &utv, &utv);
    426 		if (utv.tv_sec < 0)
    427 			timerclear(&utv);
    428 
    429 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    430 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    431 			sizeof(rmt));
    432 		if (error1)
    433 			return (error1);
    434 	}
    435 
    436 	return error;
    437 #endif /* !__HAVE_TIMECOUNTER */
    438 }
    439 
    440 /* ARGSUSED */
    441 int
    442 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    443 {
    444 	struct sys_gettimeofday_args /* {
    445 		syscallarg(struct timeval *) tp;
    446 		syscallarg(void *) tzp;		really "struct timezone *"
    447 	} */ *uap = v;
    448 	struct timeval atv;
    449 	int error = 0;
    450 	struct timezone tzfake;
    451 
    452 	if (SCARG(uap, tp)) {
    453 		microtime(&atv);
    454 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    455 		if (error)
    456 			return (error);
    457 	}
    458 	if (SCARG(uap, tzp)) {
    459 		/*
    460 		 * NetBSD has no kernel notion of time zone, so we just
    461 		 * fake up a timezone struct and return it if demanded.
    462 		 */
    463 		tzfake.tz_minuteswest = 0;
    464 		tzfake.tz_dsttime = 0;
    465 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    466 	}
    467 	return (error);
    468 }
    469 
    470 /* ARGSUSED */
    471 int
    472 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    473 {
    474 	struct sys_settimeofday_args /* {
    475 		syscallarg(const struct timeval *) tv;
    476 		syscallarg(const void *) tzp;	really "const struct timezone *"
    477 	} */ *uap = v;
    478 	int error;
    479 
    480 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    481 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    482 		return (error);
    483 
    484 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
    485 }
    486 
    487 int
    488 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    489     struct proc *p)
    490 {
    491 	struct timeval atv;
    492 	struct timespec ts;
    493 	int error;
    494 
    495 	/* Verify all parameters before changing time. */
    496 	/*
    497 	 * NetBSD has no kernel notion of time zone, and only an
    498 	 * obsolete program would try to set it, so we log a warning.
    499 	 */
    500 	if (utzp)
    501 		log(LOG_WARNING, "pid %d attempted to set the "
    502 		    "(obsolete) kernel time zone\n", p->p_pid);
    503 
    504 	if (utv == NULL)
    505 		return 0;
    506 
    507 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    508 		return error;
    509 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    510 	return settime(p, &ts);
    511 }
    512 
    513 #ifndef __HAVE_TIMECOUNTER
    514 int	tickdelta;			/* current clock skew, us. per tick */
    515 long	timedelta;			/* unapplied time correction, us. */
    516 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    517 #endif
    518 
    519 int	time_adjusted;			/* set if an adjustment is made */
    520 
    521 /* ARGSUSED */
    522 int
    523 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    524 {
    525 	struct sys_adjtime_args /* {
    526 		syscallarg(const struct timeval *) delta;
    527 		syscallarg(struct timeval *) olddelta;
    528 	} */ *uap = v;
    529 	int error;
    530 
    531 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    532 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    533 		return (error);
    534 
    535 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    536 }
    537 
    538 int
    539 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    540 {
    541 	struct timeval atv;
    542 	int error = 0;
    543 
    544 #ifdef __HAVE_TIMECOUNTER
    545 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    546 #else /* !__HAVE_TIMECOUNTER */
    547 	long ndelta, ntickdelta, odelta;
    548 	int s;
    549 #endif /* !__HAVE_TIMECOUNTER */
    550 
    551 #ifdef __HAVE_TIMECOUNTER
    552 	if (olddelta) {
    553 		atv.tv_sec = time_adjtime / 1000000;
    554 		atv.tv_usec = time_adjtime % 1000000;
    555 		if (atv.tv_usec < 0) {
    556 			atv.tv_usec += 1000000;
    557 			atv.tv_sec--;
    558 		}
    559 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    560 		if (error)
    561 			return (error);
    562 	}
    563 
    564 	if (delta) {
    565 		error = copyin(delta, &atv, sizeof(struct timeval));
    566 		if (error)
    567 			return (error);
    568 
    569 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    570 			atv.tv_usec;
    571 
    572 		if (time_adjtime)
    573 			/* We need to save the system time during shutdown */
    574 			time_adjusted |= 1;
    575 	}
    576 #else /* !__HAVE_TIMECOUNTER */
    577 	error = copyin(delta, &atv, sizeof(struct timeval));
    578 	if (error)
    579 		return (error);
    580 
    581 	/*
    582 	 * Compute the total correction and the rate at which to apply it.
    583 	 * Round the adjustment down to a whole multiple of the per-tick
    584 	 * delta, so that after some number of incremental changes in
    585 	 * hardclock(), tickdelta will become zero, lest the correction
    586 	 * overshoot and start taking us away from the desired final time.
