kern_time.c revision 1.105.4.5 1 /* $NetBSD: kern_time.c,v 1.105.4.5 2006/12/29 20:27:44 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.105.4.5 2006/12/29 20:27:44 ad Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/sa.h>
83 #include <sys/savar.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87 #ifdef __HAVE_TIMECOUNTER
88 #include <sys/timetc.h>
89 #else /* !__HAVE_TIMECOUNTER */
90 #include <sys/timevar.h>
91 #endif /* !__HAVE_TIMECOUNTER */
92 #include <sys/kauth.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs.h>
103 #include <nfs/nfs_var.h>
104 #endif
105
106 #include <machine/cpu.h>
107
108 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 &pool_allocator_nointr);
110 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 &pool_allocator_nointr);
112
113 #ifdef __HAVE_TIMECOUNTER
114 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
115 #endif /* __HAVE_TIMECOUNTER */
116
117 /* Time of day and interval timer support.
118 *
119 * These routines provide the kernel entry points to get and set
120 * the time-of-day and per-process interval timers. Subroutines
121 * here provide support for adding and subtracting timeval structures
122 * and decrementing interval timers, optionally reloading the interval
123 * timers when they expire.
124 */
125
126 /* This function is used by clock_settime and settimeofday */
127 int
128 settime(struct proc *p, struct timespec *ts)
129 {
130 struct timeval delta, tv;
131 #ifdef __HAVE_TIMECOUNTER
132 struct timeval now;
133 struct timespec ts1;
134 #endif /* !__HAVE_TIMECOUNTER */
135 struct cpu_info *ci;
136 int s;
137
138 /*
139 * Don't allow the time to be set forward so far it will wrap
140 * and become negative, thus allowing an attacker to bypass
141 * the next check below. The cutoff is 1 year before rollover
142 * occurs, so even if the attacker uses adjtime(2) to move
143 * the time past the cutoff, it will take a very long time
144 * to get to the wrap point.
145 *
146 * XXX: we check against INT_MAX since on 64-bit
147 * platforms, sizeof(int) != sizeof(long) and
148 * time_t is 32 bits even when atv.tv_sec is 64 bits.
149 */
150 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
151 struct proc *pp;
152
153 rw_enter(&proclist_lock, RW_READER);
154 pp = p->p_pptr;
155 mutex_enter(&pp->p_mutex);
156 log(LOG_WARNING, "pid %d (%s) "
157 "invoked by uid %d ppid %d (%s) "
158 "tried to set clock forward to %ld\n",
159 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
160 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
161 mutex_exit(&pp->p_mutex);
162 rw_exit(&proclist_lock);
163 return (EPERM);
164 }
165 TIMESPEC_TO_TIMEVAL(&tv, ts);
166
167 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
168 s = splclock();
169 #ifdef __HAVE_TIMECOUNTER
170 microtime(&now);
171 timersub(&tv, &now, &delta);
172 #else /* !__HAVE_TIMECOUNTER */
173 timersub(&tv, &time, &delta);
174 #endif /* !__HAVE_TIMECOUNTER */
175 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
176 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
177 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
178 splx(s);
179 return (EPERM);
180 }
181 #ifdef notyet
182 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
183 splx(s);
184 return (EPERM);
185 }
186 #endif
187
188 #ifdef __HAVE_TIMECOUNTER
189 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
190 tc_setclock(&ts1);
191 #else /* !__HAVE_TIMECOUNTER */
192 time = tv;
193 #endif /* !__HAVE_TIMECOUNTER */
194
195 (void) spllowersoftclock();
196
197 timeradd(&boottime, &delta, &boottime);
198
199 /*
200 * XXXSMP
201 * This is wrong. We should traverse a list of all
202 * CPUs and add the delta to the runtime of those
203 * CPUs which have a process on them.
204 */
205 ci = curcpu();
206 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
207 &ci->ci_schedstate.spc_runtime);
208 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
209 nqnfs_lease_updatetime(delta.tv_sec);
210 #endif
211 splx(s);
212 resettodr();
213 return (0);
214 }
215
216 /* ARGSUSED */
217 int
218 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
219 {
220 struct sys_clock_gettime_args /* {
221 syscallarg(clockid_t) clock_id;
222 syscallarg(struct timespec *) tp;
223 } */ *uap = v;
224 clockid_t clock_id;
225 struct timespec ats;
226
227 clock_id = SCARG(uap, clock_id);
228 switch (clock_id) {
229 case CLOCK_REALTIME:
230 nanotime(&ats);
231 break;
232 case CLOCK_MONOTONIC:
233 #ifdef __HAVE_TIMECOUNTER
234 nanouptime(&ats);
235 #else /* !__HAVE_TIMECOUNTER */
236 {
237 int s;
238
239 /* XXX "hz" granularity */
240 s = splclock();
241 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
242 splx(s);
243 }
244 #endif /* !__HAVE_TIMECOUNTER */
245 break;
246 default:
247 return (EINVAL);
248 }
249
250 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
251 }
252
253 /* ARGSUSED */
254 int
255 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
256 {
257 struct sys_clock_settime_args /* {
258 syscallarg(clockid_t) clock_id;
259 syscallarg(const struct timespec *) tp;
260 } */ *uap = v;
261 int error;
262
263 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
264 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
265 return (error);
266
267 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
