kern_time.c revision 1.108 1 /* $NetBSD: kern_time.c,v 1.108 2006/10/12 01:32:17 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.108 2006/10/12 01:32:17 christos Exp $");
72
73 #include "fs_nfs.h"
74 #include "opt_nfs.h"
75 #include "opt_nfsserver.h"
76
77 #include <sys/param.h>
78 #include <sys/resourcevar.h>
79 #include <sys/kernel.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/sa.h>
83 #include <sys/savar.h>
84 #include <sys/vnode.h>
85 #include <sys/signalvar.h>
86 #include <sys/syslog.h>
87 #ifdef __HAVE_TIMECOUNTER
88 #include <sys/timetc.h>
89 #else /* !__HAVE_TIMECOUNTER */
90 #include <sys/timevar.h>
91 #endif /* !__HAVE_TIMECOUNTER */
92 #include <sys/kauth.h>
93
94 #include <sys/mount.h>
95 #include <sys/syscallargs.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #if defined(NFS) || defined(NFSSERVER)
100 #include <nfs/rpcv2.h>
101 #include <nfs/nfsproto.h>
102 #include <nfs/nfs.h>
103 #include <nfs/nfs_var.h>
104 #endif
105
106 #include <machine/cpu.h>
107
108 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 &pool_allocator_nointr);
110 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 &pool_allocator_nointr);
112
113 static void timerupcall(struct lwp *, void *);
114 #ifdef __HAVE_TIMECOUNTER
115 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
116 #endif /* __HAVE_TIMECOUNTER */
117
118 /* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers. Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127 /* This function is used by clock_settime and settimeofday */
128 int
129 settime(struct proc *p, struct timespec *ts)
130 {
131 struct timeval delta, tv;
132 #ifdef __HAVE_TIMECOUNTER
133 struct timeval now;
134 struct timespec ts1;
135 #endif /* !__HAVE_TIMECOUNTER */
136 struct cpu_info *ci;
137 int s;
138
139 /*
140 * Don't allow the time to be set forward so far it will wrap
141 * and become negative, thus allowing an attacker to bypass
142 * the next check below. The cutoff is 1 year before rollover
143 * occurs, so even if the attacker uses adjtime(2) to move
144 * the time past the cutoff, it will take a very long time
145 * to get to the wrap point.
146 *
147 * XXX: we check against INT_MAX since on 64-bit
148 * platforms, sizeof(int) != sizeof(long) and
149 * time_t is 32 bits even when atv.tv_sec is 64 bits.
150 */
151 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152 struct proc *pp = p->p_pptr;
153 log(LOG_WARNING, "pid %d (%s) "
154 "invoked by uid %d ppid %d (%s) "
155 "tried to set clock forward to %ld\n",
156 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158 return (EPERM);
159 }
160 TIMESPEC_TO_TIMEVAL(&tv, ts);
161
162 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163 s = splclock();
164 #ifdef __HAVE_TIMECOUNTER
165 microtime(&now);
166 timersub(&tv, &now, &delta);
167 #else /* !__HAVE_TIMECOUNTER */
168 timersub(&tv, &time, &delta);
169 #endif /* !__HAVE_TIMECOUNTER */
170 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
171 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
172 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
173 splx(s);
174 return (EPERM);
175 }
176 #ifdef notyet
177 if ((delta.tv_sec < 86400) && securelevel > 0) {
178 splx(s);
179 return (EPERM);
180 }
181 #endif
182
183 #ifdef __HAVE_TIMECOUNTER
184 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
185 tc_setclock(&ts1);
186 #else /* !__HAVE_TIMECOUNTER */
187 time = tv;
188 #endif /* !__HAVE_TIMECOUNTER */
189
190 (void) spllowersoftclock();
191
192 timeradd(&boottime, &delta, &boottime);
193
194 /*
195 * XXXSMP
196 * This is wrong. We should traverse a list of all
197 * CPUs and add the delta to the runtime of those
198 * CPUs which have a process on them.
199 */
200 ci = curcpu();
201 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
202 &ci->ci_schedstate.spc_runtime);
203 #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
204 nqnfs_lease_updatetime(delta.tv_sec);
205 #endif
206 splx(s);
207 resettodr();
208 return (0);
209 }
210
211 /* ARGSUSED */
212 int
213 sys_clock_gettime(struct lwp *l __unused, void *v, register_t *retval __unused)
214 {
215 struct sys_clock_gettime_args /* {
216 syscallarg(clockid_t) clock_id;
217 syscallarg(struct timespec *) tp;
218 } */ *uap = v;
219 clockid_t clock_id;
220 struct timespec ats;
221
222 clock_id = SCARG(uap, clock_id);
223 switch (clock_id) {
224 case CLOCK_REALTIME:
225 nanotime(&ats);
226 break;
227 case CLOCK_MONOTONIC:
228 #ifdef __HAVE_TIMECOUNTER
229 nanouptime(&ats);
230 #else /* !__HAVE_TIMECOUNTER */
231 {
232 int s;
233
234 /* XXX "hz" granularity */
235 s = splclock();
236 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
237 splx(s);
238 }
239 #endif /* !__HAVE_TIMECOUNTER */
240 break;
241 default:
242 return (EINVAL);
243 }
244
245 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
246 }
247
248 /* ARGSUSED */
249 int
250 sys_clock_settime(struct lwp *l, void *v, register_t *retval __unused)
251 {
252 struct sys_clock_settime_args /* {
253 syscallarg(clockid_t) clock_id;
254 syscallarg(const struct timespec *) tp;
255 } */ *uap = v;
256 int error;
257
258 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
259 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
260 return (error);
261
262 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
263 }
264
265
266 int
267 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