    587 	 */
    588 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    589 	if (ndelta > bigadj || ndelta < -bigadj)
    590 		ntickdelta = 10 * tickadj;
    591 	else
    592 		ntickdelta = tickadj;
    593 	if (ndelta % ntickdelta)
    594 		ndelta = ndelta / ntickdelta * ntickdelta;
    595 
    596 	/*
    597 	 * To make hardclock()'s job easier, make the per-tick delta negative
    598 	 * if we want time to run slower; then hardclock can simply compute
    599 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    600 	 */
    601 	if (ndelta < 0)
    602 		ntickdelta = -ntickdelta;
    603 	if (ndelta != 0)
    604 		/* We need to save the system clock time during shutdown */
    605 		time_adjusted |= 1;
    606 	s = splclock();
    607 	odelta = timedelta;
    608 	timedelta = ndelta;
    609 	tickdelta = ntickdelta;
    610 	splx(s);
    611 
    612 	if (olddelta) {
    613 		atv.tv_sec = odelta / 1000000;
    614 		atv.tv_usec = odelta % 1000000;
    615 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    616 	}
    617 #endif /* __HAVE_TIMECOUNTER */
    618 
    619 	return error;
    620 }
    621 
    622 /*
    623  * Interval timer support. Both the BSD getitimer() family and the POSIX
    624  * timer_*() family of routines are supported.
    625  *
    626  * All timers are kept in an array pointed to by p_timers, which is
    627  * allocated on demand - many processes don't use timers at all. The
    628  * first three elements in this array are reserved for the BSD timers:
    629  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    630  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    631  * syscall.
    632  *
    633  * Realtime timers are kept in the ptimer structure as an absolute
    634  * time; virtual time timers are kept as a linked list of deltas.
    635  * Virtual time timers are processed in the hardclock() routine of
    636  * kern_clock.c.  The real time timer is processed by a callout
    637  * routine, called from the softclock() routine.  Since a callout may
    638  * be delayed in real time due to interrupt processing in the system,
    639  * it is possible for the real time timeout routine (realtimeexpire,
    640  * given below), to be delayed in real time past when it is supposed
    641  * to occur.  It does not suffice, therefore, to reload the real timer
    642  * .it_value from the real time timers .it_interval.  Rather, we
    643  * compute the next time in absolute time the timer should go off.  */
    644 
    645 /* Allocate a POSIX realtime timer. */
    646 int
    647 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    648 {
    649 	struct sys_timer_create_args /* {
    650 		syscallarg(clockid_t) clock_id;
    651 		syscallarg(struct sigevent *) evp;
    652 		syscallarg(timer_t *) timerid;
    653 	} */ *uap = v;
    654 
    655 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    656 	    SCARG(uap, evp), copyin, l);
    657 }
    658 
    659 int
    660 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    661     copyin_t fetch_event, struct lwp *l)
    662 {
    663 	int error;
    664 	timer_t timerid;
    665 	struct ptimer *pt;
    666 	struct proc *p;
    667 
    668 	p = l->l_proc;
    669 
    670 	if (id < CLOCK_REALTIME ||
    671 	    id > CLOCK_PROF)
    672 		return (EINVAL);
    673 
    674 	if (p->p_timers == NULL)
    675 		timers_alloc(p);
    676 
    677 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    678 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    679 		if (p->p_timers->pts_timers[timerid] == NULL)
    680 			break;
    681 
    682 	if (timerid == TIMER_MAX)
    683 		return EAGAIN;
    684 
    685 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    686 	if (evp) {
    687 		if (((error =
    688 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    689 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    690 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    691 			pool_put(&ptimer_pool, pt);
    692 			return (error ? error : EINVAL);
    693 		}
    694 	} else {
    695 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    696 		switch (id) {
    697 		case CLOCK_REALTIME:
    698 			pt->pt_ev.sigev_signo = SIGALRM;
    699 			break;
    700 		case CLOCK_VIRTUAL:
    701 			pt->pt_ev.sigev_signo = SIGVTALRM;
    702 			break;
    703 		case CLOCK_PROF:
    704 			pt->pt_ev.sigev_signo = SIGPROF;
    705 			break;
    706 		}
    707 		pt->pt_ev.sigev_value.sival_int = timerid;
    708 	}
    709 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    710 	pt->pt_info.ksi_errno = 0;
    711 	pt->pt_info.ksi_code = 0;
    712 	pt->pt_info.ksi_pid = p->p_pid;
    713 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    714 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    715 
    716 	pt->pt_type = id;
    717 	pt->pt_proc = p;
    718 	pt->pt_overruns = 0;
    719 	pt->pt_poverruns = 0;
    720 	pt->pt_entry = timerid;
    721 	timerclear(&pt->pt_time.it_value);
    722 	if (id == CLOCK_REALTIME)
    723 		callout_init(&pt->pt_ch);
    724 	else
    725 		pt->pt_active = 0;
    726 
    727 	p->p_timers->pts_timers[timerid] = pt;
    728 
    729 	return copyout(&timerid, tid, sizeof(timerid));
    730 }
    731 
    732 /* Delete a POSIX realtime timer */
    733 int
    734 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    735 {
    736 	struct sys_timer_delete_args /*  {
    737 		syscallarg(timer_t) timerid;
    738 	} */ *uap = v;
    739 	struct proc *p = l->l_proc;
    740 	timer_t timerid;
    741 	struct ptimer *pt, *ptn;
    742 	int s;
    743 
    744 	timerid = SCARG(uap, timerid);
    745 
    746 	if ((p->p_timers == NULL) ||
    747 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    748 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    749 		return (EINVAL);
    750 
    751 	if (pt->pt_type == CLOCK_REALTIME)
    752 		callout_stop(&pt->pt_ch);
    753 	else if (pt->pt_active) {
    754 		s = splclock();
    755 		ptn = LIST_NEXT(pt, pt_list);
    756 		LIST_REMOVE(pt, pt_list);
    757 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    758 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    759 			    &ptn->pt_time.it_value);
    760 		splx(s);
    761 	}
    762 
    763 	p->p_timers->pts_timers[timerid] = NULL;
    764 	pool_put(&ptimer_pool, pt);
    765 
    766 	return (0);
    767 }
    768 
    769 /*
    770  * Set up the given timer. The value in pt->pt_time.it_value is taken
    771  * to be an absolute time for CLOCK_REALTIME timers and a relative
    772  * time for virtual timers.