268 }
269
270
271 int
272 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
273 {
274 struct timespec ats;
275 int error;
276
277 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
278 return (error);
279
280 switch (clock_id) {
281 case CLOCK_REALTIME:
282 if ((error = settime(p, &ats)) != 0)
283 return (error);
284 break;
285 case CLOCK_MONOTONIC:
286 return (EINVAL); /* read-only clock */
287 default:
288 return (EINVAL);
289 }
290
291 return 0;
292 }
293
294 int
295 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
296 {
297 struct sys_clock_getres_args /* {
298 syscallarg(clockid_t) clock_id;
299 syscallarg(struct timespec *) tp;
300 } */ *uap = v;
301 clockid_t clock_id;
302 struct timespec ts;
303 int error = 0;
304
305 clock_id = SCARG(uap, clock_id);
306 switch (clock_id) {
307 case CLOCK_REALTIME:
308 case CLOCK_MONOTONIC:
309 ts.tv_sec = 0;
310 #ifdef __HAVE_TIMECOUNTER
311 if (tc_getfrequency() > 1000000000)
312 ts.tv_nsec = 1;
313 else
314 ts.tv_nsec = 1000000000 / tc_getfrequency();
315 #else /* !__HAVE_TIMECOUNTER */
316 ts.tv_nsec = 1000000000 / hz;
317 #endif /* !__HAVE_TIMECOUNTER */
318 break;
319 default:
320 return (EINVAL);
321 }
322
323 if (SCARG(uap, tp))
324 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
325
326 return error;
327 }
328
329 /* ARGSUSED */
330 int
331 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
332 {
333 #ifdef __HAVE_TIMECOUNTER
334 struct sys_nanosleep_args/* {
335 syscallarg(struct timespec *) rqtp;
336 syscallarg(struct timespec *) rmtp;
337 } */ *uap = v;
338 struct timespec rmt, rqt;
339 int error, timo;
340
341 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
342 if (error)
343 return (error);
344
345 if (itimespecfix(&rqt))
346 return (EINVAL);
347
348 timo = tstohz(&rqt);
349 /*
350 * Avoid inadvertantly sleeping forever
351 */
352 if (timo == 0)
353 timo = 1;
354
355 getnanouptime(&rmt);
356
357 error = sched_pause("nanoslp", TRUE, timo);
358 if (error == ERESTART)
359 error = EINTR;
360 if (error == EWOULDBLOCK)
361 error = 0;
362
363 if (SCARG(uap, rmtp)) {
364 int error1;
365 struct timespec rmtend;
366
367 getnanouptime(&rmtend);
368
369 timespecsub(&rmtend, &rmt, &rmt);
370 timespecsub(&rqt, &rmt, &rmt);
371 if (rmt.tv_sec < 0)
372 timespecclear(&rmt);
373
374 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
375 sizeof(rmt));
376 if (error1)
377 return (error1);
378 }
379
380 return error;
381 #else /* !__HAVE_TIMECOUNTER */
382 struct sys_nanosleep_args/* {
383 syscallarg(struct timespec *) rqtp;
384 syscallarg(struct timespec *) rmtp;
385 } */ *uap = v;
386 struct timespec rqt;
387 struct timespec rmt;
388 struct timeval atv, utv;
389 int error, s, timo;
390
391 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
392 if (error)
393 return (error);
394
395 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
396 if (itimerfix(&atv))
397 return (EINVAL);
398
399 s = splclock();
400 timeradd(&atv,&time,&atv);
401 timo = hzto(&atv);
402 /*
403 * Avoid inadvertantly sleeping forever
404 */
405 if (timo == 0)
406 timo = 1;
407 splx(s);
408
409 error = sched_pause("nanoslp", TRUE, timo);
410 if (error == ERESTART)
411 error = EINTR;
412 if (error == EWOULDBLOCK)
413 error = 0;
414
415 if (SCARG(uap, rmtp)) {
416 int error1;
417
418 s = splclock();
419 utv = time;
420 splx(s);
421
422 timersub(&atv, &utv, &utv);
423 if (utv.tv_sec < 0)
424 timerclear(&utv);
425
426 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
427 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
428 sizeof(rmt));
429 if (error1)
430 return (error1);
431 }
432
433 return error;
434 #endif /* !__HAVE_TIMECOUNTER */
435 }
436
437 /* ARGSUSED */
438 int
439 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
440 {
441 struct sys_gettimeofday_args /* {
442 syscallarg(struct timeval *) tp;
443 syscallarg(void *) tzp; really "struct timezone *"
444 } */ *uap = v;
445 struct timeval atv;
446 int error = 0;
447 struct timezone tzfake;
448
449 if (SCARG(uap, tp)) {
450 microtime(&atv);
451 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
452 if (error)
453 return (error);
454 }
455 if (SCARG(uap, tzp)) {
456 /*
457 * NetBSD has no kernel notion of time zone, so we just
458 * fake up a timezone struct and return it if demanded.
459 */
460 tzfake.tz_minuteswest = 0;
461 tzfake.tz_dsttime = 0;
462 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
463 }
464 return (error);
465 }
466
467 /* ARGSUSED */
468 int
469 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
470 {
471 struct sys_settimeofday_args /* {
472 syscallarg(const struct timeval *) tv;
473 syscallarg(const void *) tzp; really "const struct timezone *"
474 } */ *uap = v;
475 int error;
476
477 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
478 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
479 return (error);
480
481 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
482 }
483
484 int
485 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
486 struct proc *p)
487 {
488 struct timeval atv;
489 struct timespec ts;
490 int error;
491
492 /* Verify all parameters before changing time. */
493 /*
494 * NetBSD has no kernel notion of time zone, and only an
495 * obsolete program would try to set it, so we log a warning.