268 {
269 struct timespec ats;
270 int error;
271
272 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
273 return (error);
274
275 switch (clock_id) {
276 case CLOCK_REALTIME:
277 if ((error = settime(p, &ats)) != 0)
278 return (error);
279 break;
280 case CLOCK_MONOTONIC:
281 return (EINVAL); /* read-only clock */
282 default:
283 return (EINVAL);
284 }
285
286 return 0;
287 }
288
289 int
290 sys_clock_getres(struct lwp *l __unused, void *v, register_t *retval __unused)
291 {
292 struct sys_clock_getres_args /* {
293 syscallarg(clockid_t) clock_id;
294 syscallarg(struct timespec *) tp;
295 } */ *uap = v;
296 clockid_t clock_id;
297 struct timespec ts;
298 int error = 0;
299
300 clock_id = SCARG(uap, clock_id);
301 switch (clock_id) {
302 case CLOCK_REALTIME:
303 case CLOCK_MONOTONIC:
304 ts.tv_sec = 0;
305 #ifdef __HAVE_TIMECOUNTER
306 if (tc_getfrequency() > 1000000000)
307 ts.tv_nsec = 1;
308 else
309 ts.tv_nsec = 1000000000 / tc_getfrequency();
310 #else /* !__HAVE_TIMECOUNTER */
311 ts.tv_nsec = 1000000000 / hz;
312 #endif /* !__HAVE_TIMECOUNTER */
313 break;
314 default:
315 return (EINVAL);
316 }
317
318 if (SCARG(uap, tp))
319 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
320
321 return error;
322 }
323
324 /* ARGSUSED */
325 int
326 sys_nanosleep(struct lwp *l __unused, void *v, register_t *retval __unused)
327 {
328 #ifdef __HAVE_TIMECOUNTER
329 static int nanowait;
330 struct sys_nanosleep_args/* {
331 syscallarg(struct timespec *) rqtp;
332 syscallarg(struct timespec *) rmtp;
333 } */ *uap = v;
334 struct timespec rmt, rqt;
335 int error, timo;
336
337 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
338 if (error)
339 return (error);
340
341 if (itimespecfix(&rqt))
342 return (EINVAL);
343
344 timo = tstohz(&rqt);
345 /*
346 * Avoid inadvertantly sleeping forever
347 */
348 if (timo == 0)
349 timo = 1;
350
351 getnanouptime(&rmt);
352
353 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
354 if (error == ERESTART)
355 error = EINTR;
356 if (error == EWOULDBLOCK)
357 error = 0;
358
359 if (SCARG(uap, rmtp)) {
360 int error1;
361 struct timespec rmtend;
362
363 getnanouptime(&rmtend);
364
365 timespecsub(&rmtend, &rmt, &rmt);
366 timespecsub(&rqt, &rmt, &rmt);
367 if (rmt.tv_sec < 0)
368 timespecclear(&rmt);
369
370 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
371 sizeof(rmt));
372 if (error1)
373 return (error1);
374 }
375
376 return error;
377 #else /* !__HAVE_TIMECOUNTER */
378 static int nanowait;
379 struct sys_nanosleep_args/* {
380 syscallarg(struct timespec *) rqtp;
381 syscallarg(struct timespec *) rmtp;
382 } */ *uap = v;
383 struct timespec rqt;
384 struct timespec rmt;
385 struct timeval atv, utv;
386 int error, s, timo;
387
388 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
389 if (error)
390 return (error);
391
392 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
393 if (itimerfix(&atv))
394 return (EINVAL);
395
396 s = splclock();
397 timeradd(&atv,&time,&atv);
398 timo = hzto(&atv);
399 /*
400 * Avoid inadvertantly sleeping forever
401 */
402 if (timo == 0)
403 timo = 1;
404 splx(s);
405
406 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
407 if (error == ERESTART)
408 error = EINTR;
409 if (error == EWOULDBLOCK)
410 error = 0;
411
412 if (SCARG(uap, rmtp)) {
413 int error1;
414
415 s = splclock();
416 utv = time;
417 splx(s);
418
419 timersub(&atv, &utv, &utv);
420 if (utv.tv_sec < 0)
421 timerclear(&utv);
422
423 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
424 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
425 sizeof(rmt));
426 if (error1)
427 return (error1);
428 }
429
430 return error;
431 #endif /* !__HAVE_TIMECOUNTER */
432 }
433
434 /* ARGSUSED */
435 int
436 sys_gettimeofday(struct lwp *l __unused, void *v, register_t *retval __unused)
437 {
438 struct sys_gettimeofday_args /* {
439 syscallarg(struct timeval *) tp;
440 syscallarg(void *) tzp; really "struct timezone *"
441 } */ *uap = v;
442 struct timeval atv;
443 int error = 0;
444 struct timezone tzfake;
445
446 if (SCARG(uap, tp)) {
447 microtime(&atv);
448 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
449 if (error)
450 return (error);
451 }
452 if (SCARG(uap, tzp)) {
453 /*
454 * NetBSD has no kernel notion of time zone, so we just
455 * fake up a timezone struct and return it if demanded.
456 */
457 tzfake.tz_minuteswest = 0;
458 tzfake.tz_dsttime = 0;
459 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
460 }
461 return (error);
462 }
463
464 /* ARGSUSED */
465 int
466 sys_settimeofday(struct lwp *l, void *v, register_t *retval __unused)
467 {
468 struct sys_settimeofday_args /* {
469 syscallarg(const struct timeval *) tv;
470 syscallarg(const void *) tzp; really "const struct timezone *"
471 } */ *uap = v;
472 int error;
473
474 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
475 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
476 return (error);
477
478 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
479 }
480
481 int
482 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
483 struct proc *p)
484 {
485 struct timeval atv;
486 struct timespec ts;
487 int error;
488
489 /* Verify all parameters before changing time. */
490 /*
491 * NetBSD has no kernel notion of time zone, and only an
492 * obsolete program would try to set it, so we log a warning.