    773  * Must be called at splclock().
    774  */
    775 void
    776 timer_settime(struct ptimer *pt)
    777 {
    778 	struct ptimer *ptn, *pptn;
    779 	struct ptlist *ptl;
    780 
    781 	if (pt->pt_type == CLOCK_REALTIME) {
    782 		callout_stop(&pt->pt_ch);
    783 		if (timerisset(&pt->pt_time.it_value)) {
    784 			/*
    785 			 * Don't need to check hzto() return value, here.
    786 			 * callout_reset() does it for us.
    787 			 */
    788 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    789 			    realtimerexpire, pt);
    790 		}
    791 	} else {
    792 		if (pt->pt_active) {
    793 			ptn = LIST_NEXT(pt, pt_list);
    794 			LIST_REMOVE(pt, pt_list);
    795 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    796 				timeradd(&pt->pt_time.it_value,
    797 				    &ptn->pt_time.it_value,
    798 				    &ptn->pt_time.it_value);
    799 		}
    800 		if (timerisset(&pt->pt_time.it_value)) {
    801 			if (pt->pt_type == CLOCK_VIRTUAL)
    802 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    803 			else
    804 				ptl = &pt->pt_proc->p_timers->pts_prof;
    805 
    806 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    807 			     ptn && timercmp(&pt->pt_time.it_value,
    808 				 &ptn->pt_time.it_value, >);
    809 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    810 				timersub(&pt->pt_time.it_value,
    811 				    &ptn->pt_time.it_value,
    812 				    &pt->pt_time.it_value);
    813 
    814 			if (pptn)
    815 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    816 			else
    817 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    818 
    819 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    820 				timersub(&ptn->pt_time.it_value,
    821 				    &pt->pt_time.it_value,
    822 				    &ptn->pt_time.it_value);
    823 
    824 			pt->pt_active = 1;
    825 		} else
    826 			pt->pt_active = 0;
    827 	}
    828 }
    829 
    830 void
    831 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    832 {
    833 #ifdef __HAVE_TIMECOUNTER
    834 	struct timeval now;
    835 #endif
    836 	struct ptimer *ptn;
    837 
    838 	*aitv = pt->pt_time;
    839 	if (pt->pt_type == CLOCK_REALTIME) {
    840 		/*
    841 		 * Convert from absolute to relative time in .it_value
    842 		 * part of real time timer.  If time for real time
    843 		 * timer has passed return 0, else return difference
    844 		 * between current time and time for the timer to go
    845 		 * off.
    846 		 */
    847 		if (timerisset(&aitv->it_value)) {
    848 #ifdef __HAVE_TIMECOUNTER
    849 			getmicrotime(&now);
    850 			if (timercmp(&aitv->it_value, &now, <))
    851 				timerclear(&aitv->it_value);
    852 			else
    853 				timersub(&aitv->it_value, &now,
    854 				    &aitv->it_value);
    855 #else /* !__HAVE_TIMECOUNTER */
    856 			if (timercmp(&aitv->it_value, &time, <))
    857 				timerclear(&aitv->it_value);
    858 			else
    859 				timersub(&aitv->it_value, &time,
    860 				    &aitv->it_value);
    861 #endif /* !__HAVE_TIMECOUNTER */
    862 		}
    863 	} else if (pt->pt_active) {
    864 		if (pt->pt_type == CLOCK_VIRTUAL)
    865 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    866 		else
    867 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    868 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    869 			timeradd(&aitv->it_value,
    870 			    &ptn->pt_time.it_value, &aitv->it_value);
    871 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    872 	} else
    873 		timerclear(&aitv->it_value);
    874 }
    875 
    876 
    877 
    878 /* Set and arm a POSIX realtime timer */
    879 int
    880 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    881 {
    882 	struct sys_timer_settime_args /* {
    883 		syscallarg(timer_t) timerid;
    884 		syscallarg(int) flags;
    885 		syscallarg(const struct itimerspec *) value;
    886 		syscallarg(struct itimerspec *) ovalue;
    887 	} */ *uap = v;
    888 	int error;
    889 	struct itimerspec value, ovalue, *ovp = NULL;
    890 
    891 	if ((error = copyin(SCARG(uap, value), &value,
    892 	    sizeof(struct itimerspec))) != 0)
    893 		return (error);
    894 
    895 	if (SCARG(uap, ovalue))
    896 		ovp = &ovalue;
    897 