496 */
497 if (utzp)
498 log(LOG_WARNING, "pid %d attempted to set the "
499 "(obsolete) kernel time zone\n", p->p_pid);
500
501 if (utv == NULL)
502 return 0;
503
504 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
505 return error;
506 TIMEVAL_TO_TIMESPEC(&atv, &ts);
507 return settime(p, &ts);
508 }
509
510 #ifndef __HAVE_TIMECOUNTER
511 int tickdelta; /* current clock skew, us. per tick */
512 long timedelta; /* unapplied time correction, us. */
513 long bigadj = 1000000; /* use 10x skew above bigadj us. */
514 #endif
515
516 int time_adjusted; /* set if an adjustment is made */
517
518 /* ARGSUSED */
519 int
520 sys_adjtime(struct lwp *l, void *v, register_t *retval)
521 {
522 struct sys_adjtime_args /* {
523 syscallarg(const struct timeval *) delta;
524 syscallarg(struct timeval *) olddelta;
525 } */ *uap = v;
526 int error;
527
528 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
529 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
530 return (error);
531
532 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
533 }
534
535 int
536 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
537 {
538 struct timeval atv;
539 int error = 0;
540
541 #ifdef __HAVE_TIMECOUNTER
542 extern int64_t time_adjtime; /* in kern_ntptime.c */
543 #else /* !__HAVE_TIMECOUNTER */
544 long ndelta, ntickdelta, odelta;
545 int s;
546 #endif /* !__HAVE_TIMECOUNTER */
547
548 #ifdef __HAVE_TIMECOUNTER
549 if (olddelta) {
550 atv.tv_sec = time_adjtime / 1000000;
551 atv.tv_usec = time_adjtime % 1000000;
552 if (atv.tv_usec < 0) {
553 atv.tv_usec += 1000000;
554 atv.tv_sec--;
555 }
556 error = copyout(&atv, olddelta, sizeof(struct timeval));
557 if (error)
558 return (error);
559 }
560
561 if (delta) {
562 error = copyin(delta, &atv, sizeof(struct timeval));
563 if (error)
564 return (error);
565
566 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
567 atv.tv_usec;
568
569 if (time_adjtime)
570 /* We need to save the system time during shutdown */
571 time_adjusted |= 1;
572 }
573 #else /* !__HAVE_TIMECOUNTER */
574 error = copyin(delta, &atv, sizeof(struct timeval));
575 if (error)
576 return (error);
577
578 /*
579 * Compute the total correction and the rate at which to apply it.
580 * Round the adjustment down to a whole multiple of the per-tick
581 * delta, so that after some number of incremental changes in
582 * hardclock(), tickdelta will become zero, lest the correction
583 * overshoot and start taking us away from the desired final time.
584 */
585 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
586 if (ndelta > bigadj || ndelta < -bigadj)
587 ntickdelta = 10 * tickadj;
588 else
589 ntickdelta = tickadj;
590 if (ndelta % ntickdelta)
591 ndelta = ndelta / ntickdelta * ntickdelta;
592
593 /*
594 * To make hardclock()'s job easier, make the per-tick delta negative
595 * if we want time to run slower; then hardclock can simply compute
596 * tick + tickdelta, and subtract tickdelta from timedelta.
597 */
598 if (ndelta < 0)
599 ntickdelta = -ntickdelta;
600 if (ndelta != 0)
601 /* We need to save the system clock time during shutdown */
602 time_adjusted |= 1;
603 s = splclock();
604 odelta = timedelta;
605 timedelta = ndelta;
606 tickdelta = ntickdelta;
607 splx(s);
608
609 if (olddelta) {
610 atv.tv_sec = odelta / 1000000;
611 atv.tv_usec = odelta % 1000000;
612 error = copyout(&atv, olddelta, sizeof(struct timeval));
613 }
614 #endif /* __HAVE_TIMECOUNTER */
615
616 return error;
617 }
618
619 /*
620 * Interval timer support. Both the BSD getitimer() family and the POSIX
621 * timer_*() family of routines are supported.
622 *
623 * All timers are kept in an array pointed to by p_timers, which is
624 * allocated on demand - many processes don't use timers at all. The
625 * first three elements in this array are reserved for the BSD timers:
626 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
627 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
628 * syscall.
629 *
630 * Realtime timers are kept in the ptimer structure as an absolute
631 * time; virtual time timers are kept as a linked list of deltas.
632 * Virtual time timers are processed in the hardclock() routine of
633 * kern_clock.c. The real time timer is processed by a callout
634 * routine, called from the softclock() routine. Since a callout may
635 * be delayed in real time due to interrupt processing in the system,
636 * it is possible for the real time timeout routine (realtimeexpire,
637 * given below), to be delayed in real time past when it is supposed
638 * to occur. It does not suffice, therefore, to reload the real timer
639 * .it_value from the real time timers .it_interval. Rather, we
640 * compute the next time in absolute time the timer should go off. */
641
642 /* Allocate a POSIX realtime timer. */
643 int
644 sys_timer_create(struct lwp *l, void *v, register_t *retval)
645 {
646 struct sys_timer_create_args /* {
647 syscallarg(clockid_t) clock_id;
648 syscallarg(struct sigevent *) evp;
649 syscallarg(timer_t *) timerid;
650 } */ *uap = v;
651
652 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