493 */
494 if (utzp)
495 log(LOG_WARNING, "pid %d attempted to set the "
496 "(obsolete) kernel time zone\n", p->p_pid);
497
498 if (utv == NULL)
499 return 0;
500
501 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
502 return error;
503 TIMEVAL_TO_TIMESPEC(&atv, &ts);
504 return settime(p, &ts);
505 }
506
507 #ifndef __HAVE_TIMECOUNTER
508 int tickdelta; /* current clock skew, us. per tick */
509 long timedelta; /* unapplied time correction, us. */
510 long bigadj = 1000000; /* use 10x skew above bigadj us. */
511 #endif
512
513 int time_adjusted; /* set if an adjustment is made */
514
515 /* ARGSUSED */
516 int
517 sys_adjtime(struct lwp *l, void *v, register_t *retval __unused)
518 {
519 struct sys_adjtime_args /* {
520 syscallarg(const struct timeval *) delta;
521 syscallarg(struct timeval *) olddelta;
522 } */ *uap = v;
523 int error;
524
525 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
526 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
527 return (error);
528
529 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
530 }
531
532 int
533 adjtime1(const struct timeval *delta, struct timeval *olddelta,
534 struct proc *p __unused)
535 {
536 struct timeval atv;
537 int error = 0;
538
539 #ifdef __HAVE_TIMECOUNTER
540 extern int64_t time_adjtime; /* in kern_ntptime.c */
541 #else /* !__HAVE_TIMECOUNTER */
542 long ndelta, ntickdelta, odelta;
543 int s;
544 #endif /* !__HAVE_TIMECOUNTER */
545
546 #ifdef __HAVE_TIMECOUNTER
547 if (olddelta) {
548 atv.tv_sec = time_adjtime / 1000000;
549 atv.tv_usec = time_adjtime % 1000000;
550 if (atv.tv_usec < 0) {
551 atv.tv_usec += 1000000;
552 atv.tv_sec--;
553 }
554 error = copyout(&atv, olddelta, sizeof(struct timeval));
555 if (error)
556 return (error);
557 }
558
559 if (delta) {
560 error = copyin(delta, &atv, sizeof(struct timeval));
561 if (error)
562 return (error);
563
564 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
565 atv.tv_usec;
566
567 if (time_adjtime)
568 /* We need to save the system time during shutdown */
569 time_adjusted |= 1;
570 }
571 #else /* !__HAVE_TIMECOUNTER */
572 error = copyin(delta, &atv, sizeof(struct timeval));
573 if (error)
574 return (error);
575
576 /*
577 * Compute the total correction and the rate at which to apply it.
578 * Round the adjustment down to a whole multiple of the per-tick
579 * delta, so that after some number of incremental changes in
580 * hardclock(), tickdelta will become zero, lest the correction
581 * overshoot and start taking us away from the desired final time.
582 */
583 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
584 if (ndelta > bigadj || ndelta < -bigadj)
585 ntickdelta = 10 * tickadj;
586 else
587 ntickdelta = tickadj;
588 if (ndelta % ntickdelta)
589 ndelta = ndelta / ntickdelta * ntickdelta;
590
591 /*
592 * To make hardclock()'s job easier, make the per-tick delta negative
593 * if we want time to run slower; then hardclock can simply compute
594 * tick + tickdelta, and subtract tickdelta from timedelta.
595 */
596 if (ndelta < 0)
597 ntickdelta = -ntickdelta;
598 if (ndelta != 0)
599 /* We need to save the system clock time during shutdown */
600 time_adjusted |= 1;
601 s = splclock();
602 odelta = timedelta;
603 timedelta = ndelta;
604 tickdelta = ntickdelta;
605 splx(s);
606
607 if (olddelta) {
608 atv.tv_sec = odelta / 1000000;
609 atv.tv_usec = odelta % 1000000;
610 error = copyout(&atv, olddelta, sizeof(struct timeval));
611 }
612 #endif /* __HAVE_TIMECOUNTER */
613
614 return error;
615 }
616
617 /*
618 * Interval timer support. Both the BSD getitimer() family and the POSIX
619 * timer_*() family of routines are supported.
620 *
621 * All timers are kept in an array pointed to by p_timers, which is
622 * allocated on demand - many processes don't use timers at all. The
623 * first three elements in this array are reserved for the BSD timers:
624 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
625 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
626 * syscall.
627 *
628 * Realtime timers are kept in the ptimer structure as an absolute
629 * time; virtual time timers are kept as a linked list of deltas.
