kern_time.c revision 1.105.4.7 1 /* $NetBSD: kern_time.c,v 1.105.4.7 2007/01/12 01:04:07 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.105.4.7 2007/01/12 01:04:07 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/vnode.h>
81 #include <sys/signalvar.h>
82 #include <sys/syslog.h>
83 #ifdef __HAVE_TIMECOUNTER
84 #include <sys/timetc.h>
85 #else /* !__HAVE_TIMECOUNTER */
86 #include <sys/timevar.h>
87 #endif /* !__HAVE_TIMECOUNTER */
88 #include <sys/kauth.h>
89
90 #include <sys/mount.h>
91 #include <sys/syscallargs.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <machine/cpu.h>
96
97 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
98 &pool_allocator_nointr);
99 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
100 &pool_allocator_nointr);
101
102 #ifdef __HAVE_TIMECOUNTER
103 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
104 #endif /* __HAVE_TIMECOUNTER */
105
106 /* Time of day and interval timer support.
107 *
108 * These routines provide the kernel entry points to get and set
109 * the time-of-day and per-process interval timers. Subroutines
110 * here provide support for adding and subtracting timeval structures
111 * and decrementing interval timers, optionally reloading the interval
112 * timers when they expire.
113 */
114
115 /* This function is used by clock_settime and settimeofday */
116 int
117 settime(struct proc *p, struct timespec *ts)
118 {
119 struct timeval delta, tv;
120 #ifdef __HAVE_TIMECOUNTER
121 struct timeval now;
122 struct timespec ts1;
123 #endif /* !__HAVE_TIMECOUNTER */
124 struct cpu_info *ci;
125 int s;
126
127 /*
128 * Don't allow the time to be set forward so far it will wrap
129 * and become negative, thus allowing an attacker to bypass
130 * the next check below. The cutoff is 1 year before rollover
131 * occurs, so even if the attacker uses adjtime(2) to move
132 * the time past the cutoff, it will take a very long time
133 * to get to the wrap point.
134 *
135 * XXX: we check against INT_MAX since on 64-bit
136 * platforms, sizeof(int) != sizeof(long) and
137 * time_t is 32 bits even when atv.tv_sec is 64 bits.
138 */
139 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
140 struct proc *pp;
141
142 rw_enter(&proclist_lock, RW_READER);
143 pp = p->p_pptr;
144 mutex_enter(&pp->p_mutex);
145 log(LOG_WARNING, "pid %d (%s) "
146 "invoked by uid %d ppid %d (%s) "
147 "tried to set clock forward to %ld\n",
148 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
149 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
150 mutex_exit(&pp->p_mutex);
151 rw_exit(&proclist_lock);
152 return (EPERM);
153 }
154 TIMESPEC_TO_TIMEVAL(&tv, ts);
155
156 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
157 s = splclock();
158 #ifdef __HAVE_TIMECOUNTER
159 microtime(&now);
160 timersub(&tv, &now, &delta);
161 #else /* !__HAVE_TIMECOUNTER */
162 timersub(&tv, &time, &delta);
163 #endif /* !__HAVE_TIMECOUNTER */
164 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
165 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
166 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
167 splx(s);
168 return (EPERM);
169 }
170 #ifdef notyet
171 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
172 splx(s);
173 return (EPERM);
174 }
175 #endif
176
177 #ifdef __HAVE_TIMECOUNTER
178 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
179 tc_setclock(&ts1);
180 #else /* !__HAVE_TIMECOUNTER */
181 time = tv;
182 #endif /* !__HAVE_TIMECOUNTER */
183
184 (void) spllowersoftclock();
185
186 timeradd(&boottime, &delta, &boottime);
187
188 /*
189 * XXXSMP
190 * This is wrong. We should traverse a list of all
191 * CPUs and add the delta to the runtime of those
192 * CPUs which have a process on them.
193 */
194 ci = curcpu();
195 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
196 &ci->ci_schedstate.spc_runtime);
197 splx(s);
198 resettodr();
199 return (0);
200 }
201
202 /* ARGSUSED */
203 int
204 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
205 {
206 struct sys_clock_gettime_args /* {
207 syscallarg(clockid_t) clock_id;
208 syscallarg(struct timespec *) tp;
209 } */ *uap = v;
210 clockid_t clock_id;
211 struct timespec ats;
212
213 clock_id = SCARG(uap, clock_id);
214 switch (clock_id) {
215 case CLOCK_REALTIME:
216 nanotime(&ats);
217 break;
218 case CLOCK_MONOTONIC:
219 #ifdef __HAVE_TIMECOUNTER
220 nanouptime(&ats);
221 #else /* !__HAVE_TIMECOUNTER */
222 {
223 int s;
224
225 /* XXX "hz" granularity */
226 s = splclock();
227 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
228 splx(s);
229 }
230 #endif /* !__HAVE_TIMECOUNTER */
231 break;
232 default:
233 return (EINVAL);
234 }
235
236 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
237 }
238
239 /* ARGSUSED */
240 int
241 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
242 {
243 struct sys_clock_settime_args /* {
244 syscallarg(clockid_t) clock_id;
245 syscallarg(const struct timespec *) tp;
246 } */ *uap = v;
247 int error;
248
249 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
250 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
251 return (error);
252
253 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
254 }
255
256
257 int