    898 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    899 	    SCARG(uap, flags), l->l_proc)) != 0)
    900 		return error;
    901 
    902 	if (ovp)
    903 		return copyout(&ovalue, SCARG(uap, ovalue),
    904 		    sizeof(struct itimerspec));
    905 	return 0;
    906 }
    907 
    908 int
    909 dotimer_settime(int timerid, struct itimerspec *value,
    910     struct itimerspec *ovalue, int flags, struct proc *p)
    911 {
    912 #ifdef __HAVE_TIMECOUNTER
    913 	struct timeval now;
    914 #endif
    915 	struct itimerval val, oval;
    916 	struct ptimer *pt;
    917 	int s;
    918 
    919 	if ((p->p_timers == NULL) ||
    920 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    921 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    922 		return (EINVAL);
    923 
    924 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    925 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    926 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    927 		return (EINVAL);
    928 
    929 	oval = pt->pt_time;
    930 	pt->pt_time = val;
    931 
    932 	s = splclock();
    933 	/*
    934 	 * If we've been passed a relative time for a realtime timer,
    935 	 * convert it to absolute; if an absolute time for a virtual
    936 	 * timer, convert it to relative and make sure we don't set it
    937 	 * to zero, which would cancel the timer, or let it go
    938 	 * negative, which would confuse the comparison tests.
    939 	 */
    940 	if (timerisset(&pt->pt_time.it_value)) {
    941 		if (pt->pt_type == CLOCK_REALTIME) {
    942 #ifdef __HAVE_TIMECOUNTER
    943 			if ((flags & TIMER_ABSTIME) == 0) {
    944 				getmicrotime(&now);
    945 				timeradd(&pt->pt_time.it_value, &now,
    946 				    &pt->pt_time.it_value);
    947 			}
    948 #else /* !__HAVE_TIMECOUNTER */
    949 			if ((flags & TIMER_ABSTIME) == 0)
    950 				timeradd(&pt->pt_time.it_value, &time,
    951 				    &pt->pt_time.it_value);
    952 #endif /* !__HAVE_TIMECOUNTER */
    953 		} else {
    954 			if ((flags & TIMER_ABSTIME) != 0) {
    955 #ifdef __HAVE_TIMECOUNTER
    956 				getmicrotime(&now);
    957 				timersub(&pt->pt_time.it_value, &now,
    958 				    &pt->pt_time.it_value);
    959 #else /* !__HAVE_TIMECOUNTER */
    960 				timersub(&pt->pt_time.it_value, &time,
    961 				    &pt->pt_time.it_value);
    962 #endif /* !__HAVE_TIMECOUNTER */
    963 				if (!timerisset(&pt->pt_time.it_value) ||
    964 				    pt->pt_time.it_value.tv_sec < 0) {
    965 					pt->pt_time.it_value.tv_sec = 0;
    966 					pt->pt_time.it_value.tv_usec = 1;
    967 				}
    968 			}
    969 		}
    970 	}
    971 
    972 	timer_settime(pt);
    973 	splx(s);
    974 
    975 	if (ovalue) {
    976 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    977 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    978 	}
    979 
    980 	return (0);
    981 }
    982 
    983 /* Return the time remaining until a POSIX timer fires. */
    984 int
    985 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    986 {
    987 	struct sys_timer_gettime_args /* {
    988 		syscallarg(timer_t) timerid;
    989 		syscallarg(struct itimerspec *) value;
    990 	} */ *uap = v;
    991 	struct itimerspec its;
    992 	int error;
    993 
    994 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    995 	    &its)) != 0)
    996 		return error;
    997 
    998 	return copyout(&its, SCARG(uap, value), sizeof(its));
    999 }
   1000 
   1001 int
   1002 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
   1003 {
   1004 	int s;
   1005 	struct ptimer *pt;
   1006 	struct itimerval aitv;
   1007 
   1008 	if ((p->p_timers == NULL) ||
   1009 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1010 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1011 		return (EINVAL);
   1012 
   1013 	s = splclock();
   1014 	timer_gettime(pt, &aitv);
   1015 	splx(s);
   1016 
   1017 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
   1018 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
   1019 
   1020 	return 0;
   1021 }
   1022 
   1023 /*
   1024  * Return the count of the number of times a periodic timer expired
   1025  * while a notification was already pending. The counter is reset when
   1026  * a timer expires and a notification can be posted.
