kern_time.c revision 1.112 1 /* $NetBSD: kern_time.c,v 1.112 2006/12/27 12:10:09 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.112 2006/12/27 12:10:09 yamt Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/vnode.h>
81 #include <sys/signalvar.h>
82 #include <sys/syslog.h>
83 #ifdef __HAVE_TIMECOUNTER
84 #include <sys/timetc.h>
85 #else /* !__HAVE_TIMECOUNTER */
86 #include <sys/timevar.h>
87 #endif /* !__HAVE_TIMECOUNTER */
88 #include <sys/kauth.h>
89
90 #include <sys/mount.h>
91 #include <sys/syscallargs.h>
92
93 #include <uvm/uvm_extern.h>
94
95 #include <machine/cpu.h>
96
97 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
98 &pool_allocator_nointr);
99 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
100 &pool_allocator_nointr);
101
102 static void timerupcall(struct lwp *, void *);
103 #ifdef __HAVE_TIMECOUNTER
104 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
105 #endif /* __HAVE_TIMECOUNTER */
106
107 /* Time of day and interval timer support.
108 *
109 * These routines provide the kernel entry points to get and set
110 * the time-of-day and per-process interval timers. Subroutines
111 * here provide support for adding and subtracting timeval structures
112 * and decrementing interval timers, optionally reloading the interval
113 * timers when they expire.
114 */
115
116 /* This function is used by clock_settime and settimeofday */
117 int
118 settime(struct proc *p, struct timespec *ts)
119 {
120 struct timeval delta, tv;
121 #ifdef __HAVE_TIMECOUNTER
122 struct timeval now;
123 struct timespec ts1;
124 #endif /* !__HAVE_TIMECOUNTER */
125 struct cpu_info *ci;
126 int s;
127
128 /*
129 * Don't allow the time to be set forward so far it will wrap
130 * and become negative, thus allowing an attacker to bypass
131 * the next check below. The cutoff is 1 year before rollover
132 * occurs, so even if the attacker uses adjtime(2) to move
133 * the time past the cutoff, it will take a very long time
134 * to get to the wrap point.
135 *
136 * XXX: we check against INT_MAX since on 64-bit
137 * platforms, sizeof(int) != sizeof(long) and
138 * time_t is 32 bits even when atv.tv_sec is 64 bits.
139 */
140 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
141 struct proc *pp = p->p_pptr;
142 log(LOG_WARNING, "pid %d (%s) "
143 "invoked by uid %d ppid %d (%s) "
144 "tried to set clock forward to %ld\n",
145 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 return (EPERM);
148 }
149 TIMESPEC_TO_TIMEVAL(&tv, ts);
150
151 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
152 s = splclock();
153 #ifdef __HAVE_TIMECOUNTER
154 microtime(&now);
155 timersub(&tv, &now, &delta);
156 #else /* !__HAVE_TIMECOUNTER */
157 timersub(&tv, &time, &delta);
158 #endif /* !__HAVE_TIMECOUNTER */
159 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
160 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
161 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
162 splx(s);
163 return (EPERM);
164 }
165 #ifdef notyet
166 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
167 splx(s);
168 return (EPERM);
169 }
170 #endif
171
172 #ifdef __HAVE_TIMECOUNTER
173 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
174 tc_setclock(&ts1);
175 #else /* !__HAVE_TIMECOUNTER */
176 time = tv;
177 #endif /* !__HAVE_TIMECOUNTER */
178
179 (void) spllowersoftclock();
180
181 timeradd(&boottime, &delta, &boottime);
182
183 /*
184 * XXXSMP
185 * This is wrong. We should traverse a list of all
186 * CPUs and add the delta to the runtime of those
187 * CPUs which have a process on them.