653 SCARG(uap, evp), copyin, l);
654 }
655
656 int
657 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
658 copyin_t fetch_event, struct lwp *l)
659 {
660 int error;
661 timer_t timerid;
662 struct ptimer *pt;
663 struct proc *p;
664
665 p = l->l_proc;
666
667 if (id < CLOCK_REALTIME ||
668 id > CLOCK_PROF)
669 return (EINVAL);
670
671 if (p->p_timers == NULL)
672 timers_alloc(p);
673
674 /* Find a free timer slot, skipping those reserved for setitimer(). */
675 for (timerid = 3; timerid < TIMER_MAX; timerid++)
676 if (p->p_timers->pts_timers[timerid] == NULL)
677 break;
678
679 if (timerid == TIMER_MAX)
680 return EAGAIN;
681
682 pt = pool_get(&ptimer_pool, PR_WAITOK);
683 if (evp) {
684 if (((error =
685 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
686 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
687 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
688 pool_put(&ptimer_pool, pt);
689 return (error ? error : EINVAL);
690 }
691 } else {
692 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
693 switch (id) {
694 case CLOCK_REALTIME:
695 pt->pt_ev.sigev_signo = SIGALRM;
696 break;
697 case CLOCK_VIRTUAL:
698 pt->pt_ev.sigev_signo = SIGVTALRM;
699 break;
700 case CLOCK_PROF:
701 pt->pt_ev.sigev_signo = SIGPROF;
702 break;
703 }
704 pt->pt_ev.sigev_value.sival_int = timerid;
705 }
706 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
707 pt->pt_info.ksi_errno = 0;
708 pt->pt_info.ksi_code = 0;
709 pt->pt_info.ksi_pid = p->p_pid;
710 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
711 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
712
713 pt->pt_type = id;
714 pt->pt_proc = p;
715 pt->pt_overruns = 0;
716 pt->pt_poverruns = 0;
717 pt->pt_entry = timerid;
718 timerclear(&pt->pt_time.it_value);
719 if (id == CLOCK_REALTIME)
720 callout_init(&pt->pt_ch);
721 else
722 pt->pt_active = 0;
723
724 p->p_timers->pts_timers[timerid] = pt;
725
726 return copyout(&timerid, tid, sizeof(timerid));
727 }
728
729 /* Delete a POSIX realtime timer */
730 int
731 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
732 {
733 struct sys_timer_delete_args /* {
734 syscallarg(timer_t) timerid;
735 } */ *uap = v;
736 struct proc *p = l->l_proc;
737 timer_t timerid;
738 struct ptimer *pt, *ptn;
739 int s;
740
741 timerid = SCARG(uap, timerid);
742
743 if ((p->p_timers == NULL) ||
744 (timerid < 2) || (timerid >= TIMER_MAX) ||
745 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
746 return (EINVAL);
747
748 if (pt->pt_type == CLOCK_REALTIME)
749 callout_stop(&pt->pt_ch);
750 else if (pt->pt_active) {
751 s = splclock();
752 ptn = LIST_NEXT(pt, pt_list);
753 LIST_REMOVE(pt, pt_list);
754 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
755 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
756 &ptn->pt_time.it_value);
757 splx(s);
758 }
759
760 p->p_timers->pts_timers[timerid] = NULL;
761 pool_put(&ptimer_pool, pt);
762
763 return (0);
764 }
765
766 /*
767 * Set up the given timer. The value in pt->pt_time.it_value is taken
768 * to be an absolute time for CLOCK_REALTIME timers and a relative
769 * time for virtual timers.
770 * Must be called at splclock().
771 */
772 void
773 timer_settime(struct ptimer *pt)
774 {
775 struct ptimer *ptn, *pptn;
776 struct ptlist *ptl;
777
778 if (pt->pt_type == CLOCK_REALTIME) {
779 callout_stop(&pt->pt_ch);
780 if (timerisset(&pt->pt_time.it_value)) {
781 /*
782 * Don't need to check hzto() return value, here.
783 * callout_reset() does it for us.
784 */
785 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
786 realtimerexpire, pt);
787 }
788 } else {
789 if (pt->pt_active) {
790 ptn = LIST_NEXT(pt, pt_list);
791 LIST_REMOVE(pt, pt_list);
792 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
793 timeradd(&pt->pt_time.it_value,
794 &ptn->pt_time.it_value,
795 &ptn->pt_time.it_value);
796 }
797 if (timerisset(&pt->pt_time.it_value)) {
798 if (pt->pt_type == CLOCK_VIRTUAL)
799 ptl = &pt->pt_proc->p_timers->pts_virtual;
800 else
801 ptl = &pt->pt_proc->p_timers->pts_prof;
802
803 for (ptn = LIST_FIRST(ptl), pptn = NULL;
804 ptn && timercmp(&pt->pt_time.it_value,
805 &ptn->pt_time.it_value, >);
806 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
807 timersub(&pt->pt_time.it_value,
808 &ptn->pt_time.it_value,
809 &pt->pt_time.it_value);
810
811 if (pptn)
812 LIST_INSERT_AFTER(pptn, pt, pt_list);
813 else
814 LIST_INSERT_HEAD(ptl, pt, pt_list);
815
816 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
817 timersub(&ptn->pt_time.it_value,
818 &pt->pt_time.it_value,
819 &ptn->pt_time.it_value);
820
821 pt->pt_active = 1;
822 } else
823 pt->pt_active = 0;
824 }
825 }
826
827 void
828 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
829 {
830 #ifdef __HAVE_TIMECOUNTER
831 struct timeval now;
832 #endif
833 struct ptimer *ptn;
834
835 *aitv = pt->pt_time;
836 if (pt->pt_type == CLOCK_REALTIME) {
837 /*
838 * Convert from absolute to relative time in .it_value
839 * part of real time timer. If time for real time
840 * timer has passed return 0, else return difference
841 * between current time and time for the timer to go
842 * off.