630 * Virtual time timers are processed in the hardclock() routine of
631 * kern_clock.c. The real time timer is processed by a callout
632 * routine, called from the softclock() routine. Since a callout may
633 * be delayed in real time due to interrupt processing in the system,
634 * it is possible for the real time timeout routine (realtimeexpire,
635 * given below), to be delayed in real time past when it is supposed
636 * to occur. It does not suffice, therefore, to reload the real timer
637 * .it_value from the real time timers .it_interval. Rather, we
638 * compute the next time in absolute time the timer should go off. */
639
640 /* Allocate a POSIX realtime timer. */
641 int
642 sys_timer_create(struct lwp *l, void *v, register_t *retval __unused)
643 {
644 struct sys_timer_create_args /* {
645 syscallarg(clockid_t) clock_id;
646 syscallarg(struct sigevent *) evp;
647 syscallarg(timer_t *) timerid;
648 } */ *uap = v;
649
650 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
651 SCARG(uap, evp), copyin, l);
652 }
653
654 int
655 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
656 copyin_t fetch_event, struct lwp *l)
657 {
658 int error;
659 timer_t timerid;
660 struct ptimer *pt;
661 struct proc *p;
662
663 p = l->l_proc;
664
665 if (id < CLOCK_REALTIME ||
666 id > CLOCK_PROF)
667 return (EINVAL);
668
669 if (p->p_timers == NULL)
670 timers_alloc(p);
671
672 /* Find a free timer slot, skipping those reserved for setitimer(). */
673 for (timerid = 3; timerid < TIMER_MAX; timerid++)
674 if (p->p_timers->pts_timers[timerid] == NULL)
675 break;
676
677 if (timerid == TIMER_MAX)
678 return EAGAIN;
679
680 pt = pool_get(&ptimer_pool, PR_WAITOK);
681 if (evp) {
682 if (((error =
683 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
684 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
685 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
686 pool_put(&ptimer_pool, pt);
687 return (error ? error : EINVAL);
688 }
689 } else {
690 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
691 switch (id) {
692 case CLOCK_REALTIME:
693 pt->pt_ev.sigev_signo = SIGALRM;
694 break;
695 case CLOCK_VIRTUAL:
696 pt->pt_ev.sigev_signo = SIGVTALRM;
697 break;
698 case CLOCK_PROF:
699 pt->pt_ev.sigev_signo = SIGPROF;
700 break;
701 }
702 pt->pt_ev.sigev_value.sival_int = timerid;
703 }
704 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
705 pt->pt_info.ksi_errno = 0;
706 pt->pt_info.ksi_code = 0;
707 pt->pt_info.ksi_pid = p->p_pid;
708 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
709 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
710
711 pt->pt_type = id;
712 pt->pt_proc = p;
713 pt->pt_overruns = 0;
714 pt->pt_poverruns = 0;
715 pt->pt_entry = timerid;
716 timerclear(&pt->pt_time.it_value);
717 if (id == CLOCK_REALTIME)
718 callout_init(&pt->pt_ch);
719 else
720 pt->pt_active = 0;
721
722 p->p_timers->pts_timers[timerid] = pt;
723
724 return copyout(&timerid, tid, sizeof(timerid));
725 }
726
727 /* Delete a POSIX realtime timer */
728 int
729 sys_timer_delete(struct lwp *l, void *v, register_t *retval __unused)
730 {
731 struct sys_timer_delete_args /* {
732 syscallarg(timer_t) timerid;
733 } */ *uap = v;
734 struct proc *p = l->l_proc;
735 timer_t timerid;
736 struct ptimer *pt, *ptn;
737 int s;
738
739 timerid = SCARG(uap, timerid);
740
741 if ((p->p_timers == NULL) ||
742 (timerid < 2) || (timerid >= TIMER_MAX) ||
743 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
744 return (EINVAL);
745
746 if (pt->pt_type == CLOCK_REALTIME)
747 callout_stop(&pt->pt_ch);
748 else if (pt->pt_active) {
749 s = splclock();
750 ptn = LIST_NEXT(pt, pt_list);
751 LIST_REMOVE(pt, pt_list);
752 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
753 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
754 &ptn->pt_time.it_value);
755 splx(s);
756 }
757
758 p->p_timers->pts_timers[timerid] = NULL;
759 pool_put(&ptimer_pool, pt);
760
761 return (0);
762 }
763
764 /*
765 * Set up the given timer. The value in pt->pt_time.it_value is taken
766 * to be an absolute time for CLOCK_REALTIME timers and a relative
767 * time for virtual timers.
768 * Must be called at splclock().
769 */
770 void
771 timer_settime(struct ptimer *pt)
772 {
773 struct ptimer *ptn, *pptn;
774 struct ptlist *ptl;
775
776 if (pt->pt_type == CLOCK_REALTIME) {
777 callout_stop(&pt->pt_ch);
778 if (timerisset(&pt->pt_time.it_value)) {
779 /*
780 * Don't need to check hzto() return value, here.
781 * callout_reset() does it for us.
782 */
783 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
784 realtimerexpire, pt);
785 }
786 } else {
787 if (pt->pt_active) {
788 ptn = LIST_NEXT(pt, pt_list);
789 LIST_REMOVE(pt, pt_list);
790 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
791 timeradd(&pt->pt_time.it_value,
792 &ptn->pt_time.it_value,
793 &ptn->pt_time.it_value);
794 }
795 if (timerisset(&pt->pt_time.it_value)) {
796 if (pt->pt_type == CLOCK_VIRTUAL)
797 ptl = &pt->pt_proc->p_timers->pts_virtual;
798 else
799 ptl = &pt->pt_proc->p_timers->pts_prof;
800
801 for (ptn = LIST_FIRST(ptl), pptn = NULL;
802 ptn && timercmp(&pt->pt_time.it_value,
803 &ptn->pt_time.it_value, >);
804 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
805 timersub(&pt->pt_time.it_value,
806 &ptn->pt_time.it_value,
807 &pt->pt_time.it_value);
808
809 if (pptn)
810 LIST_INSERT_AFTER(pptn, pt, pt_list);
811 else
812 LIST_INSERT_HEAD(ptl, pt, pt_list);
813
814 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
815 timersub(&ptn->pt_time.it_value,
816 &pt->pt_time.it_value,
817 &ptn->pt_time.it_value);
818
819 pt->pt_active = 1;
820 } else
821 pt->pt_active = 0;
822 }
823 }
824
825 void
826 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
827 {
828 #ifdef __HAVE_TIMECOUNTER
829 struct timeval now;
830 #endif
831 struct ptimer *ptn;
832
833 *aitv = pt->pt_time;
834 if (pt->pt_type == CLOCK_REALTIME) {
835 /*
836 * Convert from absolute to relative time in .it_value
837 * part of real time timer. If time for real time
838 * timer has passed return 0, else return difference
839 * between current time and time for the timer to go
840 * off.