188 */
189 ci = curcpu();
190 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
191 &ci->ci_schedstate.spc_runtime);
192 splx(s);
193 resettodr();
194 return (0);
195 }
196
197 /* ARGSUSED */
198 int
199 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
200 {
201 struct sys_clock_gettime_args /* {
202 syscallarg(clockid_t) clock_id;
203 syscallarg(struct timespec *) tp;
204 } */ *uap = v;
205 clockid_t clock_id;
206 struct timespec ats;
207
208 clock_id = SCARG(uap, clock_id);
209 switch (clock_id) {
210 case CLOCK_REALTIME:
211 nanotime(&ats);
212 break;
213 case CLOCK_MONOTONIC:
214 #ifdef __HAVE_TIMECOUNTER
215 nanouptime(&ats);
216 #else /* !__HAVE_TIMECOUNTER */
217 {
218 int s;
219
220 /* XXX "hz" granularity */
221 s = splclock();
222 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
223 splx(s);
224 }
225 #endif /* !__HAVE_TIMECOUNTER */
226 break;
227 default:
228 return (EINVAL);
229 }
230
231 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
232 }
233
234 /* ARGSUSED */
235 int
236 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
237 {
238 struct sys_clock_settime_args /* {
239 syscallarg(clockid_t) clock_id;
240 syscallarg(const struct timespec *) tp;
241 } */ *uap = v;
242 int error;
243
244 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
245 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
246 return (error);
247
248 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
249 }
250
251
252 int
253 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
254 {
255 struct timespec ats;
256 int error;
257
258 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
259 return (error);
260
261 switch (clock_id) {
262 case CLOCK_REALTIME:
263 if ((error = settime(p, &ats)) != 0)
264 return (error);
265 break;
266 case CLOCK_MONOTONIC:
267 return (EINVAL); /* read-only clock */
268 default:
269 return (EINVAL);
270 }
271
272 return 0;
273 }
274
275 int
276 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
277 {
278 struct sys_clock_getres_args /* {
279 syscallarg(clockid_t) clock_id;
280 syscallarg(struct timespec *) tp;
281 } */ *uap = v;
282 clockid_t clock_id;
283 struct timespec ts;
284 int error = 0;
285
286 clock_id = SCARG(uap, clock_id);
287 switch (clock_id) {
288 case CLOCK_REALTIME:
289 case CLOCK_MONOTONIC:
290 ts.tv_sec = 0;
291 #ifdef __HAVE_TIMECOUNTER
292 if (tc_getfrequency() > 1000000000)
293 ts.tv_nsec = 1;
294 else
295 ts.tv_nsec = 1000000000 / tc_getfrequency();
296 #else /* !__HAVE_TIMECOUNTER */
297 ts.tv_nsec = 1000000000 / hz;
298 #endif /* !__HAVE_TIMECOUNTER */
299 break;
300 default:
301 return (EINVAL);
302 }
303
304 if (SCARG(uap, tp))
305 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
306
307 return error;
308 }
309
310 /* ARGSUSED */
311 int
312 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
313 {
314 #ifdef __HAVE_TIMECOUNTER
315 static int nanowait;
316 struct sys_nanosleep_args/* {
317 syscallarg(struct timespec *) rqtp;
318 syscallarg(struct timespec *) rmtp;
319 } */ *uap = v;
320 struct timespec rmt, rqt;
321 int error, timo;
322
323 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
324 if (error)
325 return (error);
326
327 if (itimespecfix(&rqt))
328 return (EINVAL);
329
330 timo = tstohz(&rqt);
331 /*
332 * Avoid inadvertantly sleeping forever
333 */
334 if (timo == 0)
335 timo = 1;
336
337 getnanouptime(&rmt);
338
339 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
340 if (error == ERESTART)
341 error = EINTR;
342 if (error == EWOULDBLOCK)
343 error = 0;
344
345 if (SCARG(uap, rmtp)) {
346 int error1;
347 struct timespec rmtend;
348
349 getnanouptime(&rmtend);
350
351 timespecsub(&rmtend, &rmt, &rmt);
352 timespecsub(&rqt, &rmt, &rmt);
353 if (rmt.tv_sec < 0)
354 timespecclear(&rmt);
355
356 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
357 sizeof(rmt));
358 if (error1)
359 return (error1);
360 }
361
362 return error;
363 #else /* !__HAVE_TIMECOUNTER */
364 static int nanowait;
365 struct sys_nanosleep_args/* {
366 syscallarg(struct timespec *) rqtp;
367 syscallarg(struct timespec *) rmtp;
368 } */ *uap = v;
369 struct timespec rqt;
370 struct timespec rmt;
371 struct timeval atv, utv;
372 int error, s, timo;
373
374 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
375 if (error)
376 return (error);
377
378 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
379 if (itimerfix(&atv))
380 return (EINVAL);
381
382 s = splclock();
383 timeradd(&atv,&time,&atv);
384 timo = hzto(&atv);
385 /*