258 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
259 {
260 struct timespec ats;
261 int error;
262
263 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
264 return (error);
265
266 switch (clock_id) {
267 case CLOCK_REALTIME:
268 if ((error = settime(p, &ats)) != 0)
269 return (error);
270 break;
271 case CLOCK_MONOTONIC:
272 return (EINVAL); /* read-only clock */
273 default:
274 return (EINVAL);
275 }
276
277 return 0;
278 }
279
280 int
281 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
282 {
283 struct sys_clock_getres_args /* {
284 syscallarg(clockid_t) clock_id;
285 syscallarg(struct timespec *) tp;
286 } */ *uap = v;
287 clockid_t clock_id;
288 struct timespec ts;
289 int error = 0;
290
291 clock_id = SCARG(uap, clock_id);
292 switch (clock_id) {
293 case CLOCK_REALTIME:
294 case CLOCK_MONOTONIC:
295 ts.tv_sec = 0;
296 #ifdef __HAVE_TIMECOUNTER
297 if (tc_getfrequency() > 1000000000)
298 ts.tv_nsec = 1;
299 else
300 ts.tv_nsec = 1000000000 / tc_getfrequency();
301 #else /* !__HAVE_TIMECOUNTER */
302 ts.tv_nsec = 1000000000 / hz;
303 #endif /* !__HAVE_TIMECOUNTER */
304 break;
305 default:
306 return (EINVAL);
307 }
308
309 if (SCARG(uap, tp))
310 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
311
312 return error;
313 }
314
315 /* ARGSUSED */
316 int
317 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
318 {
319 #ifdef __HAVE_TIMECOUNTER
320 struct sys_nanosleep_args/* {
321 syscallarg(struct timespec *) rqtp;
322 syscallarg(struct timespec *) rmtp;
323 } */ *uap = v;
324 struct timespec rmt, rqt;
325 int error, timo;
326
327 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
328 if (error)
329 return (error);
330
331 if (itimespecfix(&rqt))
332 return (EINVAL);
333
334 timo = tstohz(&rqt);
335 /*
336 * Avoid inadvertantly sleeping forever
337 */
338 if (timo == 0)
339 timo = 1;
340
341 getnanouptime(&rmt);
342
343 error = sched_pause("nanoslp", TRUE, timo);
344 if (error == ERESTART)
345 error = EINTR;
346 if (error == EWOULDBLOCK)
347 error = 0;
348
349 if (SCARG(uap, rmtp)) {
350 int error1;
351 struct timespec rmtend;
352
353 getnanouptime(&rmtend);
354
355 timespecsub(&rmtend, &rmt, &rmt);
356 timespecsub(&rqt, &rmt, &rmt);
357 if (rmt.tv_sec < 0)
358 timespecclear(&rmt);
359
360 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
361 sizeof(rmt));
362 if (error1)
363 return (error1);
364 }
365
366 return error;
367 #else /* !__HAVE_TIMECOUNTER */
368 struct sys_nanosleep_args/* {
369 syscallarg(struct timespec *) rqtp;
370 syscallarg(struct timespec *) rmtp;
371 } */ *uap = v;
372 struct timespec rqt;
373 struct timespec rmt;
374 struct timeval atv, utv;
375 int error, s, timo;
376
377 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
378 if (error)
379 return (error);
380
381 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
382 if (itimerfix(&atv))
383 return (EINVAL);
384
385 s = splclock();
386 timeradd(&atv,&time,&atv);
387 timo = hzto(&atv);
388 /*
389 * Avoid inadvertantly sleeping forever
390 */
391 if (timo == 0)
392 timo = 1;
393 splx(s);
394
395 error = sched_pause("nanoslp", TRUE, timo);
396 if (error == ERESTART)
397 error = EINTR;
398 if (error == EWOULDBLOCK)
399 error = 0;
400
401 if (SCARG(uap, rmtp)) {
402 int error1;
403
404 s = splclock();
405 utv = time;
406 splx(s);
407
408 timersub(&atv, &utv, &utv);
409 if (utv.tv_sec < 0)
410 timerclear(&utv);
411
412 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
413 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
414 sizeof(rmt));
415 if (error1)
416 return (error1);
417 }
418
419 return error;
420 #endif /* !__HAVE_TIMECOUNTER */
421 }
422
423 /* ARGSUSED */
424 int
425 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
426 {
427 struct sys_gettimeofday_args /* {
428 syscallarg(struct timeval *) tp;
429 syscallarg(void *) tzp; really "struct timezone *"
430 } */ *uap = v;
431 struct timeval atv;
432 int error = 0;
433 struct timezone tzfake;
434
435 if (SCARG(uap, tp)) {
436 microtime(&atv);
437 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
438 if (error)
439 return (error);
440 }
441 if (SCARG(uap, tzp)) {
442 /*
443 * NetBSD has no kernel notion of time zone, so we just
444 * fake up a timezone struct and return it if demanded.
445 */
446 tzfake.tz_minuteswest = 0;
447 tzfake.tz_dsttime = 0;
448 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
449 }
450 return (error);
451 }
452
453 /* ARGSUSED */
454 int
455 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
456 {
457 struct sys_settimeofday_args /* {
458 syscallarg(const struct timeval *) tv;
459 syscallarg(const void *) tzp; really "const struct timezone *"
460 } */ *uap = v;
461 int error;
462
463 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
464 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
465 return (error);
466
467 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
468 }
469
470 int
471 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
472 struct proc *p)
473 {
474 struct timeval atv;
475 struct timespec ts;
476 int error;
477
478 /* Verify all parameters before changing time. */
479 /*
480 * NetBSD has no kernel notion of time zone, and only an
481 * obsolete program would try to set it, so we log a warning.