841 */
842 if (timerisset(&aitv->it_value)) {
843 #ifdef __HAVE_TIMECOUNTER
844 getmicrotime(&now);
845 if (timercmp(&aitv->it_value, &now, <))
846 timerclear(&aitv->it_value);
847 else
848 timersub(&aitv->it_value, &now,
849 &aitv->it_value);
850 #else /* !__HAVE_TIMECOUNTER */
851 if (timercmp(&aitv->it_value, &time, <))
852 timerclear(&aitv->it_value);
853 else
854 timersub(&aitv->it_value, &time,
855 &aitv->it_value);
856 #endif /* !__HAVE_TIMECOUNTER */
857 }
858 } else if (pt->pt_active) {
859 if (pt->pt_type == CLOCK_VIRTUAL)
860 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
861 else
862 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
863 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
864 timeradd(&aitv->it_value,
865 &ptn->pt_time.it_value, &aitv->it_value);
866 KASSERT(ptn != NULL); /* pt should be findable on the list */
867 } else
868 timerclear(&aitv->it_value);
869 }
870
871
872
873 /* Set and arm a POSIX realtime timer */
874 int
875 sys_timer_settime(struct lwp *l, void *v, register_t *retval __unused)
876 {
877 struct sys_timer_settime_args /* {
878 syscallarg(timer_t) timerid;
879 syscallarg(int) flags;
880 syscallarg(const struct itimerspec *) value;
881 syscallarg(struct itimerspec *) ovalue;
882 } */ *uap = v;
883 int error;
884 struct itimerspec value, ovalue, *ovp = NULL;
885
886 if ((error = copyin(SCARG(uap, value), &value,
887 sizeof(struct itimerspec))) != 0)
888 return (error);
889
890 if (SCARG(uap, ovalue))
891 ovp = &ovalue;
892
893 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
894 SCARG(uap, flags), l->l_proc)) != 0)
895 return error;
896
897 if (ovp)
898 return copyout(&ovalue, SCARG(uap, ovalue),
899 sizeof(struct itimerspec));
900 return 0;
901 }
902
903 int
904 dotimer_settime(int timerid, struct itimerspec *value,
905 struct itimerspec *ovalue, int flags, struct proc *p)
906 {
907 #ifdef __HAVE_TIMECOUNTER
908 struct timeval now;
909 #endif
910 struct itimerval val, oval;
911 struct ptimer *pt;
912 int s;
913
914 if ((p->p_timers == NULL) ||
915 (timerid < 2) || (timerid >= TIMER_MAX) ||
916 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
917 return (EINVAL);
918
919 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
920 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
921 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
922 return (EINVAL);
923
924 oval = pt->pt_time;
925 pt->pt_time = val;
926
927 s = splclock();
928 /*
929 * If we've been passed a relative time for a realtime timer,
930 * convert it to absolute; if an absolute time for a virtual
931 * timer, convert it to relative and make sure we don't set it
932 * to zero, which would cancel the timer, or let it go
933 * negative, which would confuse the comparison tests.
934 */
935 if (timerisset(&pt->pt_time.it_value)) {
936 if (pt->pt_type == CLOCK_REALTIME) {
937 #ifdef __HAVE_TIMECOUNTER
938 if ((flags & TIMER_ABSTIME) == 0) {
939 getmicrotime(&now);
940 timeradd(&pt->pt_time.it_value, &now,
941 &pt->pt_time.it_value);
942 }
943 #else /* !__HAVE_TIMECOUNTER */
944 if ((flags & TIMER_ABSTIME) == 0)
945 timeradd(&pt->pt_time.it_value, &time,
946 &pt->pt_time.it_value);
947 #endif /* !__HAVE_TIMECOUNTER */
948 } else {
949 if ((flags & TIMER_ABSTIME) != 0) {
950 #ifdef __HAVE_TIMECOUNTER
951 getmicrotime(&now);
952 timersub(&pt->pt_time.it_value, &now,
953 &pt->pt_time.it_value);
954 #else /* !__HAVE_TIMECOUNTER */
955 timersub(&pt->pt_time.it_value, &time,
956 &pt->pt_time.it_value);
957 #endif /* !__HAVE_TIMECOUNTER */
958 if (!timerisset(&pt->pt_time.it_value) ||
959 pt->pt_time.it_value.tv_sec < 0) {
960 pt->pt_time.it_value.tv_sec = 0;
961 pt->pt_time.it_value.tv_usec = 1;
962 }
963 }
964 }
965 }
966
967 timer_settime(pt);
968 splx(s);
969
970 if (ovalue) {
971 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
972 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
973 }
974
975 return (0);
976 }
977
978 /* Return the time remaining until a POSIX timer fires. */
979 int
980 sys_timer_gettime(struct lwp *l, void *v, register_t *retval __unused)
981 {
982 struct sys_timer_gettime_args /* {
983 syscallarg(timer_t) timerid;
984 syscallarg(struct itimerspec *) value;
985 } */ *uap = v;
986 struct itimerspec its;
987 int error;
988
989 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
990 &its)) != 0)
991 return error;
992
993 return copyout(&its, SCARG(uap, value), sizeof(its));
994 }
995
996 int
997 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
998 {
999 int s;
1000 struct ptimer *pt;
1001 struct itimerval aitv;
1002
1003 if ((p->p_timers == NULL) ||
1004 (timerid < 2) || (timerid >= TIMER_MAX) ||
1005 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1006 return (EINVAL);
1007
1008 s = splclock();
1009 timer_gettime(pt, &aitv);
1010 splx(s);
1011
1012 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1013 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1014
1015 return 0;
1016 }
1017
1018 /*
1019 * Return the count of the number of times a periodic timer expired
1020 * while a notification was already pending. The counter is reset when
1021 * a timer expires and a notification can be posted.