   1027  */
   1028 int
   1029 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1030 {
   1031 	struct sys_timer_getoverrun_args /* {
   1032 		syscallarg(timer_t) timerid;
   1033 	} */ *uap = v;
   1034 	struct proc *p = l->l_proc;
   1035 	int timerid;
   1036 	struct ptimer *pt;
   1037 
   1038 	timerid = SCARG(uap, timerid);
   1039 
   1040 	if ((p->p_timers == NULL) ||
   1041 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1042 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1043 		return (EINVAL);
   1044 
   1045 	*retval = pt->pt_poverruns;
   1046 
   1047 	return (0);
   1048 }
   1049 
   1050 /* Glue function that triggers an upcall; called from userret(). */
   1051 static void
   1052 timerupcall(struct lwp *l, void *arg)
   1053 {
   1054 	struct ptimers *pt = (struct ptimers *)arg;
   1055 	unsigned int i, fired, done;
   1056 
   1057 	KDASSERT(l->l_proc->p_sa);
   1058 	/* Bail out if we do not own the virtual processor */
   1059 	if (l->l_savp->savp_lwp != l)
   1060 		return ;
   1061 
   1062 	KERNEL_LOCK(1, l);
   1063 
   1064 	fired = pt->pts_fired;
   1065 	done = 0;
   1066 	while ((i = ffs(fired)) != 0) {
   1067 		siginfo_t *si;
   1068 		int mask = 1 << --i;
   1069 		int f;
   1070 
   1071 		f = l->l_flag & L_SA;
   1072 		l->l_flag &= ~L_SA;
   1073 		si = siginfo_alloc(PR_WAITOK);
   1074 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
   1075 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
   1076 		    sizeof(*si), si, siginfo_free) != 0) {
   1077 			siginfo_free(si);
   1078 			/* XXX What do we do here?? */
   1079 		} else
   1080 			done |= mask;
   1081 		fired &= ~mask;
   1082 		l->l_flag |= f;
   1083 	}
   1084 	pt->pts_fired &= ~done;
   1085 	if (pt->pts_fired == 0)
   1086 		l->l_proc->p_userret = NULL;
   1087 
   1088 	(void)KERNEL_UNLOCK(1, l);
   1089 }
   1090 
   1091 /*
   1092  * Real interval timer expired:
   1093  * send process whose timer expired an alarm signal.
   1094  * If time is not set up to reload, then just return.
   1095  * Else compute next time timer should go off which is > current time.
   1096  * This is where delay in processing this timeout causes multiple
   1097  * SIGALRM calls to be compressed into one.
   1098  */
   1099 void
   1100 realtimerexpire(void *arg)
   1101 {
   1102 #ifdef __HAVE_TIMECOUNTER
   1103 	struct timeval now;
   1104 #endif
   1105 	struct ptimer *pt;
   1106 	int s;
   1107 
   1108 	pt = (struct ptimer *)arg;
   1109 
   1110 	itimerfire(pt);
   1111 
   1112 	if (!timerisset(&pt->pt_time.it_interval)) {
   1113 		timerclear(&pt->pt_time.it_value);
   1114 		return;
   1115 	}
   1116 #ifdef __HAVE_TIMECOUNTER
   1117 	for (;;) {
   1118 		s = splclock();	/* XXX need spl now? */
   1119 		timeradd(&pt->pt_time.it_value,
   1120 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1121 		getmicrotime(&now);
   1122 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1123 			/*
   1124 			 * Don't need to check hzto() return value, here.
   1125 			 * callout_reset() does it for us.
   1126 			 */
   1127 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1128 			    realtimerexpire, pt);
   1129 			splx(s);
   1130 			return;
   1131 		}
   1132 		splx(s);
   1133 		pt->pt_overruns++;
   1134 	}
   1135 #else /* !__HAVE_TIMECOUNTER */
   1136 	for (;;) {
   1137 		s = splclock();
   1138 		timeradd(&pt->pt_time.it_value,
   1139 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1140 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1141 			/*
   1142 			 * Don't need to check hzto() return value, here.
   1143 			 * callout_reset() does it for us.