386 * Avoid inadvertantly sleeping forever
387 */
388 if (timo == 0)
389 timo = 1;
390 splx(s);
391
392 error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
393 if (error == ERESTART)
394 error = EINTR;
395 if (error == EWOULDBLOCK)
396 error = 0;
397
398 if (SCARG(uap, rmtp)) {
399 int error1;
400
401 s = splclock();
402 utv = time;
403 splx(s);
404
405 timersub(&atv, &utv, &utv);
406 if (utv.tv_sec < 0)
407 timerclear(&utv);
408
409 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
410 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
411 sizeof(rmt));
412 if (error1)
413 return (error1);
414 }
415
416 return error;
417 #endif /* !__HAVE_TIMECOUNTER */
418 }
419
420 /* ARGSUSED */
421 int
422 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
423 {
424 struct sys_gettimeofday_args /* {
425 syscallarg(struct timeval *) tp;
426 syscallarg(void *) tzp; really "struct timezone *"
427 } */ *uap = v;
428 struct timeval atv;
429 int error = 0;
430 struct timezone tzfake;
431
432 if (SCARG(uap, tp)) {
433 microtime(&atv);
434 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
435 if (error)
436 return (error);
437 }
438 if (SCARG(uap, tzp)) {
439 /*
440 * NetBSD has no kernel notion of time zone, so we just
441 * fake up a timezone struct and return it if demanded.
442 */
443 tzfake.tz_minuteswest = 0;
444 tzfake.tz_dsttime = 0;
445 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
446 }
447 return (error);
448 }
449
450 /* ARGSUSED */
451 int
452 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
453 {
454 struct sys_settimeofday_args /* {
455 syscallarg(const struct timeval *) tv;
456 syscallarg(const void *) tzp; really "const struct timezone *"
457 } */ *uap = v;
458 int error;
459
460 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
461 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
462 return (error);
463
464 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
465 }
466
467 int
468 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
469 struct proc *p)
470 {
471 struct timeval atv;
472 struct timespec ts;
473 int error;
474
475 /* Verify all parameters before changing time. */
476 /*
477 * NetBSD has no kernel notion of time zone, and only an
478 * obsolete program would try to set it, so we log a warning.
479 */
480 if (utzp)
481 log(LOG_WARNING, "pid %d attempted to set the "
482 "(obsolete) kernel time zone\n", p->p_pid);
483
484 if (utv == NULL)
485 return 0;
486
487 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
488 return error;
489 TIMEVAL_TO_TIMESPEC(&atv, &ts);
490 return settime(p, &ts);
491 }
492
493 #ifndef __HAVE_TIMECOUNTER
494 int tickdelta; /* current clock skew, us. per tick */
495 long timedelta; /* unapplied time correction, us. */
496 long bigadj = 1000000; /* use 10x skew above bigadj us. */
497 #endif
498
499 int time_adjusted; /* set if an adjustment is made */
500
501 /* ARGSUSED */
502 int
503 sys_adjtime(struct lwp *l, void *v, register_t *retval)
504 {
505 struct sys_adjtime_args /* {
506 syscallarg(const struct timeval *) delta;
507 syscallarg(struct timeval *) olddelta;
508 } */ *uap = v;
509 int error;
510
511 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
512 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
513 return (error);
514
515 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
516 }
517
518 int
519 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
520 {
521 struct timeval atv;
522 int error = 0;
523
524 #ifdef __HAVE_TIMECOUNTER
525 extern int64_t time_adjtime; /* in kern_ntptime.c */
526 #else /* !__HAVE_TIMECOUNTER */
527 long ndelta, ntickdelta, odelta;
528 int s;
529 #endif /* !__HAVE_TIMECOUNTER */
530
531 #ifdef __HAVE_TIMECOUNTER
532 if (olddelta) {
533 atv.tv_sec = time_adjtime / 1000000;
534 atv.tv_usec = time_adjtime % 1000000;
535 if (atv.tv_usec < 0) {
536 atv.tv_usec += 1000000;
537 atv.tv_sec--;
538 }
539 error = copyout(&atv, olddelta, sizeof(struct timeval));
540 if (error)
541 return (error);
542 }
543
544 if (delta) {
545 error = copyin(delta, &atv, sizeof(struct timeval));
546 if (error)
547 return (error);
548
549 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
550 atv.tv_usec;
551
552 if (time_adjtime)
553 /* We need to save the system time during shutdown */
554 time_adjusted |= 1;
555 }
556 #else /* !__HAVE_TIMECOUNTER */
557 error = copyin(delta, &atv, sizeof(struct timeval));
558 if (error)
559 return (error);
560
561 /*
562 * Compute the total correction and the rate at which to apply it.