1022 */
1023 int
1024 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1025 {
1026 struct sys_timer_getoverrun_args /* {
1027 syscallarg(timer_t) timerid;
1028 } */ *uap = v;
1029 struct proc *p = l->l_proc;
1030 int timerid;
1031 struct ptimer *pt;
1032
1033 timerid = SCARG(uap, timerid);
1034
1035 if ((p->p_timers == NULL) ||
1036 (timerid < 2) || (timerid >= TIMER_MAX) ||
1037 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1038 return (EINVAL);
1039
1040 *retval = pt->pt_poverruns;
1041
1042 return (0);
1043 }
1044
1045 /* Glue function that triggers an upcall; called from userret(). */
1046 static void
1047 timerupcall(struct lwp *l, void *arg)
1048 {
1049 struct ptimers *pt = (struct ptimers *)arg;
1050 unsigned int i, fired, done;
1051
1052 KDASSERT(l->l_proc->p_sa);
1053 /* Bail out if we do not own the virtual processor */
1054 if (l->l_savp->savp_lwp != l)
1055 return ;
1056
1057 KERNEL_PROC_LOCK(l);
1058
1059 fired = pt->pts_fired;
1060 done = 0;
1061 while ((i = ffs(fired)) != 0) {
1062 siginfo_t *si;
1063 int mask = 1 << --i;
1064 int f;
1065
1066 f = l->l_flag & L_SA;
1067 l->l_flag &= ~L_SA;
1068 si = siginfo_alloc(PR_WAITOK);
1069 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1070 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1071 sizeof(*si), si, siginfo_free) != 0) {
1072 siginfo_free(si);
1073 /* XXX What do we do here?? */
1074 } else
1075 done |= mask;
1076 fired &= ~mask;
1077 l->l_flag |= f;
1078 }
1079 pt->pts_fired &= ~done;
1080 if (pt->pts_fired == 0)
1081 l->l_proc->p_userret = NULL;
1082
1083 KERNEL_PROC_UNLOCK(l);
1084 }
1085
1086 /*
1087 * Real interval timer expired:
1088 * send process whose timer expired an alarm signal.
1089 * If time is not set up to reload, then just return.
1090 * Else compute next time timer should go off which is > current time.
1091 * This is where delay in processing this timeout causes multiple
1092 * SIGALRM calls to be compressed into one.
1093 */
1094 void
1095 realtimerexpire(void *arg)
1096 {
1097 #ifdef __HAVE_TIMECOUNTER
1098 struct timeval now;
1099 #endif
1100 struct ptimer *pt;
1101 int s;
1102
1103 pt = (struct ptimer *)arg;
1104
1105 itimerfire(pt);
1106
1107 if (!timerisset(&pt->pt_time.it_interval)) {
1108 timerclear(&pt->pt_time.it_value);
1109 return;
1110 }
1111 #ifdef __HAVE_TIMECOUNTER
1112 for (;;) {
1113 s = splclock(); /* XXX need spl now? */
1114 timeradd(&pt->pt_time.it_value,
1115 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1116 getmicrotime(&now);
1117 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1118 /*
1119 * Don't need to check hzto() return value, here.
1120 * callout_reset() does it for us.
1121 */
1122 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1123 realtimerexpire, pt);
1124 splx(s);
1125 return;
1126 }
1127 splx(s);
1128 pt->pt_overruns++;
1129 }
1130 #else /* !__HAVE_TIMECOUNTER */
1131 for (;;) {
1132 s = splclock();
1133 timeradd(&pt->pt_time.it_value,
1134 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1135 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1136 /*
1137 * Don't need to check hzto() return value, here.
1138 * callout_reset() does it for us.
1139 */
1140 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1141 realtimerexpire, pt);
1142 splx(s);
1143 return;
1144 }
1145 splx(s);
1146 pt->pt_overruns++;
1147 }
1148 #endif /* !__HAVE_TIMECOUNTER */
1149 }
1150
1151 /* BSD routine to get the value of an interval timer. */
1152 /* ARGSUSED */
1153 int
1154 sys_getitimer(struct lwp *l, void *v, register_t *retval __unused)
1155 {
1156 struct sys_getitimer_args /* {
1157 syscallarg(int) which;
1158 syscallarg(struct itimerval *) itv;
1159 } */ *uap = v;
1160 struct proc *p = l->l_proc;
1161 struct itimerval aitv;
1162 int error;
1163
1164 error = dogetitimer(p, SCARG(uap, which), &aitv);
1165 if (error)
1166 return error;
1167 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1168 }
1169
1170 int
1171 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1172 {
1173 int s;
1174
1175 if ((u_int)which > ITIMER_PROF)
1176 return (EINVAL);
1177
1178 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1179 timerclear(&itvp->it_value);
1180 timerclear(&itvp->it_interval);
1181 } else {
1182 s = splclock();
1183 timer_gettime(p->p_timers->pts_timers[which], itvp);
1184 splx(s);
1185 }
1186
1187 return 0;
1188 }
1189
1190 /* BSD routine to set/arm an interval timer. */
1191 /* ARGSUSED */
1192 int
1193 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1194 {
1195 struct sys_setitimer_args /* {
1196 syscallarg(int) which;
1197 syscallarg(const struct itimerval *) itv;
1198 syscallarg(struct itimerval *) oitv;
1199 } */ *uap = v;
1200 struct proc *p = l->l_proc;
1201 int which = SCARG(uap, which);
1202 struct sys_getitimer_args getargs;
1203 const struct itimerval *itvp;
1204 struct itimerval aitv;
1205 int error;
1206
1207 if ((u_int)which > ITIMER_PROF)
1208 return (EINVAL);
1209 itvp = SCARG(uap, itv);
1210 if (itvp &&
1211 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1212 return (error);
1213 if (SCARG(uap, oitv) != NULL) {
1214 SCARG(&getargs, which) = which;
1215 SCARG(&getargs, itv) = SCARG(uap, oitv);
1216 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1217 return (error);
1218 }
1219 if (itvp == 0)
1220 return (0);
1221
1222 return dosetitimer(p, which, &aitv);
1223 }
1224
1225 int
1226 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1227 {
1228 #ifdef __HAVE_TIMECOUNTER
1229 struct timeval now;
1230 #endif
1231 struct ptimer *pt;
1232 int s;
1233
1234 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1235 return (EINVAL);
1236
1237 /*
1238 * Don't bother allocating data structures if the process just
1239 * wants to clear the timer.