843 */
844 if (timerisset(&aitv->it_value)) {
845 #ifdef __HAVE_TIMECOUNTER
846 getmicrotime(&now);
847 if (timercmp(&aitv->it_value, &now, <))
848 timerclear(&aitv->it_value);
849 else
850 timersub(&aitv->it_value, &now,
851 &aitv->it_value);
852 #else /* !__HAVE_TIMECOUNTER */
853 if (timercmp(&aitv->it_value, &time, <))
854 timerclear(&aitv->it_value);
855 else
856 timersub(&aitv->it_value, &time,
857 &aitv->it_value);
858 #endif /* !__HAVE_TIMECOUNTER */
859 }
860 } else if (pt->pt_active) {
861 if (pt->pt_type == CLOCK_VIRTUAL)
862 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
863 else
864 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
865 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
866 timeradd(&aitv->it_value,
867 &ptn->pt_time.it_value, &aitv->it_value);
868 KASSERT(ptn != NULL); /* pt should be findable on the list */
869 } else
870 timerclear(&aitv->it_value);
871 }
872
873
874
875 /* Set and arm a POSIX realtime timer */
876 int
877 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
878 {
879 struct sys_timer_settime_args /* {
880 syscallarg(timer_t) timerid;
881 syscallarg(int) flags;
882 syscallarg(const struct itimerspec *) value;
883 syscallarg(struct itimerspec *) ovalue;
884 } */ *uap = v;
885 int error;
886 struct itimerspec value, ovalue, *ovp = NULL;
887
888 if ((error = copyin(SCARG(uap, value), &value,
889 sizeof(struct itimerspec))) != 0)
890 return (error);
891
892 if (SCARG(uap, ovalue))
893 ovp = &ovalue;
894
895 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
896 SCARG(uap, flags), l->l_proc)) != 0)
897 return error;
898
899 if (ovp)
900 return copyout(&ovalue, SCARG(uap, ovalue),
901 sizeof(struct itimerspec));
902 return 0;
903 }
904
905 int
906 dotimer_settime(int timerid, struct itimerspec *value,
907 struct itimerspec *ovalue, int flags, struct proc *p)
908 {
909 #ifdef __HAVE_TIMECOUNTER
910 struct timeval now;
911 #endif
912 struct itimerval val, oval;
913 struct ptimer *pt;
914 int s;
915
916 if ((p->p_timers == NULL) ||
917 (timerid < 2) || (timerid >= TIMER_MAX) ||
918 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
919 return (EINVAL);
920
921 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
922 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
923 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
924 return (EINVAL);
925
926 oval = pt->pt_time;
927 pt->pt_time = val;
928
929 s = splclock();
930 /*
931 * If we've been passed a relative time for a realtime timer,
932 * convert it to absolute; if an absolute time for a virtual
933 * timer, convert it to relative and make sure we don't set it
934 * to zero, which would cancel the timer, or let it go
935 * negative, which would confuse the comparison tests.
936 */
937 if (timerisset(&pt->pt_time.it_value)) {
938 if (pt->pt_type == CLOCK_REALTIME) {
939 #ifdef __HAVE_TIMECOUNTER
940 if ((flags & TIMER_ABSTIME) == 0) {
941 getmicrotime(&now);
942 timeradd(&pt->pt_time.it_value, &now,
943 &pt->pt_time.it_value);
944 }
945 #else /* !__HAVE_TIMECOUNTER */
946 if ((flags & TIMER_ABSTIME) == 0)
947 timeradd(&pt->pt_time.it_value, &time,
948 &pt->pt_time.it_value);
949 #endif /* !__HAVE_TIMECOUNTER */
950 } else {
951 if ((flags & TIMER_ABSTIME) != 0) {
952 #ifdef __HAVE_TIMECOUNTER
953 getmicrotime(&now);
954 timersub(&pt->pt_time.it_value, &now,
955 &pt->pt_time.it_value);
956 #else /* !__HAVE_TIMECOUNTER */
957 timersub(&pt->pt_time.it_value, &time,
958 &pt->pt_time.it_value);
959 #endif /* !__HAVE_TIMECOUNTER */
960 if (!timerisset(&pt->pt_time.it_value) ||
961 pt->pt_time.it_value.tv_sec < 0) {
962 pt->pt_time.it_value.tv_sec = 0;
963 pt->pt_time.it_value.tv_usec = 1;
964 }
965 }
966 }
967 }
968
969 timer_settime(pt);
970 splx(s);
971
972 if (ovalue) {
973 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
974 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
975 }
976
977 return (0);
978 }
979
980 /* Return the time remaining until a POSIX timer fires. */
981 int
982 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
983 {
984 struct sys_timer_gettime_args /* {
985 syscallarg(timer_t) timerid;
986 syscallarg(struct itimerspec *) value;
987 } */ *uap = v;
988 struct itimerspec its;
989 int error;
990
991 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
992 &its)) != 0)
993 return error;
994
995 return copyout(&its, SCARG(uap, value), sizeof(its));
996 }
997
998 int
999 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1000 {
1001 int s;
1002 struct ptimer *pt;
1003 struct itimerval aitv;
1004
1005 if ((p->p_timers == NULL) ||
1006 (timerid < 2) || (timerid >= TIMER_MAX) ||
1007 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1008 return (EINVAL);
1009
1010 s = splclock();
1011 timer_gettime(pt, &aitv);
1012 splx(s);
1013
1014 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1015 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * Return the count of the number of times a periodic timer expired
1022 * while a notification was already pending. The counter is reset when
1023 * a timer expires and a notification can be posted.