563 * Round the adjustment down to a whole multiple of the per-tick
564 * delta, so that after some number of incremental changes in
565 * hardclock(), tickdelta will become zero, lest the correction
566 * overshoot and start taking us away from the desired final time.
567 */
568 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
569 if (ndelta > bigadj || ndelta < -bigadj)
570 ntickdelta = 10 * tickadj;
571 else
572 ntickdelta = tickadj;
573 if (ndelta % ntickdelta)
574 ndelta = ndelta / ntickdelta * ntickdelta;
575
576 /*
577 * To make hardclock()'s job easier, make the per-tick delta negative
578 * if we want time to run slower; then hardclock can simply compute
579 * tick + tickdelta, and subtract tickdelta from timedelta.
580 */
581 if (ndelta < 0)
582 ntickdelta = -ntickdelta;
583 if (ndelta != 0)
584 /* We need to save the system clock time during shutdown */
585 time_adjusted |= 1;
586 s = splclock();
587 odelta = timedelta;
588 timedelta = ndelta;
589 tickdelta = ntickdelta;
590 splx(s);
591
592 if (olddelta) {
593 atv.tv_sec = odelta / 1000000;
594 atv.tv_usec = odelta % 1000000;
595 error = copyout(&atv, olddelta, sizeof(struct timeval));
596 }
597 #endif /* __HAVE_TIMECOUNTER */
598
599 return error;
600 }
601
602 /*
603 * Interval timer support. Both the BSD getitimer() family and the POSIX
604 * timer_*() family of routines are supported.
605 *
606 * All timers are kept in an array pointed to by p_timers, which is
607 * allocated on demand - many processes don't use timers at all. The
608 * first three elements in this array are reserved for the BSD timers:
609 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
610 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
611 * syscall.
612 *
613 * Realtime timers are kept in the ptimer structure as an absolute
614 * time; virtual time timers are kept as a linked list of deltas.
615 * Virtual time timers are processed in the hardclock() routine of
616 * kern_clock.c. The real time timer is processed by a callout
617 * routine, called from the softclock() routine. Since a callout may
618 * be delayed in real time due to interrupt processing in the system,
619 * it is possible for the real time timeout routine (realtimeexpire,
620 * given below), to be delayed in real time past when it is supposed
621 * to occur. It does not suffice, therefore, to reload the real timer
622 * .it_value from the real time timers .it_interval. Rather, we
623 * compute the next time in absolute time the timer should go off. */
624
625 /* Allocate a POSIX realtime timer. */
626 int
627 sys_timer_create(struct lwp *l, void *v, register_t *retval)
628 {
629 struct sys_timer_create_args /* {
630 syscallarg(clockid_t) clock_id;
631 syscallarg(struct sigevent *) evp;
632 syscallarg(timer_t *) timerid;
633 } */ *uap = v;
634
635 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
636 SCARG(uap, evp), copyin, l);
637 }
638
639 int
640 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
641 copyin_t fetch_event, struct lwp *l)
642 {
643 int error;
644 timer_t timerid;
645 struct ptimer *pt;
646 struct proc *p;
647
648 p = l->l_proc;
649
650 if (id < CLOCK_REALTIME ||
651 id > CLOCK_PROF)