482 */
483 if (utzp)
484 log(LOG_WARNING, "pid %d attempted to set the "
485 "(obsolete) kernel time zone\n", p->p_pid);
486
487 if (utv == NULL)
488 return 0;
489
490 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
491 return error;
492 TIMEVAL_TO_TIMESPEC(&atv, &ts);
493 return settime(p, &ts);
494 }
495
496 #ifndef __HAVE_TIMECOUNTER
497 int tickdelta; /* current clock skew, us. per tick */
498 long timedelta; /* unapplied time correction, us. */
499 long bigadj = 1000000; /* use 10x skew above bigadj us. */
500 #endif
501
502 int time_adjusted; /* set if an adjustment is made */
503
504 /* ARGSUSED */
505 int
506 sys_adjtime(struct lwp *l, void *v, register_t *retval)
507 {
508 struct sys_adjtime_args /* {
509 syscallarg(const struct timeval *) delta;
510 syscallarg(struct timeval *) olddelta;
511 } */ *uap = v;
512 int error;
513
514 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
515 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
516 return (error);
517
518 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
519 }
520
521 int
522 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
523 {
524 struct timeval atv;
525 int error = 0;
526
527 #ifdef __HAVE_TIMECOUNTER
528 extern int64_t time_adjtime; /* in kern_ntptime.c */
529 #else /* !__HAVE_TIMECOUNTER */
530 long ndelta, ntickdelta, odelta;
531 int s;
532 #endif /* !__HAVE_TIMECOUNTER */
533
534 #ifdef __HAVE_TIMECOUNTER
535 if (olddelta) {
536 atv.tv_sec = time_adjtime / 1000000;
537 atv.tv_usec = time_adjtime % 1000000;
538 if (atv.tv_usec < 0) {
539 atv.tv_usec += 1000000;
540 atv.tv_sec--;
541 }
542 error = copyout(&atv, olddelta, sizeof(struct timeval));
543 if (error)
544 return (error);
545 }
546
547 if (delta) {
548 error = copyin(delta, &atv, sizeof(struct timeval));
549 if (error)
550 return (error);
551
552 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
553 atv.tv_usec;
554
555 if (time_adjtime)
556 /* We need to save the system time during shutdown */
557 time_adjusted |= 1;
558 }
559 #else /* !__HAVE_TIMECOUNTER */
560 error = copyin(delta, &atv, sizeof(struct timeval));
561 if (error)
562 return (error);
563
564 /*
565 * Compute the total correction and the rate at which to apply it.
566 * Round the adjustment down to a whole multiple of the per-tick
567 * delta, so that after some number of incremental changes in
568 * hardclock(), tickdelta will become zero, lest the correction
569 * overshoot and start taking us away from the desired final time.
570 */
571 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
572 if (ndelta > bigadj || ndelta < -bigadj)
573 ntickdelta = 10 * tickadj;
574 else
575 ntickdelta = tickadj;
576 if (ndelta % ntickdelta)
577 ndelta = ndelta / ntickdelta * ntickdelta;
578
579 /*
580 * To make hardclock()'s job easier, make the per-tick delta negative
581 * if we want time to run slower; then hardclock can simply compute
582 * tick + tickdelta, and subtract tickdelta from timedelta.
583 */
584 if (ndelta < 0)
585 ntickdelta = -ntickdelta;
586 if (ndelta != 0)
587 /* We need to save the system clock time during shutdown */
588 time_adjusted |= 1;
589 s = splclock();
590 odelta = timedelta;
591 timedelta = ndelta;
592 tickdelta = ntickdelta;
593 splx(s);
594
595 if (olddelta) {
596 atv.tv_sec = odelta / 1000000;
597 atv.tv_usec = odelta % 1000000;
598 error = copyout(&atv, olddelta, sizeof(struct timeval));
599 }
600 #endif /* __HAVE_TIMECOUNTER */
601
602 return error;
603 }
604
605 /*
606 * Interval timer support. Both the BSD getitimer() family and the POSIX
607 * timer_*() family of routines are supported.
608 *
609 * All timers are kept in an array pointed to by p_timers, which is
610 * allocated on demand - many processes don't use timers at all. The
611 * first three elements in this array are reserved for the BSD timers:
612 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
613 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
614 * syscall.
615 *
616 * Realtime timers are kept in the ptimer structure as an absolute
617 * time; virtual time timers are kept as a linked list of deltas.
618 * Virtual time timers are processed in the hardclock() routine of
619 * kern_clock.c. The real time timer is processed by a callout
620 * routine, called from the softclock() routine. Since a callout may
621 * be delayed in real time due to interrupt processing in the system,
622 * it is possible for the real time timeout routine (realtimeexpire,
623 * given below), to be delayed in real time past when it is supposed
624 * to occur. It does not suffice, therefore, to reload the real timer
625 * .it_value from the real time timers .it_interval. Rather, we
626 * compute the next time in absolute time the timer should go off. */
627
628 /* Allocate a POSIX realtime timer. */
629 int
630 sys_timer_create(struct lwp *l, void *v, register_t *retval)
631 {
632 struct sys_timer_create_args /* {
633 syscallarg(clockid_t) clock_id;
634 syscallarg(struct sigevent *) evp;
635 syscallarg(timer_t *) timerid;
636 } */ *uap = v;
637
638 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