1240 */
1241 if (!timerisset(&itvp->it_value) &&
1242 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1243 return (0);
1244
1245 if (p->p_timers == NULL)
1246 timers_alloc(p);
1247 if (p->p_timers->pts_timers[which] == NULL) {
1248 pt = pool_get(&ptimer_pool, PR_WAITOK);
1249 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1250 pt->pt_ev.sigev_value.sival_int = which;
1251 pt->pt_overruns = 0;
1252 pt->pt_proc = p;
1253 pt->pt_type = which;
1254 pt->pt_entry = which;
1255 switch (which) {
1256 case ITIMER_REAL:
1257 callout_init(&pt->pt_ch);
1258 pt->pt_ev.sigev_signo = SIGALRM;
1259 break;
1260 case ITIMER_VIRTUAL:
1261 pt->pt_active = 0;
1262 pt->pt_ev.sigev_signo = SIGVTALRM;
1263 break;
1264 case ITIMER_PROF:
1265 pt->pt_active = 0;
1266 pt->pt_ev.sigev_signo = SIGPROF;
1267 break;
1268 }
1269 } else
1270 pt = p->p_timers->pts_timers[which];
1271
1272 pt->pt_time = *itvp;
1273 p->p_timers->pts_timers[which] = pt;
1274
1275 s = splclock();
1276 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1277 /* Convert to absolute time */
1278 #ifdef __HAVE_TIMECOUNTER
1279 /* XXX need to wrap in splclock for timecounters case? */
1280 getmicrotime(&now);
1281 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1282 #else /* !__HAVE_TIMECOUNTER */
1283 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1284 #endif /* !__HAVE_TIMECOUNTER */
1285 }
1286 timer_settime(pt);
1287 splx(s);
1288
1289 return (0);
1290 }
1291
1292 /* Utility routines to manage the array of pointers to timers. */
1293 void
1294 timers_alloc(struct proc *p)
1295 {
1296 int i;
1297 struct ptimers *pts;
1298
1299 pts = pool_get(&ptimers_pool, PR_WAITOK);
1300 LIST_INIT(&pts->pts_virtual);
1301 LIST_INIT(&pts->pts_prof);
1302 for (i = 0; i < TIMER_MAX; i++)
1303 pts->pts_timers[i] = NULL;
1304 pts->pts_fired = 0;
1305 p->p_timers = pts;
1306 }
1307
1308 /*
1309 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1310 * then clean up all timers and free all the data structures. If
1311 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1312 * by timer_create(), not the BSD setitimer() timers, and only free the
1313 * structure if none of those remain.
1314 */
1315 void
1316 timers_free(struct proc *p, int which)
1317 {
1318 int i, s;
1319 struct ptimers *pts;
1320 struct ptimer *pt, *ptn;
1321 struct timeval tv;
1322
1323 if (p->p_timers) {
1324 pts = p->p_timers;
1325 if (which == TIMERS_ALL)
1326 i = 0;
1327 else {
1328 s = splclock();
1329 timerclear(&tv);
1330 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1331 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1332 ptn = LIST_NEXT(ptn, pt_list))
1333 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1334 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1335 if (ptn) {
1336 timeradd(&tv, &ptn->pt_time.it_value,
1337 &ptn->pt_time.it_value);
1338 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1339 ptn, pt_list);
1340 }
1341
1342 timerclear(&tv);
1343 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1344 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1345 ptn = LIST_NEXT(ptn, pt_list))
1346 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1347 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1348 if (ptn) {
1349 timeradd(&tv, &ptn->pt_time.it_value,
1350 &ptn->pt_time.it_value);
1351 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1352 pt_list);
1353 }
1354 splx(s);
1355 i = 3;
1356 }
1357 for ( ; i < TIMER_MAX; i++)
1358 if ((pt = pts->pts_timers[i]) != NULL) {
1359 if (pt->pt_type == CLOCK_REALTIME)
1360 callout_stop(&pt->pt_ch);
1361 pts->pts_timers[i] = NULL;
1362 pool_put(&ptimer_pool, pt);
1363 }
1364 if ((pts->pts_timers[0] == NULL) &&
1365 (pts->pts_timers[1] == NULL) &&
1366 (pts->pts_timers[2] == NULL)) {
1367 p->p_timers = NULL;
1368 pool_put(&ptimers_pool, pts);
1369 }
1370 }
1371 }
1372
1373 /*
1374 * Check that a proposed value to load into the .it_value or
1375 * .it_interval part of an interval timer is acceptable, and
1376 * fix it to have at least minimal value (i.e. if it is less
1377 * than the resolution of the clock, round it up.)
1378 */
1379 int
1380 itimerfix(struct timeval *tv)
1381 {
1382
1383 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1384 return (EINVAL);
1385 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1386 tv->tv_usec = tick;
1387 return (0);
1388 }
1389
1390 #ifdef __HAVE_TIMECOUNTER
1391 int
1392 itimespecfix(struct timespec *ts)
1393 {
1394
1395 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1396 return (EINVAL);
1397 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1398 ts->tv_nsec = tick * 1000;
1399 return (0);
1400 }
1401 #endif /* __HAVE_TIMECOUNTER */
1402
1403 /*
1404 * Decrement an interval timer by a specified number
1405 * of microseconds, which must be less than a second,
1406 * i.e. < 1000000. If the timer expires, then reload
1407 * it. In this case, carry over (usec - old value) to
1408 * reduce the value reloaded into the timer so that
1409 * the timer does not drift. This routine assumes
1410 * that it is called in a context where the timers
1411 * on which it is operating cannot change in value.