652 return (EINVAL);
653
654 if (p->p_timers == NULL)
655 timers_alloc(p);
656
657 /* Find a free timer slot, skipping those reserved for setitimer(). */
658 for (timerid = 3; timerid < TIMER_MAX; timerid++)
659 if (p->p_timers->pts_timers[timerid] == NULL)
660 break;
661
662 if (timerid == TIMER_MAX)
663 return EAGAIN;
664
665 pt = pool_get(&ptimer_pool, PR_WAITOK);
666 if (evp) {
667 if (((error =
668 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
669 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
670 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
671 pool_put(&ptimer_pool, pt);
672 return (error ? error : EINVAL);
673 }
674 } else {
675 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
676 switch (id) {
677 case CLOCK_REALTIME:
678 pt->pt_ev.sigev_signo = SIGALRM;
679 break;
680 case CLOCK_VIRTUAL:
681 pt->pt_ev.sigev_signo = SIGVTALRM;
682 break;
683 case CLOCK_PROF:
684 pt->pt_ev.sigev_signo = SIGPROF;
685 break;
686 }
687 pt->pt_ev.sigev_value.sival_int = timerid;
688 }
689 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
690 pt->pt_info.ksi_errno = 0;
691 pt->pt_info.ksi_code = 0;
692 pt->pt_info.ksi_pid = p->p_pid;
693 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
694 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
695
696 pt->pt_type = id;
697 pt->pt_proc = p;
698 pt->pt_overruns = 0;
699 pt->pt_poverruns = 0;
700 pt->pt_entry = timerid;
701 timerclear(&pt->pt_time.it_value);
702 if (id == CLOCK_REALTIME)
703 callout_init(&pt->pt_ch);
704 else
705 pt->pt_active = 0;
706
707 p->p_timers->pts_timers[timerid] = pt;
708
709 return copyout(&timerid, tid, sizeof(timerid));
710 }
711
712 /* Delete a POSIX realtime timer */
713 int
714 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
715 {
716 struct sys_timer_delete_args /* {
717 syscallarg(timer_t) timerid;
718 } */ *uap = v;
719 struct proc *p = l->l_proc;
720 timer_t timerid;
721 struct ptimer *pt, *ptn;
722 int s;
723
724 timerid = SCARG(uap, timerid);
725
726 if ((p->p_timers == NULL) ||
727 (timerid < 2) || (timerid >= TIMER_MAX) ||
728 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
729 return (EINVAL);
730
731 if (pt->pt_type == CLOCK_REALTIME)
732 callout_stop(&pt->pt_ch);
733 else if (pt->pt_active) {
734 s = splclock();
735 ptn = LIST_NEXT(pt, pt_list);
736 LIST_REMOVE(pt, pt_list);
737 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
738 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
739 &ptn->pt_time.it_value);
740 splx(s);
741 }
742
743 p->p_timers->pts_timers[timerid] = NULL;
744 pool_put(&ptimer_pool, pt);
745
746 return (0);
747 }
748
749 /*
750 * Set up the given timer. The value in pt->pt_time.it_value is taken
751 * to be an absolute time for CLOCK_REALTIME timers and a relative
752 * time for virtual timers.
753 * Must be called at splclock().
754 */
755 void
756 timer_settime(struct ptimer *pt)
757 {
758 struct ptimer *ptn, *pptn;
759 struct ptlist *ptl;
760
761 if (pt->pt_type == CLOCK_REALTIME) {
762 callout_stop(&pt->pt_ch);
763 if (timerisset(&pt->pt_time.it_value)) {
764 /*
765 * Don't need to check hzto() return value, here.
766 * callout_reset() does it for us.