639 SCARG(uap, evp), copyin, l);
640 }
641
642 int
643 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
644 copyin_t fetch_event, struct lwp *l)
645 {
646 int error;
647 timer_t timerid;
648 struct ptimer *pt;
649 struct proc *p;
650
651 p = l->l_proc;
652
653 if (id < CLOCK_REALTIME ||
654 id > CLOCK_PROF)
655 return (EINVAL);
656
657 if (p->p_timers == NULL)
658 timers_alloc(p);
659
660 /* Find a free timer slot, skipping those reserved for setitimer(). */
661 for (timerid = 3; timerid < TIMER_MAX; timerid++)
662 if (p->p_timers->pts_timers[timerid] == NULL)
663 break;
664
665 if (timerid == TIMER_MAX)
666 return EAGAIN;
667
668 pt = pool_get(&ptimer_pool, PR_WAITOK);
669 if (evp) {
670 if (((error =
671 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
672 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
673 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
674 pool_put(&ptimer_pool, pt);
675 return (error ? error : EINVAL);
676 }
677 } else {
678 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
679 switch (id) {
680 case CLOCK_REALTIME:
681 pt->pt_ev.sigev_signo = SIGALRM;
682 break;
683 case CLOCK_VIRTUAL:
684 pt->pt_ev.sigev_signo = SIGVTALRM;
685 break;
686 case CLOCK_PROF:
687 pt->pt_ev.sigev_signo = SIGPROF;
688 break;
689 }
690 pt->pt_ev.sigev_value.sival_int = timerid;
691 }
692 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
693 pt->pt_info.ksi_errno = 0;
694 pt->pt_info.ksi_code = 0;
695 pt->pt_info.ksi_pid = p->p_pid;
696 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
697 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
698
699 pt->pt_type = id;
700 pt->pt_proc = p;
701 pt->pt_overruns = 0;
702 pt->pt_poverruns = 0;
703 pt->pt_entry = timerid;
704 timerclear(&pt->pt_time.it_value);
705 if (id == CLOCK_REALTIME)
706 callout_init(&pt->pt_ch);
707 else
708 pt->pt_active = 0;
709
710 p->p_timers->pts_timers[timerid] = pt;
711
712 return copyout(&timerid, tid, sizeof(timerid));
713 }
714
715 /* Delete a POSIX realtime timer */
716 int
717 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
718 {
719 struct sys_timer_delete_args /* {
720 syscallarg(timer_t) timerid;
721 } */ *uap = v;
722 struct proc *p = l->l_proc;
723 timer_t timerid;
724 struct ptimer *pt, *ptn;
725 int s;
726
727 timerid = SCARG(uap, timerid);
728
729 if ((p->p_timers == NULL) ||
730 (timerid < 2) || (timerid >= TIMER_MAX) ||
731 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
732 return (EINVAL);
733
734 if (pt->pt_type == CLOCK_REALTIME)
735 callout_stop(&pt->pt_ch);
736 else if (pt->pt_active) {
737 s = splclock();
738 ptn = LIST_NEXT(pt, pt_list);
739 LIST_REMOVE(pt, pt_list);
740 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
741 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
742 &ptn->pt_time.it_value);
743 splx(s);
744 }
745
746 p->p_timers->pts_timers[timerid] = NULL;
747 pool_put(&ptimer_pool, pt);
748
749 return (0);
750 }
751
752 /*
753 * Set up the given timer. The value in pt->pt_time.it_value is taken
754 * to be an absolute time for CLOCK_REALTIME timers and a relative
755 * time for virtual timers.
756 * Must be called at splclock().
757 */
758 void
759 timer_settime(struct ptimer *pt)
760 {
761 struct ptimer *ptn, *pptn;
762 struct ptlist *ptl;
763
764 if (pt->pt_type == CLOCK_REALTIME) {
765 callout_stop(&pt->pt_ch);
766 if (timerisset(&pt->pt_time.it_value)) {
767 /*
768 * Don't need to check hzto() return value, here.
769 * callout_reset() does it for us.
770 */
771 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
772 realtimerexpire, pt);
773 }
774 } else {
775 if (pt->pt_active) {
776 ptn = LIST_NEXT(pt, pt_list);
777 LIST_REMOVE(pt, pt_list);
778 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
779 timeradd(&pt->pt_time.it_value,
780 &ptn->pt_time.it_value,
781 &ptn->pt_time.it_value);
782 }
783 if (timerisset(&pt->pt_time.it_value)) {
784 if (pt->pt_type == CLOCK_VIRTUAL)
785 ptl = &pt->pt_proc->p_timers->pts_virtual;
786 else
787 ptl = &pt->pt_proc->p_timers->pts_prof;
788
789 for (ptn = LIST_FIRST(ptl), pptn = NULL;
790 ptn && timercmp(&pt->pt_time.it_value,
791 &ptn->pt_time.it_value, >);
792 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
793 timersub(&pt->pt_time.it_value,
794 &ptn->pt_time.it_value,
795 &pt->pt_time.it_value);
796
797 if (pptn)
798 LIST_INSERT_AFTER(pptn, pt, pt_list);
799 else
800 LIST_INSERT_HEAD(ptl, pt, pt_list);
801
802 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
803 timersub(&ptn->pt_time.it_value,
804 &pt->pt_time.it_value,
805 &ptn->pt_time.it_value);
806
807 pt->pt_active = 1;
808 } else
809 pt->pt_active = 0;
810 }
811 }
812
813 void
814 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
815 {
816 #ifdef __HAVE_TIMECOUNTER
817 struct timeval now;
818 #endif
819 struct ptimer *ptn;
820
821 *aitv = pt->pt_time;
822 if (pt->pt_type == CLOCK_REALTIME) {
823 /*
824 * Convert from absolute to relative time in .it_value
825 * part of real time timer. If time for real time
826 * timer has passed return 0, else return difference
827 * between current time and time for the timer to go
828 * off.