   1144 			 */
   1145 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1146 			    realtimerexpire, pt);
   1147 			splx(s);
   1148 			return;
   1149 		}
   1150 		splx(s);
   1151 		pt->pt_overruns++;
   1152 	}
   1153 #endif /* !__HAVE_TIMECOUNTER */
   1154 }
   1155 
   1156 /* BSD routine to get the value of an interval timer. */
   1157 /* ARGSUSED */
   1158 int
   1159 sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1160 {
   1161 	struct sys_getitimer_args /* {
   1162 		syscallarg(int) which;
   1163 		syscallarg(struct itimerval *) itv;
   1164 	} */ *uap = v;
   1165 	struct proc *p = l->l_proc;
   1166 	struct itimerval aitv;
   1167 	int error;
   1168 
   1169 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1170 	if (error)
   1171 		return error;
   1172 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1173 }
   1174 
   1175 int
   1176 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1177 {
   1178 	int s;
   1179 
   1180 	if ((u_int)which > ITIMER_PROF)
   1181 		return (EINVAL);
   1182 
   1183 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1184 		timerclear(&itvp->it_value);
   1185 		timerclear(&itvp->it_interval);
   1186 	} else {
   1187 		s = splclock();
   1188 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1189 		splx(s);
   1190 	}
   1191 
   1192 	return 0;
   1193 }
   1194 
   1195 /* BSD routine to set/arm an interval timer. */
   1196 /* ARGSUSED */
   1197 int
   1198 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1199 {
   1200 	struct sys_setitimer_args /* {
   1201 		syscallarg(int) which;
   1202 		syscallarg(const struct itimerval *) itv;
   1203 		syscallarg(struct itimerval *) oitv;
   1204 	} */ *uap = v;
   1205 	struct proc *p = l->l_proc;
   1206 	int which = SCARG(uap, which);
   1207 	struct sys_getitimer_args getargs;
   1208 	const struct itimerval *itvp;
   1209 	struct itimerval aitv;
   1210 	int error;
   1211 
   1212 	if ((u_int)which > ITIMER_PROF)
   1213 		return (EINVAL);
   1214 	itvp = SCARG(uap, itv);
   1215 	if (itvp &&
   1216 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1217 		return (error);
   1218 	if (SCARG(uap, oitv) != NULL) {
   1219 		SCARG(&getargs, which) = which;
   1220 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1221 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1222 			return (error);
   1223 	}
   1224 	if (itvp == 0)
   1225 		return (0);
   1226 
   1227 	return dosetitimer(p, which, &aitv);
   1228 }
   1229 
   1230 int
   1231 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1232 {
   1233 #ifdef __HAVE_TIMECOUNTER
   1234 	struct timeval now;
   1235 #endif
   1236 	struct ptimer *pt;
   1237 	int s;
   1238 
   1239 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1240 		return (EINVAL);
   1241 
   1242 	/*
   1243 	 * Don't bother allocating data structures if the process just
   1244 	 * wants to clear the timer.
   1245 	 */
   1246 	if (!timerisset(&itvp->it_value) &&
   1247 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1248 		return (0);
   1249 
   1250 	if (p->p_timers == NULL)
   1251 		timers_alloc(p);
   1252 	if (p->p_timers->pts_timers[which] == NULL) {
   1253 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1254 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1255 		pt->pt_ev.sigev_value.sival_int = which;
   1256 		pt->pt_overruns = 0;
   1257 		pt->pt_proc = p;
   1258 		pt->pt_type = which;
   1259 		pt->pt_entry = which;
   1260 		switch (which) {
   1261 		case ITIMER_REAL:
   1262 			callout_init(&pt->pt_ch);
   1263 			pt->pt_ev.sigev_signo = SIGALRM;
   1264 			break;
   1265 		case ITIMER_VIRTUAL:
   1266 			pt->pt_active = 0;
   1267 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1268 			break;
   1269 		case ITIMER_PROF:
   1270 			pt->pt_active = 0;
   1271 			pt->pt_ev.sigev_signo = SIGPROF;
   1272 			break;
   1273 		}
   1274 	} else
   1275 		pt = p->p_timers->pts_timers[which];
   1276 
   1277 	pt->pt_time = *itvp;
   1278 	p->p_timers->pts_timers[which] = pt;
   1279 
   1280 	s = splclock();
   1281 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1282 		/* Convert to absolute time */
   1283 #ifdef __HAVE_TIMECOUNTER
   1284 		/* XXX need to wrap in splclock for timecounters case? */
   1285 		getmicrotime(&now);
   1286 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1287 #else /* !__HAVE_TIMECOUNTER */
   1288 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1289 #endif /* !__HAVE_TIMECOUNTER */
   1290 	}
   1291 	timer_settime(pt);
   1292 	splx(s);
   1293 
   1294 	return (0);
   1295 }
   1296 
   1297 /* Utility routines to manage the array of pointers to timers. */
   1298 void
   1299 timers_alloc(struct proc *p)
   1300 {
   1301 	int i;
   1302 	struct ptimers *pts;
   1303 
   1304 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1305 	LIST_INIT(&pts->pts_virtual);
   1306 	LIST_INIT(&pts->pts_prof);
   1307 	for (i = 0; i < TIMER_MAX; i++)
   1308 		pts->pts_timers[i] = NULL;
   1309 	pts->pts_fired = 0;
   1310 	p->p_timers = pts;
   1311 }
   1312 
   1313 /*
   1314  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1315  * then clean up all timers and free all the data structures. If
   1316  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1317  * by timer_create(), not the BSD setitimer() timers, and only free the
   1318  * structure if none of those remain.