767 */
768 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
769 realtimerexpire, pt);
770 }
771 } else {
772 if (pt->pt_active) {
773 ptn = LIST_NEXT(pt, pt_list);
774 LIST_REMOVE(pt, pt_list);
775 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
776 timeradd(&pt->pt_time.it_value,
777 &ptn->pt_time.it_value,
778 &ptn->pt_time.it_value);
779 }
780 if (timerisset(&pt->pt_time.it_value)) {
781 if (pt->pt_type == CLOCK_VIRTUAL)
782 ptl = &pt->pt_proc->p_timers->pts_virtual;
783 else
784 ptl = &pt->pt_proc->p_timers->pts_prof;
785
786 for (ptn = LIST_FIRST(ptl), pptn = NULL;
787 ptn && timercmp(&pt->pt_time.it_value,
788 &ptn->pt_time.it_value, >);
789 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
790 timersub(&pt->pt_time.it_value,
791 &ptn->pt_time.it_value,
792 &pt->pt_time.it_value);
793
794 if (pptn)
795 LIST_INSERT_AFTER(pptn, pt, pt_list);
796 else
797 LIST_INSERT_HEAD(ptl, pt, pt_list);
798
799 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
800 timersub(&ptn->pt_time.it_value,
801 &pt->pt_time.it_value,
802 &ptn->pt_time.it_value);
803
804 pt->pt_active = 1;
805 } else
806 pt->pt_active = 0;
807 }
808 }
809
810 void
811 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
812 {
813 #ifdef __HAVE_TIMECOUNTER
814 struct timeval now;
815 #endif
816 struct ptimer *ptn;
817
818 *aitv = pt->pt_time;
819 if (pt->pt_type == CLOCK_REALTIME) {
820 /*
821 * Convert from absolute to relative time in .it_value
822 * part of real time timer. If time for real time
823 * timer has passed return 0, else return difference
824 * between current time and time for the timer to go
825 * off.
826 */
827 if (timerisset(&aitv->it_value)) {
828 #ifdef __HAVE_TIMECOUNTER
829 getmicrotime(&now);
830 if (timercmp(&aitv->it_value, &now, <))
831 timerclear(&aitv->it_value);
832 else
833 timersub(&aitv->it_value, &now,
834 &aitv->it_value);
835 #else /* !__HAVE_TIMECOUNTER */
836 if (timercmp(&aitv->it_value, &time, <))
837 timerclear(&aitv->it_value);
838 else
839 timersub(&aitv->it_value, &time,
840 &aitv->it_value);
841 #endif /* !__HAVE_TIMECOUNTER */
842 }
843 } else if (pt->pt_active) {
844 if (pt->pt_type == CLOCK_VIRTUAL)
845 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
846 else
847 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
848 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
849 timeradd(&aitv->it_value,
850 &ptn->pt_time.it_value, &aitv->it_value);
851 KASSERT(ptn != NULL); /* pt should be findable on the list */
852 } else
853 timerclear(&aitv->it_value);
854 }
855
856
857
858 /* Set and arm a POSIX realtime timer */
859 int
860 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
861 {
862 struct sys_timer_settime_args /* {
863 syscallarg(timer_t) timerid;
864 syscallarg(int) flags;
865 syscallarg(const struct itimerspec *) value;
866 syscallarg(struct itimerspec *) ovalue;
867 } */ *uap = v;
868 int error;
869 struct itimerspec value, ovalue, *ovp = NULL;
870
871 if ((error = copyin(SCARG(uap, value), &value,
872 sizeof(struct itimerspec))) != 0)
873 return (error);
874
875 if (SCARG(uap, ovalue))
876 ovp = &ovalue;
877
878 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
879 SCARG(uap, flags), l->l_proc)) != 0)
880 return error;
881
882 if (ovp)
883 return copyout(&ovalue, SCARG(uap, ovalue),
884 sizeof(struct itimerspec));
885 return 0;
886 }
887
888 int
889 dotimer_settime(int timerid, struct itimerspec *value,
890 struct itimerspec *ovalue, int flags, struct proc *p)
891 {
892 #ifdef __HAVE_TIMECOUNTER
893 struct timeval now;
894 #endif
895 struct itimerval val, oval;
896 struct ptimer *pt;
897 int s;
898
899 if ((p->p_timers == NULL) ||
900 (timerid < 2) || (timerid >= TIMER_MAX) ||
901 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
902 return (EINVAL);
903
904 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
905 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
906 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
907 return (EINVAL);
908
909 oval = pt->pt_time;
910 pt->pt_time = val;
911
912 s = splclock();
913 /*
914 * If we've been passed a relative time for a realtime timer,
915 * convert it to absolute; if an absolute time for a virtual
916 * timer, convert it to relative and make sure we don't set it
917 * to zero, which would cancel the timer, or let it go
918 * negative, which would confuse the comparison tests.