829 */
830 if (timerisset(&aitv->it_value)) {
831 #ifdef __HAVE_TIMECOUNTER
832 getmicrotime(&now);
833 if (timercmp(&aitv->it_value, &now, <))
834 timerclear(&aitv->it_value);
835 else
836 timersub(&aitv->it_value, &now,
837 &aitv->it_value);
838 #else /* !__HAVE_TIMECOUNTER */
839 if (timercmp(&aitv->it_value, &time, <))
840 timerclear(&aitv->it_value);
841 else
842 timersub(&aitv->it_value, &time,
843 &aitv->it_value);
844 #endif /* !__HAVE_TIMECOUNTER */
845 }
846 } else if (pt->pt_active) {
847 if (pt->pt_type == CLOCK_VIRTUAL)
848 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
849 else
850 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
851 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
852 timeradd(&aitv->it_value,
853 &ptn->pt_time.it_value, &aitv->it_value);
854 KASSERT(ptn != NULL); /* pt should be findable on the list */
855 } else
856 timerclear(&aitv->it_value);
857 }
858
859
860
861 /* Set and arm a POSIX realtime timer */
862 int
863 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
864 {
865 struct sys_timer_settime_args /* {
866 syscallarg(timer_t) timerid;
867 syscallarg(int) flags;
868 syscallarg(const struct itimerspec *) value;
869 syscallarg(struct itimerspec *) ovalue;
870 } */ *uap = v;
871 int error;
872 struct itimerspec value, ovalue, *ovp = NULL;
873
874 if ((error = copyin(SCARG(uap, value), &value,
875 sizeof(struct itimerspec))) != 0)
876 return (error);
877
878 if (SCARG(uap, ovalue))
879 ovp = &ovalue;
880
881 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
882 SCARG(uap, flags), l->l_proc)) != 0)
883 return error;
884
885 if (ovp)
886 return copyout(&ovalue, SCARG(uap, ovalue),
887 sizeof(struct itimerspec));
888 return 0;
889 }
890
891 int
892 dotimer_settime(int timerid, struct itimerspec *value,
893 struct itimerspec *ovalue, int flags, struct proc *p)
894 {
895 #ifdef __HAVE_TIMECOUNTER
896 struct timeval now;
897 #endif
898 struct itimerval val, oval;
899 struct ptimer *pt;
900 int s;
901
902 if ((p->p_timers == NULL) ||
903 (timerid < 2) || (timerid >= TIMER_MAX) ||
904 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
905 return (EINVAL);
906
907 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
908 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
909 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
910 return (EINVAL);
911
912 oval = pt->pt_time;
913 pt->pt_time = val;
914
915 s = splclock();
916 /*
917 * If we've been passed a relative time for a realtime timer,
918 * convert it to absolute; if an absolute time for a virtual
919 * timer, convert it to relative and make sure we don't set it
920 * to zero, which would cancel the timer, or let it go
921 * negative, which would confuse the comparison tests.
922 */
923 if (timerisset(&pt->pt_time.it_value)) {
924 if (pt->pt_type == CLOCK_REALTIME) {
925 #ifdef __HAVE_TIMECOUNTER
926 if ((flags & TIMER_ABSTIME) == 0) {
927 getmicrotime(&now);
928 timeradd(&pt->pt_time.it_value, &now,
929 &pt->pt_time.it_value);
930 }
931 #else /* !__HAVE_TIMECOUNTER */
932 if ((flags & TIMER_ABSTIME) == 0)
933 timeradd(&pt->pt_time.it_value, &time,
934 &pt->pt_time.it_value);
935 #endif /* !__HAVE_TIMECOUNTER */
936 } else {
937 if ((flags & TIMER_ABSTIME) != 0) {
938 #ifdef __HAVE_TIMECOUNTER
939 getmicrotime(&now);
940 timersub(&pt->pt_time.it_value, &now,
941 &pt->pt_time.it_value);
942 #else /* !__HAVE_TIMECOUNTER */
943 timersub(&pt->pt_time.it_value, &time,
944 &pt->pt_time.it_value);
945 #endif /* !__HAVE_TIMECOUNTER */
946 if (!timerisset(&pt->pt_time.it_value) ||
947 pt->pt_time.it_value.tv_sec < 0) {
948 pt->pt_time.it_value.tv_sec = 0;
949 pt->pt_time.it_value.tv_usec = 1;
950 }
951 }
952 }
953 }
954
955 timer_settime(pt);
956 splx(s);
957
958 if (ovalue) {
959 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
960 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
961 }
962
963 return (0);
964 }
965
966 /* Return the time remaining until a POSIX timer fires. */
967 int
968 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
969 {
970 struct sys_timer_gettime_args /* {
971 syscallarg(timer_t) timerid;
972 syscallarg(struct itimerspec *) value;
973 } */ *uap = v;
974 struct itimerspec its;
975 int error;
976
977 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
978 &its)) != 0)
979 return error;
980
981 return copyout(&its, SCARG(uap, value), sizeof(its));
982 }
983
984 int
985 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
986 {
987 int s;
988 struct ptimer *pt;
989 struct itimerval aitv;
990
991 if ((p->p_timers == NULL) ||
992 (timerid < 2) || (timerid >= TIMER_MAX) ||
993 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
994 return (EINVAL);
995
996 s = splclock();
997 timer_gettime(pt, &aitv);
998 splx(s);
999
1000 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1001 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * Return the count of the number of times a periodic timer expired
1008 * while a notification was already pending. The counter is reset when
1009 * a timer expires and a notification can be posted.