   1319  */
   1320 void
   1321 timers_free(struct proc *p, int which)
   1322 {
   1323 	int i, s;
   1324 	struct ptimers *pts;
   1325 	struct ptimer *pt, *ptn;
   1326 	struct timeval tv;
   1327 
   1328 	if (p->p_timers) {
   1329 		pts = p->p_timers;
   1330 		if (which == TIMERS_ALL)
   1331 			i = 0;
   1332 		else {
   1333 			s = splclock();
   1334 			timerclear(&tv);
   1335 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1336 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1337 			     ptn = LIST_NEXT(ptn, pt_list))
   1338 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1339 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1340 			if (ptn) {
   1341 				timeradd(&tv, &ptn->pt_time.it_value,
   1342 				    &ptn->pt_time.it_value);
   1343 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1344 				    ptn, pt_list);
   1345 			}
   1346 
   1347 			timerclear(&tv);
   1348 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1349 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1350 			     ptn = LIST_NEXT(ptn, pt_list))
   1351 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1352 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1353 			if (ptn) {
   1354 				timeradd(&tv, &ptn->pt_time.it_value,
   1355 				    &ptn->pt_time.it_value);
   1356 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1357 				    pt_list);
   1358 			}
   1359 			splx(s);
   1360 			i = 3;
   1361 		}
   1362 		for ( ; i < TIMER_MAX; i++)
   1363 			if ((pt = pts->pts_timers[i]) != NULL) {
   1364 				if (pt->pt_type == CLOCK_REALTIME)
   1365 					callout_stop(&pt->pt_ch);
   1366 				pts->pts_timers[i] = NULL;
   1367 				pool_put(&ptimer_pool, pt);
   1368 			}
   1369 		if ((pts->pts_timers[0] == NULL) &&
   1370 		    (pts->pts_timers[1] == NULL) &&
   1371 		    (pts->pts_timers[2] == NULL)) {
   1372 			p->p_timers = NULL;
   1373 			pool_put(&ptimers_pool, pts);
   1374 		}
   1375 	}
   1376 }
   1377 
   1378 /*
   1379  * Check that a proposed value to load into the .it_value or
   1380  * .it_interval part of an interval timer is acceptable, and
   1381  * fix it to have at least minimal value (i.e. if it is less
   1382  * than the resolution of the clock, round it up.)
   1383  */
   1384 int
   1385 itimerfix(struct timeval *tv)
   1386 {
   1387 
   1388 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1389 		return (EINVAL);
   1390 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1391 		tv->tv_usec = tick;
   1392 	return (0);
   1393 }
   1394 
   1395 #ifdef __HAVE_TIMECOUNTER
   1396 int
   1397 itimespecfix(struct timespec *ts)
   1398 {
   1399 
   1400 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1401 		return (EINVAL);
   1402 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1403 		ts->tv_nsec = tick * 1000;
   1404 	return (0);
   1405 }
   1406 #endif /* __HAVE_TIMECOUNTER */
   1407 
   1408 /*
   1409  * Decrement an interval timer by a specified number
   1410  * of microseconds, which must be less than a second,
   1411  * i.e. < 1000000.  If the timer expires, then reload
   1412  * it.  In this case, carry over (usec - old value) to
   1413  * reduce the value reloaded into the timer so that
   1414  * the timer does not drift.  This routine assumes
   1415  * that it is called in a context where the timers
   1416  * on which it is operating cannot change in value.
   1417  */
   1418 int
   1419 itimerdecr(struct ptimer *pt, int usec)
   1420 {
   1421 	struct itimerval *itp;
   1422 
   1423 	itp = &pt->pt_time;
   1424 	if (itp->it_value.tv_usec < usec) {
   1425 		if (itp->it_value.tv_sec == 0) {
   1426 			/* expired, and already in next interval */
   1427 			usec -= itp->it_value.tv_usec;
   1428 			goto expire;
   1429 		}
   1430 		itp->it_value.tv_usec += 1000000;
   1431 		itp->it_value.tv_sec--;
   1432 	}
   1433 	itp->it_value.tv_usec -= usec;
   1434 	usec = 0;
   1435 	if (timerisset(&itp->it_value))
   1436 		return (1);
   1437 	/* expired, exactly at end of interval */
   1438 expire:
   1439 	if (timerisset(&itp->it_interval)) {
   1440 		itp->it_value = itp->it_interval;
   1441 		itp->it_value.tv_usec -= usec;
   1442 		if (itp->it_value.tv_usec < 0) {
   1443 			itp->it_value.tv_usec += 1000000;
   1444 			itp->it_value.tv_sec--;
   1445 		}
   1446 		timer_settime(pt);
   1447 	} else
   1448 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1449 	return (0);
   1450 }
   1451 
   1452 void
   1453 itimerfire(struct ptimer *pt)
   1454 {
   1455 	struct proc *p = pt->pt_proc;
   1456 	struct sadata_vp *vp;
   1457 	unsigned int i;
   1458 
   1459 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1460 		/*
   1461 		 * No RT signal infrastructure exists at this time;
   1462 		 * just post the signal number and throw away the
   1463 		 * value.
   1464 		 */
   1465 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1466 			/* XXX Timers need to become per-LWP. */
   1467 			pt->pt_overruns++;
   1468 		} else {
   1469 			ksiginfo_t ksi;
   1470 			(void)memset(&ksi, 0, sizeof(ksi));
   1471 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1472 			ksi.ksi_code = SI_TIMER;
   1473 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1474 			pt->pt_poverruns = pt->pt_overruns;
   1475 			pt->pt_overruns = 0;
   1476 			mutex_enter(&proclist_mutex);
   1477 			kpsignal(p, &ksi, NULL);
   1478 			mutex_exit(&proclist_mutex);
   1479 		}
   1480 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_sflag & PS_SA)) {
   1481 		/* Cause the process to generate an upcall when it returns. */
   1482 		signotify(LIST_FIRST(&p->p_lwps));	/* XXXAD */
   1483 		if (p->p_userret == NULL) {
   1484 			/*
   1485 			 * XXX stop signals can be processed inside tsleep,
   1486 			 * which can be inside sa_yield's inner loop, which
   1487 			 * makes testing for sa_idle alone insuffucent to
   1488 			 * determine if we really should call setrunnable.