1024 */
1025 int
1026 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1027 {
1028 struct sys_timer_getoverrun_args /* {
1029 syscallarg(timer_t) timerid;
1030 } */ *uap = v;
1031 struct proc *p = l->l_proc;
1032 int timerid;
1033 struct ptimer *pt;
1034
1035 timerid = SCARG(uap, timerid);
1036
1037 if ((p->p_timers == NULL) ||
1038 (timerid < 2) || (timerid >= TIMER_MAX) ||
1039 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1040 return (EINVAL);
1041
1042 *retval = pt->pt_poverruns;
1043
1044 return (0);
1045 }
1046
1047 /* Glue function that triggers an upcall; called from userret(). */
1048 void
1049 timerupcall(struct lwp *l)
1050 {
1051 struct ptimers *pt = l->l_proc->p_timers;
1052 unsigned int i, fired, done;
1053
1054 KDASSERT(l->l_proc->p_sa);
1055 /* Bail out if we do not own the virtual processor */
1056 if (l->l_savp->savp_lwp != l)
1057 return ;
1058
1059 KERNEL_LOCK(1, l);
1060
1061 fired = pt->pts_fired;
1062 done = 0;
1063 while ((i = ffs(fired)) != 0) {
1064 siginfo_t *si;
1065 int mask = 1 << --i;
1066 int f;
1067
1068 lwp_lock(l);
1069 f = l->l_flag & L_SA;
1070 l->l_flag &= ~L_SA;
1071 lwp_unlock(l);
1072 si = siginfo_alloc(PR_WAITOK);
1073 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1074 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1075 sizeof(*si), si, siginfo_free) != 0) {
1076 siginfo_free(si);
1077 /* XXX What do we do here?? */
1078 } else
1079 done |= mask;
1080 fired &= ~mask;
1081 lwp_lock(l);
1082 l->l_flag |= f;
1083 lwp_unlock(l);
1084 }
1085 pt->pts_fired &= ~done;
1086 if (pt->pts_fired == 0)
1087 l->l_proc->p_timerpend = 0;
1088
1089 (void)KERNEL_UNLOCK(1, l);
1090 }
1091
1092 /*
1093 * Real interval timer expired:
1094 * send process whose timer expired an alarm signal.
1095 * If time is not set up to reload, then just return.
1096 * Else compute next time timer should go off which is > current time.
1097 * This is where delay in processing this timeout causes multiple
1098 * SIGALRM calls to be compressed into one.
1099 */
1100 void
1101 realtimerexpire(void *arg)
1102 {
1103 #ifdef __HAVE_TIMECOUNTER
1104 struct timeval now;
1105 #endif
1106 struct ptimer *pt;
1107 int s;
1108
1109 pt = (struct ptimer *)arg;
1110
1111 itimerfire(pt);
1112
1113 if (!timerisset(&pt->pt_time.it_interval)) {
1114 timerclear(&pt->pt_time.it_value);
1115 return;
1116 }
1117 #ifdef __HAVE_TIMECOUNTER
1118 for (;;) {
1119 s = splclock(); /* XXX need spl now? */
1120 timeradd(&pt->pt_time.it_value,
1121 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1122 getmicrotime(&now);
1123 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1124 /*
1125 * Don't need to check hzto() return value, here.
1126 * callout_reset() does it for us.
1127 */
1128 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1129 realtimerexpire, pt);
1130 splx(s);
1131 return;
1132 }
1133 splx(s);
1134 pt->pt_overruns++;
1135 }
1136 #else /* !__HAVE_TIMECOUNTER */
1137 for (;;) {
1138 s = splclock();
1139 timeradd(&pt->pt_time.it_value,
1140 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1141 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1142 /*
1143 * Don't need to check hzto() return value, here.
1144 * callout_reset() does it for us.
1145 */
1146 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1147 realtimerexpire, pt);
1148 splx(s);
1149 return;
1150 }
1151 splx(s);
1152 pt->pt_overruns++;
1153 }
1154 #endif /* !__HAVE_TIMECOUNTER */
1155 }
1156
1157 /* BSD routine to get the value of an interval timer. */
1158 /* ARGSUSED */
1159 int
1160 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1161 {
1162 struct sys_getitimer_args /* {
1163 syscallarg(int) which;
1164 syscallarg(struct itimerval *) itv;
1165 } */ *uap = v;
1166 struct proc *p = l->l_proc;
1167 struct itimerval aitv;
1168 int error;
1169
1170 error = dogetitimer(p, SCARG(uap, which), &aitv);
1171 if (error)
1172 return error;
1173 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1174 }
1175
1176 int
1177 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1178 {
1179 int s;
1180
1181 if ((u_int)which > ITIMER_PROF)
1182 return (EINVAL);
1183
1184 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1185 timerclear(&itvp->it_value);
1186 timerclear(&itvp->it_interval);
1187 } else {
1188 s = splclock();
1189 timer_gettime(p->p_timers->pts_timers[which], itvp);
1190 splx(s);
1191 }
1192
1193 return 0;
1194 }
1195
1196 /* BSD routine to set/arm an interval timer. */
1197 /* ARGSUSED */
1198 int
1199 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1200 {
1201 struct sys_setitimer_args /* {
1202 syscallarg(int) which;
1203 syscallarg(const struct itimerval *) itv;
1204 syscallarg(struct itimerval *) oitv;
1205 } */ *uap = v;
1206 struct proc *p = l->l_proc;
1207 int which = SCARG(uap, which);
1208 struct sys_getitimer_args getargs;
1209 const struct itimerval *itvp;
1210 struct itimerval aitv;
1211 int error;
1212
1213 if ((u_int)which > ITIMER_PROF)
1214 return (EINVAL);
1215 itvp = SCARG(uap, itv);
1216 if (itvp &&
1217 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1218 return (error);
1219 if (SCARG(uap, oitv) != NULL) {
1220 SCARG(&getargs, which) = which;
1221 SCARG(&getargs, itv) = SCARG(uap, oitv);
1222 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1223 return (error);
1224 }
1225 if (itvp == 0)
1226 return (0);
1227
1228 return dosetitimer(p, which, &aitv);
1229 }
1230
1231 int
1232 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1233 {
1234 #ifdef __HAVE_TIMECOUNTER
1235 struct timeval now;
1236 #endif
1237 struct ptimer *pt;
1238 int s;
1239
1240 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1241 return (EINVAL);
1242
1243 /*
1244 * Don't bother allocating data structures if the process just
1245 * wants to clear the timer.