1010 */
1011 int
1012 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1013 {
1014 struct sys_timer_getoverrun_args /* {
1015 syscallarg(timer_t) timerid;
1016 } */ *uap = v;
1017 struct proc *p = l->l_proc;
1018 int timerid;
1019 struct ptimer *pt;
1020
1021 timerid = SCARG(uap, timerid);
1022
1023 if ((p->p_timers == NULL) ||
1024 (timerid < 2) || (timerid >= TIMER_MAX) ||
1025 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1026 return (EINVAL);
1027
1028 *retval = pt->pt_poverruns;
1029
1030 return (0);
1031 }
1032
1033 /* Glue function that triggers an upcall; called from userret(). */
1034 void
1035 timerupcall(struct lwp *l)
1036 {
1037 struct ptimers *pt = l->l_proc->p_timers;
1038 unsigned int i, fired, done;
1039
1040 KDASSERT(l->l_proc->p_sa);
1041 /* Bail out if we do not own the virtual processor */
1042 if (l->l_savp->savp_lwp != l)
1043 return ;
1044
1045 KERNEL_LOCK(1, l);
1046
1047 fired = pt->pts_fired;
1048 done = 0;
1049 while ((i = ffs(fired)) != 0) {
1050 siginfo_t *si;
1051 int mask = 1 << --i;
1052 int f;
1053
1054 lwp_lock(l);
1055 f = l->l_flag & L_SA;
1056 l->l_flag &= ~L_SA;
1057 lwp_unlock(l);
1058 si = siginfo_alloc(PR_WAITOK);
1059 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1060 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1061 sizeof(*si), si, siginfo_free) != 0) {
1062 siginfo_free(si);
1063 /* XXX What do we do here?? */
1064 } else
1065 done |= mask;
1066 fired &= ~mask;
1067 lwp_lock(l);
1068 l->l_flag |= f;
1069 lwp_unlock(l);
1070 }
1071 pt->pts_fired &= ~done;
1072 if (pt->pts_fired == 0)
1073 l->l_proc->p_timerpend = 0;
1074
1075 KERNEL_UNLOCK_LAST(l);
1076 }
1077
1078 /*
1079 * Real interval timer expired:
1080 * send process whose timer expired an alarm signal.
1081 * If time is not set up to reload, then just return.
1082 * Else compute next time timer should go off which is > current time.
1083 * This is where delay in processing this timeout causes multiple
1084 * SIGALRM calls to be compressed into one.
1085 */
1086 void
1087 realtimerexpire(void *arg)
1088 {
1089 #ifdef __HAVE_TIMECOUNTER
1090 struct timeval now;
1091 #endif
1092 struct ptimer *pt;
1093 int s;
1094
1095 pt = (struct ptimer *)arg;
1096
1097 itimerfire(pt);
1098
1099 if (!timerisset(&pt->pt_time.it_interval)) {
1100 timerclear(&pt->pt_time.it_value);
1101 return;
1102 }
1103 #ifdef __HAVE_TIMECOUNTER
1104 for (;;) {
1105 s = splclock(); /* XXX need spl now? */
1106 timeradd(&pt->pt_time.it_value,
1107 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1108 getmicrotime(&now);
1109 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1110 /*
1111 * Don't need to check hzto() return value, here.
1112 * callout_reset() does it for us.
1113 */
1114 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1115 realtimerexpire, pt);
1116 splx(s);
1117 return;
1118 }
1119 splx(s);
1120 pt->pt_overruns++;
1121 }
1122 #else /* !__HAVE_TIMECOUNTER */
1123 for (;;) {
1124 s = splclock();
1125 timeradd(&pt->pt_time.it_value,
1126 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1127 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1128 /*
1129 * Don't need to check hzto() return value, here.
1130 * callout_reset() does it for us.
1131 */
1132 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1133 realtimerexpire, pt);
1134 splx(s);
1135 return;
1136 }
1137 splx(s);
1138 pt->pt_overruns++;
1139 }
1140 #endif /* !__HAVE_TIMECOUNTER */
1141 }
1142
1143 /* BSD routine to get the value of an interval timer. */
1144 /* ARGSUSED */
1145 int
1146 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1147 {
1148 struct sys_getitimer_args /* {
1149 syscallarg(int) which;
1150 syscallarg(struct itimerval *) itv;
1151 } */ *uap = v;
1152 struct proc *p = l->l_proc;
1153 struct itimerval aitv;
1154 int error;
1155
1156 error = dogetitimer(p, SCARG(uap, which), &aitv);
1157 if (error)
1158 return error;
1159 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1160 }
1161
1162 int
1163 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1164 {
1165 int s;
1166
1167 if ((u_int)which > ITIMER_PROF)
1168 return (EINVAL);
1169
1170 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1171 timerclear(&itvp->it_value);
1172 timerclear(&itvp->it_interval);
1173 } else {
1174 s = splclock();
1175 timer_gettime(p->p_timers->pts_timers[which], itvp);
1176 splx(s);
1177 }
1178
1179 return 0;
1180 }
1181
1182 /* BSD routine to set/arm an interval timer. */
1183 /* ARGSUSED */
1184 int
1185 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1186 {
1187 struct sys_setitimer_args /* {
1188 syscallarg(int) which;
1189 syscallarg(const struct itimerval *) itv;
1190 syscallarg(struct itimerval *) oitv;
1191 } */ *uap = v;
1192 struct proc *p = l->l_proc;
1193 int which = SCARG(uap, which);
1194 struct sys_getitimer_args getargs;
1195 const struct itimerval *itvp;
1196 struct itimerval aitv;
1197 int error;
1198
1199 if ((u_int)which > ITIMER_PROF)
1200 return (EINVAL);
1201 itvp = SCARG(uap, itv);
1202 if (itvp &&
1203 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1204 return (error);
1205 if (SCARG(uap, oitv) != NULL) {
1206 SCARG(&getargs, which) = which;
1207 SCARG(&getargs, itv) = SCARG(uap, oitv);
1208 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1209 return (error);
1210 }
1211 if (itvp == 0)
1212 return (0);
1213
1214 return dosetitimer(p, which, &aitv);
1215 }
1216
1217 int
1218 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1219 {
1220 #ifdef __HAVE_TIMECOUNTER
1221 struct timeval now;
1222 #endif
1223 struct ptimer *pt;
1224 int s;
1225
1226 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1227 return (EINVAL);
1228
1229 /*
1230 * Don't bother allocating data structures if the process just
1231 * wants to clear the timer.