1412 */
1413 int
1414 itimerdecr(struct ptimer *pt, int usec)
1415 {
1416 struct itimerval *itp;
1417
1418 itp = &pt->pt_time;
1419 if (itp->it_value.tv_usec < usec) {
1420 if (itp->it_value.tv_sec == 0) {
1421 /* expired, and already in next interval */
1422 usec -= itp->it_value.tv_usec;
1423 goto expire;
1424 }
1425 itp->it_value.tv_usec += 1000000;
1426 itp->it_value.tv_sec--;
1427 }
1428 itp->it_value.tv_usec -= usec;
1429 usec = 0;
1430 if (timerisset(&itp->it_value))
1431 return (1);
1432 /* expired, exactly at end of interval */
1433 expire:
1434 if (timerisset(&itp->it_interval)) {
1435 itp->it_value = itp->it_interval;
1436 itp->it_value.tv_usec -= usec;
1437 if (itp->it_value.tv_usec < 0) {
1438 itp->it_value.tv_usec += 1000000;
1439 itp->it_value.tv_sec--;
1440 }
1441 timer_settime(pt);
1442 } else
1443 itp->it_value.tv_usec = 0; /* sec is already 0 */
1444 return (0);
1445 }
1446
1447 void
1448 itimerfire(struct ptimer *pt)
1449 {
1450 struct proc *p = pt->pt_proc;
1451 struct sadata_vp *vp;
1452 int s;
1453 unsigned int i;
1454
1455 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1456 /*
1457 * No RT signal infrastructure exists at this time;
1458 * just post the signal number and throw away the
1459 * value.
1460 */
1461 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1462 pt->pt_overruns++;
1463 else {
1464 ksiginfo_t ksi;
1465 (void)memset(&ksi, 0, sizeof(ksi));
1466 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1467 ksi.ksi_code = SI_TIMER;
1468 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1469 pt->pt_poverruns = pt->pt_overruns;
1470 pt->pt_overruns = 0;
1471 kpsignal(p, &ksi, NULL);
1472 }
1473 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1474 /* Cause the process to generate an upcall when it returns. */
1475 signotify(p);
1476 if (p->p_userret == NULL) {
1477 /*
1478 * XXX stop signals can be processed inside tsleep,
1479 * which can be inside sa_yield's inner loop, which
1480 * makes testing for sa_idle alone insuffucent to
1481 * determine if we really should call setrunnable.
1482 */
1483 pt->pt_poverruns = pt->pt_overruns;
1484 pt->pt_overruns = 0;
1485 i = 1 << pt->pt_entry;
1486 p->p_timers->pts_fired = i;
1487 p->p_userret = timerupcall;
1488 p->p_userret_arg = p->p_timers;
1489
1490 SCHED_LOCK(s);
1491 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1492 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1493 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1494 sched_wakeup(vp->savp_lwp);
1495 break;
1496 }
1497 }
1498 SCHED_UNLOCK(s);
1499 } else if (p->p_userret == timerupcall) {
1500 i = 1 << pt->pt_entry;
1501 if ((p->p_timers->pts_fired & i) == 0) {
1502 pt->pt_poverruns = pt->pt_overruns;
1503 pt->pt_overruns = 0;
1504 p->p_timers->pts_fired |= i;
1505 } else
1506 pt->pt_overruns++;
1507 } else {
1508 pt->pt_overruns++;
1509 if ((p->p_flag & P_WEXIT) == 0)
1510 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1511 p->p_pid, pt->pt_overruns,
1512 pt->pt_ev.sigev_value.sival_int,
1513 p->p_userret);
1514 }
1515 }
1516
1517 }
1518
1519 /*
1520 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1521 * for usage and rationale.
1522 */
1523 int
1524 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1525 {
1526 struct timeval tv, delta;
1527 int rv = 0;
1528 #ifndef __HAVE_TIMECOUNTER
1529 int s;
1530 #endif
1531
1532 #ifdef __HAVE_TIMECOUNTER
1533 getmicrouptime(&tv);
1534 #else /* !__HAVE_TIMECOUNTER */
1535 s = splclock();
1536 tv = mono_time;
1537 splx(s);
1538 #endif /* !__HAVE_TIMECOUNTER */
1539 timersub(&tv, lasttime, &delta);
1540
1541 /*
1542 * check for 0,0 is so that the message will be seen at least once,
1543 * even if interval is huge.
1544 */
1545 if (timercmp(&delta, mininterval, >=) ||
1546 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1547 *lasttime = tv;
1548 rv = 1;
1549 }
1550
1551 return (rv);
1552 }
1553
1554 /*
1555 * ppsratecheck(): packets (or events) per second limitation.
1556 */
1557 int
1558 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1559 {
1560 struct timeval tv, delta;
1561 int rv;
1562 #ifndef __HAVE_TIMECOUNTER
1563 int s;
1564 #endif
1565
1566 #ifdef __HAVE_TIMECOUNTER
1567 getmicrouptime(&tv);
1568 #else /* !__HAVE_TIMECOUNTER */
1569 s = splclock();
1570 tv = mono_time;
1571 splx(s);
1572 #endif /* !__HAVE_TIMECOUNTER */
1573 timersub(&tv, lasttime, &delta);
1574
1575 /*
1576 * check for 0,0 is so that the message will be seen at least once.
1577 * if more than one second have passed since the last update of
1578 * lasttime, reset the counter.
1579 *
1580 * we do increment *curpps even in *curpps < maxpps case, as some may
1581 * try to use *curpps for stat purposes as well.
1582 */
1583 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1584 delta.tv_sec >= 1) {
1585 *lasttime = tv;
1586 *curpps = 0;
1587 }
1588 if (maxpps < 0)
1589 rv = 1;
1590 else if (*curpps < maxpps)
1591 rv = 1;
1592 else
1593 rv = 0;
1594
1595 #if 1 /*DIAGNOSTIC?*/
1596 /* be careful about wrap-around */
1597 if (*curpps + 1 > *curpps)
1598 *curpps = *curpps + 1;
1599 #else
1600 /*
1601 * assume that there's not too many calls to this function.
1602 * not sure if the assumption holds, as it depends on *caller's*
1603 * behavior, not the behavior of this function.
1604 * IMHO it is wrong to make assumption on the caller's behavior,
1605 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1606 */
1607 *curpps = *curpps + 1;
1608 #endif
1609
1610 return (rv);
1611 }
1612