1246 */
1247 if (!timerisset(&itvp->it_value) &&
1248 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1249 return (0);
1250
1251 if (p->p_timers == NULL)
1252 timers_alloc(p);
1253 if (p->p_timers->pts_timers[which] == NULL) {
1254 pt = pool_get(&ptimer_pool, PR_WAITOK);
1255 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1256 pt->pt_ev.sigev_value.sival_int = which;
1257 pt->pt_overruns = 0;
1258 pt->pt_proc = p;
1259 pt->pt_type = which;
1260 pt->pt_entry = which;
1261 switch (which) {
1262 case ITIMER_REAL:
1263 callout_init(&pt->pt_ch);
1264 pt->pt_ev.sigev_signo = SIGALRM;
1265 break;
1266 case ITIMER_VIRTUAL:
1267 pt->pt_active = 0;
1268 pt->pt_ev.sigev_signo = SIGVTALRM;
1269 break;
1270 case ITIMER_PROF:
1271 pt->pt_active = 0;
1272 pt->pt_ev.sigev_signo = SIGPROF;
1273 break;
1274 }
1275 } else
1276 pt = p->p_timers->pts_timers[which];
1277
1278 pt->pt_time = *itvp;
1279 p->p_timers->pts_timers[which] = pt;
1280
1281 s = splclock();
1282 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1283 /* Convert to absolute time */
1284 #ifdef __HAVE_TIMECOUNTER
1285 /* XXX need to wrap in splclock for timecounters case? */
1286 getmicrotime(&now);
1287 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1288 #else /* !__HAVE_TIMECOUNTER */
1289 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1290 #endif /* !__HAVE_TIMECOUNTER */
1291 }
1292 timer_settime(pt);
1293 splx(s);
1294
1295 return (0);
1296 }
1297
1298 /* Utility routines to manage the array of pointers to timers. */
1299 void
1300 timers_alloc(struct proc *p)
1301 {
1302 int i;
1303 struct ptimers *pts;
1304
1305 pts = pool_get(&ptimers_pool, PR_WAITOK);
1306 LIST_INIT(&pts->pts_virtual);
1307 LIST_INIT(&pts->pts_prof);
1308 for (i = 0; i < TIMER_MAX; i++)
1309 pts->pts_timers[i] = NULL;
1310 pts->pts_fired = 0;
1311 p->p_timers = pts;
1312 }
1313
1314 /*
1315 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1316 * then clean up all timers and free all the data structures. If
1317 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1318 * by timer_create(), not the BSD setitimer() timers, and only free the
1319 * structure if none of those remain.
1320 */
1321 void
1322 timers_free(struct proc *p, int which)
1323 {
1324 int i, s;
1325 struct ptimers *pts;
1326 struct ptimer *pt, *ptn;
1327 struct timeval tv;
1328
1329 if (p->p_timers) {
1330 pts = p->p_timers;
1331 if (which == TIMERS_ALL)
1332 i = 0;
1333 else {
1334 s = splclock();
1335 timerclear(&tv);
1336 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1337 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1338 ptn = LIST_NEXT(ptn, pt_list))
1339 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1340 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1341 if (ptn) {
1342 timeradd(&tv, &ptn->pt_time.it_value,
1343 &ptn->pt_time.it_value);
1344 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1345 ptn, pt_list);
1346 }
1347
1348 timerclear(&tv);
1349 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1350 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1351 ptn = LIST_NEXT(ptn, pt_list))
1352 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1353 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1354 if (ptn) {
1355 timeradd(&tv, &ptn->pt_time.it_value,
1356 &ptn->pt_time.it_value);
1357 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1358 pt_list);
1359 }
1360 splx(s);
1361 i = 3;
1362 }
1363 for ( ; i < TIMER_MAX; i++)
1364 if ((pt = pts->pts_timers[i]) != NULL) {
1365 if (pt->pt_type == CLOCK_REALTIME)
1366 callout_stop(&pt->pt_ch);
1367 pts->pts_timers[i] = NULL;
1368 pool_put(&ptimer_pool, pt);
1369 }
1370 if ((pts->pts_timers[0] == NULL) &&
1371 (pts->pts_timers[1] == NULL) &&
1372 (pts->pts_timers[2] == NULL)) {
1373 p->p_timers = NULL;
1374 pool_put(&ptimers_pool, pts);
1375 }
1376 }
1377 }
1378
1379 /*
1380 * Check that a proposed value to load into the .it_value or
1381 * .it_interval part of an interval timer is acceptable, and
1382 * fix it to have at least minimal value (i.e. if it is less
1383 * than the resolution of the clock, round it up.)
1384 */
1385 int
1386 itimerfix(struct timeval *tv)
1387 {
1388
1389 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1390 return (EINVAL);
1391 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1392 tv->tv_usec = tick;
1393 return (0);
1394 }
1395
1396 #ifdef __HAVE_TIMECOUNTER
1397 int
1398 itimespecfix(struct timespec *ts)
1399 {
1400
1401 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1402 return (EINVAL);
1403 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1404 ts->tv_nsec = tick * 1000;
1405 return (0);
1406 }
1407 #endif /* __HAVE_TIMECOUNTER */
1408
1409 /*
1410 * Decrement an interval timer by a specified number
1411 * of microseconds, which must be less than a second,
1412 * i.e. < 1000000. If the timer expires, then reload
1413 * it. In this case, carry over (usec - old value) to
1414 * reduce the value reloaded into the timer so that
1415 * the timer does not drift. This routine assumes
1416 * that it is called in a context where the timers
1417 * on which it is operating cannot change in value.