1232 */
1233 if (!timerisset(&itvp->it_value) &&
1234 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1235 return (0);
1236
1237 if (p->p_timers == NULL)
1238 timers_alloc(p);
1239 if (p->p_timers->pts_timers[which] == NULL) {
1240 pt = pool_get(&ptimer_pool, PR_WAITOK);
1241 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1242 pt->pt_ev.sigev_value.sival_int = which;
1243 pt->pt_overruns = 0;
1244 pt->pt_proc = p;
1245 pt->pt_type = which;
1246 pt->pt_entry = which;
1247 switch (which) {
1248 case ITIMER_REAL:
1249 callout_init(&pt->pt_ch);
1250 pt->pt_ev.sigev_signo = SIGALRM;
1251 break;
1252 case ITIMER_VIRTUAL:
1253 pt->pt_active = 0;
1254 pt->pt_ev.sigev_signo = SIGVTALRM;
1255 break;
1256 case ITIMER_PROF:
1257 pt->pt_active = 0;
1258 pt->pt_ev.sigev_signo = SIGPROF;
1259 break;
1260 }
1261 } else
1262 pt = p->p_timers->pts_timers[which];
1263
1264 pt->pt_time = *itvp;
1265 p->p_timers->pts_timers[which] = pt;
1266
1267 s = splclock();
1268 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1269 /* Convert to absolute time */
1270 #ifdef __HAVE_TIMECOUNTER
1271 /* XXX need to wrap in splclock for timecounters case? */
1272 getmicrotime(&now);
1273 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1274 #else /* !__HAVE_TIMECOUNTER */
1275 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1276 #endif /* !__HAVE_TIMECOUNTER */
1277 }
1278 timer_settime(pt);
1279 splx(s);
1280
1281 return (0);
1282 }
1283
1284 /* Utility routines to manage the array of pointers to timers. */
1285 void
1286 timers_alloc(struct proc *p)
1287 {
1288 int i;
1289 struct ptimers *pts;
1290
1291 pts = pool_get(&ptimers_pool, PR_WAITOK);
1292 LIST_INIT(&pts->pts_virtual);
1293 LIST_INIT(&pts->pts_prof);
1294 for (i = 0; i < TIMER_MAX; i++)
1295 pts->pts_timers[i] = NULL;
1296 pts->pts_fired = 0;
1297 p->p_timers = pts;
1298 }
1299
1300 /*
1301 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1302 * then clean up all timers and free all the data structures. If
1303 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1304 * by timer_create(), not the BSD setitimer() timers, and only free the
1305 * structure if none of those remain.
1306 */
1307 void
1308 timers_free(struct proc *p, int which)
1309 {
1310 int i, s;
1311 struct ptimers *pts;
1312 struct ptimer *pt, *ptn;
1313 struct timeval tv;
1314
1315 if (p->p_timers) {
1316 pts = p->p_timers;
1317 if (which == TIMERS_ALL)
1318 i = 0;
1319 else {
1320 s = splclock();
1321 timerclear(&tv);
1322 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1323 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1324 ptn = LIST_NEXT(ptn, pt_list))
1325 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1326 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1327 if (ptn) {
1328 timeradd(&tv, &ptn->pt_time.it_value,
1329 &ptn->pt_time.it_value);
1330 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1331 ptn, pt_list);
1332 }
1333
1334 timerclear(&tv);
1335 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1336 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1337 ptn = LIST_NEXT(ptn, pt_list))
1338 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1339 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1340 if (ptn) {
1341 timeradd(&tv, &ptn->pt_time.it_value,
1342 &ptn->pt_time.it_value);
1343 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1344 pt_list);
1345 }
1346 splx(s);
1347 i = 3;
1348 }
1349 for ( ; i < TIMER_MAX; i++)
1350 if ((pt = pts->pts_timers[i]) != NULL) {
1351 if (pt->pt_type == CLOCK_REALTIME)
1352 callout_stop(&pt->pt_ch);
1353 pts->pts_timers[i] = NULL;
1354 pool_put(&ptimer_pool, pt);
1355 }
1356 if ((pts->pts_timers[0] == NULL) &&
1357 (pts->pts_timers[1] == NULL) &&
1358 (pts->pts_timers[2] == NULL)) {
1359 p->p_timers = NULL;
1360 pool_put(&ptimers_pool, pts);
1361 }
1362 }
1363 }
1364
1365 /*
1366 * Check that a proposed value to load into the .it_value or
1367 * .it_interval part of an interval timer is acceptable, and
1368 * fix it to have at least minimal value (i.e. if it is less
1369 * than the resolution of the clock, round it up.)
1370 */
1371 int
1372 itimerfix(struct timeval *tv)
1373 {
1374
1375 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1376 return (EINVAL);
1377 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1378 tv->tv_usec = tick;
1379 return (0);
1380 }
1381
1382 #ifdef __HAVE_TIMECOUNTER
1383 int
1384 itimespecfix(struct timespec *ts)
1385 {
1386
1387 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1388 return (EINVAL);
1389 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1390 ts->tv_nsec = tick * 1000;
1391 return (0);
1392 }
1393 #endif /* __HAVE_TIMECOUNTER */
1394
1395 /*
1396 * Decrement an interval timer by a specified number
1397 * of microseconds, which must be less than a second,
1398 * i.e. < 1000000. If the timer expires, then reload
1399 * it. In this case, carry over (usec - old value) to
1400 * reduce the value reloaded into the timer so that
1401 * the timer does not drift. This routine assumes
1402 * that it is called in a context where the timers
1403 * on which it is operating cannot change in value.