   1489 			 */
   1490 			pt->pt_poverruns = pt->pt_overruns;
   1491 			pt->pt_overruns = 0;
   1492 			i = 1 << pt->pt_entry;
   1493 			p->p_timers->pts_fired = i;
   1494 			p->p_userret = timerupcall;
   1495 			p->p_userret_arg = p->p_timers;
   1496 
   1497 			mutex_enter(&p->p_smutex);
   1498 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1499 				lwp_lock(vp->savp_lwp);
   1500 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1501 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1502 					wakeup(vp->savp_lwp);
   1503 					signotify(vp->savp_lwp);
   1504 					lwp_unlock(vp->savp_lwp);
   1505 					break;
   1506 				}
   1507 				lwp_unlock(vp->savp_lwp);
   1508 			}
   1509 			mutex_exit(&p->p_smutex);
   1510 		} else if (p->p_userret == timerupcall) {
   1511 			i = 1 << pt->pt_entry;
   1512 			if ((p->p_timers->pts_fired & i) == 0) {
   1513 				pt->pt_poverruns = pt->pt_overruns;
   1514 				pt->pt_overruns = 0;
   1515 				p->p_timers->pts_fired |= i;
   1516 			} else
   1517 				pt->pt_overruns++;
   1518 		} else {
   1519 			pt->pt_overruns++;
   1520 			if ((p->p_sflag & PS_WEXIT) == 0)
   1521 				printf("itimerfire(%d): overrun %d on "
   1522 				    "timer %x (userret is %p)\n",
   1523 				    p->p_pid, pt->pt_overruns,
   1524 				    pt->pt_ev.sigev_value.sival_int,
   1525 				    p->p_userret);
   1526 		}
   1527 	}
   1528 
   1529 }
   1530 
   1531 /*
   1532  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1533  * for usage and rationale.
   1534  */
   1535 int
   1536 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1537 {
   1538 	struct timeval tv, delta;
   1539 	int rv = 0;
   1540 #ifndef __HAVE_TIMECOUNTER
   1541 	int s;
   1542 #endif
   1543 
   1544 #ifdef __HAVE_TIMECOUNTER
   1545 	getmicrouptime(&tv);
   1546 #else /* !__HAVE_TIMECOUNTER */
   1547 	s = splclock();
   1548 	tv = mono_time;
   1549 	splx(s);
   1550 #endif /* !__HAVE_TIMECOUNTER */
   1551 	timersub(&tv, lasttime, &delta);
   1552 
   1553 	/*
   1554 	 * check for 0,0 is so that the message will be seen at least once,
   1555 	 * even if interval is huge.
   1556 	 */
   1557 	if (timercmp(&delta, mininterval, >=) ||
   1558 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1559 		*lasttime = tv;
   1560 		rv = 1;
   1561 	}
   1562 
   1563 	return (rv);
   1564 }
   1565 
   1566 /*
   1567  * ppsratecheck(): packets (or events) per second limitation.
   1568  */
   1569 int
   1570 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1571 {
   1572 	struct timeval tv, delta;
   1573 	int rv;
   1574 #ifndef __HAVE_TIMECOUNTER
   1575 	int s;
   1576 #endif
   1577 
   1578 #ifdef __HAVE_TIMECOUNTER
   1579 	getmicrouptime(&tv);
   1580 #else /* !__HAVE_TIMECOUNTER */
   1581 	s = splclock();
   1582 	tv = mono_time;
   1583 	splx(s);
   1584 #endif /* !__HAVE_TIMECOUNTER */
   1585 	timersub(&tv, lasttime, &delta);
   1586 
   1587 	/*
   1588 	 * check for 0,0 is so that the message will be seen at least once.
   1589 	 * if more than one second have passed since the last update of
   1590 	 * lasttime, reset the counter.
   1591 	 *
   1592 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1593 	 * try to use *curpps for stat purposes as well.
   1594 	 */
   1595 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1596 	    delta.tv_sec >= 1) {
   1597 		*lasttime = tv;
   1598 		*curpps = 0;
   1599 	}
   1600 	if (maxpps < 0)
   1601 		rv = 1;
   1602 	else if (*curpps < maxpps)
   1603 		rv = 1;
   1604 	else
   1605 		rv = 0;
   1606 
   1607 #if 1 /*DIAGNOSTIC?*/
   1608 	/* be careful about wrap-around */
   1609 	if (*curpps + 1 > *curpps)
   1610 		*curpps = *curpps + 1;
   1611 #else
   1612 	/*
   1613 	 * assume that there's not too many calls to this function.
   1614 	 * not sure if the assumption holds, as it depends on *caller's*
   1615 	 * behavior, not the behavior of this function.
   1616 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1617 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1618 	 */
   1619 	*curpps = *curpps + 1;
   1620 #endif
   1621 
   1622 	return (rv);
   1623 }
   1624