1418 */
1419 int
1420 itimerdecr(struct ptimer *pt, int usec)
1421 {
1422 struct itimerval *itp;
1423
1424 itp = &pt->pt_time;
1425 if (itp->it_value.tv_usec < usec) {
1426 if (itp->it_value.tv_sec == 0) {
1427 /* expired, and already in next interval */
1428 usec -= itp->it_value.tv_usec;
1429 goto expire;
1430 }
1431 itp->it_value.tv_usec += 1000000;
1432 itp->it_value.tv_sec--;
1433 }
1434 itp->it_value.tv_usec -= usec;
1435 usec = 0;
1436 if (timerisset(&itp->it_value))
1437 return (1);
1438 /* expired, exactly at end of interval */
1439 expire:
1440 if (timerisset(&itp->it_interval)) {
1441 itp->it_value = itp->it_interval;
1442 itp->it_value.tv_usec -= usec;
1443 if (itp->it_value.tv_usec < 0) {
1444 itp->it_value.tv_usec += 1000000;
1445 itp->it_value.tv_sec--;
1446 }
1447 timer_settime(pt);
1448 } else
1449 itp->it_value.tv_usec = 0; /* sec is already 0 */
1450 return (0);
1451 }
1452
1453 void
1454 itimerfire(struct ptimer *pt)
1455 {
1456 struct proc *p = pt->pt_proc;
1457 struct sadata_vp *vp;
1458 unsigned int i;
1459
1460 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1461 /*
1462 * No RT signal infrastructure exists at this time;
1463 * just post the signal number and throw away the
1464 * value.
1465 */
1466 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1467 pt->pt_overruns++;
1468 else {
1469 ksiginfo_t ksi;
1470 (void)memset(&ksi, 0, sizeof(ksi));
1471 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1472 ksi.ksi_code = SI_TIMER;
1473 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1474 pt->pt_poverruns = pt->pt_overruns;
1475 pt->pt_overruns = 0;
1476 mutex_enter(&proclist_mutex);
1477 kpsignal(p, &ksi, NULL);
1478 mutex_exit(&proclist_mutex);
1479 }
1480 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_sflag & PS_SA)) {
1481 /* Cause the process to generate an upcall when it returns. */
1482 if (!p->p_timerpend) {
1483 /*
1484 * XXX stop signals can be processed inside tsleep,
1485 * which can be inside sa_yield's inner loop, which
1486 * makes testing for sa_idle alone insuffucent to
1487 * determine if we really should call setrunnable.
1488 */
1489 pt->pt_poverruns = pt->pt_overruns;
1490 pt->pt_overruns = 0;
1491 i = 1 << pt->pt_entry;
1492 p->p_timers->pts_fired = i;
1493 p->p_timerpend = 1;
1494
1495 mutex_enter(&p->p_smutex);
1496 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1497 lwp_need_userret(vp->savp_lwp);
1498 lwp_lock(vp->savp_lwp);
1499 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1500 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1501 lwp_unlock(vp->savp_lwp);
1502 wakeup(vp->savp_lwp);
1503 break;
1504 }
1505 lwp_unlock(vp->savp_lwp);
1506 }
1507 mutex_exit(&p->p_smutex);
1508 } else {
1509 i = 1 << pt->pt_entry;
1510 if ((p->p_timers->pts_fired & i) == 0) {
1511 pt->pt_poverruns = pt->pt_overruns;
1512 pt->pt_overruns = 0;
1513 p->p_timers->pts_fired |= i;
1514 } else
1515 pt->pt_overruns++;
1516 }
1517 }
1518 }
1519
1520 /*
1521 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1522 * for usage and rationale.
1523 */
1524 int
1525 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1526 {
1527 struct timeval tv, delta;
1528 int rv = 0;
1529 #ifndef __HAVE_TIMECOUNTER
1530 int s;
1531 #endif
1532
1533 #ifdef __HAVE_TIMECOUNTER
1534 getmicrouptime(&tv);
1535 #else /* !__HAVE_TIMECOUNTER */
1536 s = splclock();
1537 tv = mono_time;
1538 splx(s);
1539 #endif /* !__HAVE_TIMECOUNTER */
1540 timersub(&tv, lasttime, &delta);
1541
1542 /*
1543 * check for 0,0 is so that the message will be seen at least once,
1544 * even if interval is huge.
1545 */
1546 if (timercmp(&delta, mininterval, >=) ||
1547 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1548 *lasttime = tv;
1549 rv = 1;
1550 }
1551
1552 return (rv);
1553 }
1554
1555 /*
1556 * ppsratecheck(): packets (or events) per second limitation.
1557 */
1558 int
1559 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1560 {
1561 struct timeval tv, delta;
1562 int rv;
1563 #ifndef __HAVE_TIMECOUNTER
1564 int s;
1565 #endif
1566
1567 #ifdef __HAVE_TIMECOUNTER
1568 getmicrouptime(&tv);
1569 #else /* !__HAVE_TIMECOUNTER */
1570 s = splclock();
1571 tv = mono_time;
1572 splx(s);
1573 #endif /* !__HAVE_TIMECOUNTER */
1574 timersub(&tv, lasttime, &delta);
1575
1576 /*
1577 * check for 0,0 is so that the message will be seen at least once.
1578 * if more than one second have passed since the last update of
1579 * lasttime, reset the counter.
1580 *
1581 * we do increment *curpps even in *curpps < maxpps case, as some may
1582 * try to use *curpps for stat purposes as well.
1583 */
1584 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1585 delta.tv_sec >= 1) {
1586 *lasttime = tv;
1587 *curpps = 0;
1588 }
1589 if (maxpps < 0)
1590 rv = 1;
1591 else if (*curpps < maxpps)
1592 rv = 1;
1593 else
1594 rv = 0;
1595
1596 #if 1 /*DIAGNOSTIC?*/
1597 /* be careful about wrap-around */
1598 if (*curpps + 1 > *curpps)
1599 *curpps = *curpps + 1;
1600 #else
1601 /*
1602 * assume that there's not too many calls to this function.
1603 * not sure if the assumption holds, as it depends on *caller's*
1604 * behavior, not the behavior of this function.
1605 * IMHO it is wrong to make assumption on the caller's behavior,
1606 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1607 */
1608 *curpps = *curpps + 1;
1609 #endif
1610
1611 return (rv);
1612 }
1613