1404 */
1405 int
1406 itimerdecr(struct ptimer *pt, int usec)
1407 {
1408 struct itimerval *itp;
1409
1410 itp = &pt->pt_time;
1411 if (itp->it_value.tv_usec < usec) {
1412 if (itp->it_value.tv_sec == 0) {
1413 /* expired, and already in next interval */
1414 usec -= itp->it_value.tv_usec;
1415 goto expire;
1416 }
1417 itp->it_value.tv_usec += 1000000;
1418 itp->it_value.tv_sec--;
1419 }
1420 itp->it_value.tv_usec -= usec;
1421 usec = 0;
1422 if (timerisset(&itp->it_value))
1423 return (1);
1424 /* expired, exactly at end of interval */
1425 expire:
1426 if (timerisset(&itp->it_interval)) {
1427 itp->it_value = itp->it_interval;
1428 itp->it_value.tv_usec -= usec;
1429 if (itp->it_value.tv_usec < 0) {
1430 itp->it_value.tv_usec += 1000000;
1431 itp->it_value.tv_sec--;
1432 }
1433 timer_settime(pt);
1434 } else
1435 itp->it_value.tv_usec = 0; /* sec is already 0 */
1436 return (0);
1437 }
1438
1439 void
1440 itimerfire(struct ptimer *pt)
1441 {
1442 struct proc *p = pt->pt_proc;
1443 struct sadata_vp *vp;
1444 unsigned int i;
1445
1446 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1447 /*
1448 * No RT signal infrastructure exists at this time;
1449 * just post the signal number and throw away the
1450 * value.
1451 */
1452 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1453 pt->pt_overruns++;
1454 else {
1455 ksiginfo_t ksi;
1456 KSI_INIT(&ksi);
1457 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1458 ksi.ksi_code = SI_TIMER;
1459 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1460 pt->pt_poverruns = pt->pt_overruns;
1461 pt->pt_overruns = 0;
1462 mutex_enter(&proclist_mutex);
1463 kpsignal(p, &ksi, NULL);
1464 mutex_exit(&proclist_mutex);
1465 }
1466 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_sflag & PS_SA)) {
1467 /* Cause the process to generate an upcall when it returns. */
1468 if (!p->p_timerpend) {
1469 /*
1470 * XXX stop signals can be processed inside tsleep,
1471 * which can be inside sa_yield's inner loop, which
1472 * makes testing for sa_idle alone insuffucent to
1473 * determine if we really should call setrunnable.
1474 */
1475 pt->pt_poverruns = pt->pt_overruns;
1476 pt->pt_overruns = 0;
1477 i = 1 << pt->pt_entry;
1478 p->p_timers->pts_fired = i;
1479 p->p_timerpend = 1;
1480
1481 mutex_enter(&p->p_smutex);
1482 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1483 lwp_need_userret(vp->savp_lwp);
1484 lwp_lock(vp->savp_lwp);
1485 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1486 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1487 lwp_unlock(vp->savp_lwp);
1488 wakeup(vp->savp_lwp);
1489 break;
1490 }
1491 lwp_unlock(vp->savp_lwp);
1492 }
1493 mutex_exit(&p->p_smutex);
1494 } else {
1495 i = 1 << pt->pt_entry;
1496 if ((p->p_timers->pts_fired & i) == 0) {
1497 pt->pt_poverruns = pt->pt_overruns;
1498 pt->pt_overruns = 0;
1499 p->p_timers->pts_fired |= i;
1500 } else
1501 pt->pt_overruns++;
1502 }
1503 }
1504 }
1505
1506 /*
1507 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1508 * for usage and rationale.
1509 */
1510 int
1511 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1512 {
1513 struct timeval tv, delta;
1514 int rv = 0;
1515 #ifndef __HAVE_TIMECOUNTER
1516 int s;
1517 #endif
1518
1519 #ifdef __HAVE_TIMECOUNTER
1520 getmicrouptime(&tv);
1521 #else /* !__HAVE_TIMECOUNTER */
1522 s = splclock();
1523 tv = mono_time;
1524 splx(s);
1525 #endif /* !__HAVE_TIMECOUNTER */
1526 timersub(&tv, lasttime, &delta);
1527
1528 /*
1529 * check for 0,0 is so that the message will be seen at least once,
1530 * even if interval is huge.
1531 */
1532 if (timercmp(&delta, mininterval, >=) ||
1533 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1534 *lasttime = tv;
1535 rv = 1;
1536 }
1537
1538 return (rv);
1539 }
1540
1541 /*
1542 * ppsratecheck(): packets (or events) per second limitation.
1543 */
1544 int
1545 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1546 {
1547 struct timeval tv, delta;
1548 int rv;
1549 #ifndef __HAVE_TIMECOUNTER
1550 int s;
1551 #endif
1552
1553 #ifdef __HAVE_TIMECOUNTER
1554 getmicrouptime(&tv);
1555 #else /* !__HAVE_TIMECOUNTER */
1556 s = splclock();
1557 tv = mono_time;
1558 splx(s);
1559 #endif /* !__HAVE_TIMECOUNTER */
1560 timersub(&tv, lasttime, &delta);
1561
1562 /*
1563 * check for 0,0 is so that the message will be seen at least once.
1564 * if more than one second have passed since the last update of
1565 * lasttime, reset the counter.
1566 *
1567 * we do increment *curpps even in *curpps < maxpps case, as some may
1568 * try to use *curpps for stat purposes as well.
1569 */
1570 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1571 delta.tv_sec >= 1) {
1572 *lasttime = tv;
1573 *curpps = 0;
1574 }
1575 if (maxpps < 0)
1576 rv = 1;
1577 else if (*curpps < maxpps)
1578 rv = 1;
1579 else
1580 rv = 0;
1581
1582 #if 1 /*DIAGNOSTIC?*/
1583 /* be careful about wrap-around */
1584 if (*curpps + 1 > *curpps)
1585 *curpps = *curpps + 1;
1586 #else
1587 /*
1588 * assume that there's not too many calls to this function.
1589 * not sure if the assumption holds, as it depends on *caller's*
1590 * behavior, not the behavior of this function.
1591 * IMHO it is wrong to make assumption on the caller's behavior,
1592 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1593 */
1594 *curpps = *curpps + 1;
1595 #endif
1596
1597 return (rv);
1598 }
1599