919 */
920 if (timerisset(&pt->pt_time.it_value)) {
921 if (pt->pt_type == CLOCK_REALTIME) {
922 #ifdef __HAVE_TIMECOUNTER
923 if ((flags & TIMER_ABSTIME) == 0) {
924 getmicrotime(&now);
925 timeradd(&pt->pt_time.it_value, &now,
926 &pt->pt_time.it_value);
927 }
928 #else /* !__HAVE_TIMECOUNTER */
929 if ((flags & TIMER_ABSTIME) == 0)
930 timeradd(&pt->pt_time.it_value, &time,
931 &pt->pt_time.it_value);
932 #endif /* !__HAVE_TIMECOUNTER */
933 } else {
934 if ((flags & TIMER_ABSTIME) != 0) {
935 #ifdef __HAVE_TIMECOUNTER
936 getmicrotime(&now);
937 timersub(&pt->pt_time.it_value, &now,
938 &pt->pt_time.it_value);
939 #else /* !__HAVE_TIMECOUNTER */
940 timersub(&pt->pt_time.it_value, &time,
941 &pt->pt_time.it_value);
942 #endif /* !__HAVE_TIMECOUNTER */
943 if (!timerisset(&pt->pt_time.it_value) ||
944 pt->pt_time.it_value.tv_sec < 0) {
945 pt->pt_time.it_value.tv_sec = 0;
946 pt->pt_time.it_value.tv_usec = 1;
947 }
948 }
949 }
950 }
951
952 timer_settime(pt);
953 splx(s);
954
955 if (ovalue) {
956 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
957 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
958 }
959
960 return (0);
961 }
962
963 /* Return the time remaining until a POSIX timer fires. */
964 int
965 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
966 {
967 struct sys_timer_gettime_args /* {
968 syscallarg(timer_t) timerid;
969 syscallarg(struct itimerspec *) value;
970 } */ *uap = v;
971 struct itimerspec its;
972 int error;
973
974 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
975 &its)) != 0)
976 return error;
977
978 return copyout(&its, SCARG(uap, value), sizeof(its));
979 }
980
981 int
982 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
983 {
984 int s;
985 struct ptimer *pt;
986 struct itimerval aitv;
987
988 if ((p->p_timers == NULL) ||
989 (timerid < 2) || (timerid >= TIMER_MAX) ||
990 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
991 return (EINVAL);
992
993 s = splclock();
994 timer_gettime(pt, &aitv);
995 splx(s);
996
997 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
998 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
999
1000 return 0;
1001 }
1002
1003 /*
1004 * Return the count of the number of times a periodic timer expired
1005 * while a notification was already pending. The counter is reset when
1006 * a timer expires and a notification can be posted.
1007 */
1008 int
1009 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1010 {
1011 struct sys_timer_getoverrun_args /* {
1012 syscallarg(timer_t) timerid;
1013 } */ *uap = v;
1014 struct proc *p = l->l_proc;
1015 int timerid;
1016 struct ptimer *pt;
1017
1018 timerid = SCARG(uap, timerid);
1019
1020 if ((p->p_timers == NULL) ||
1021 (timerid < 2) || (timerid >= TIMER_MAX) ||
1022 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1023 return (EINVAL);
1024
1025 *retval = pt->pt_poverruns;
1026
1027 return (0);
1028 }
1029
1030 /* Glue function that triggers an upcall; called from userret(). */
1031 static void
1032 timerupcall(struct lwp *l, void *arg)
1033 {
1034 struct ptimers *pt = (struct ptimers *)arg;
1035 unsigned int i, fired, done;
1036
1037 KDASSERT(l->l_proc->p_sa);
1038 /* Bail out if we do not own the virtual processor */
1039 if (l->l_savp->savp_lwp != l)
1040 return ;
1041
1042 KERNEL_PROC_LOCK(l);
1043
1044 fired = pt->pts_fired;
1045 done = 0;
1046 while ((i = ffs(fired)) != 0) {
1047 siginfo_t *si;
1048 int mask = 1 << --i;
1049 int f;
1050
1051 f = l->l_flag & L_SA;
1052 l->l_flag &= ~L_SA;
1053 si = siginfo_alloc(PR_WAITOK);
1054 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1055 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1056 sizeof(*si), si, siginfo_free) != 0) {
1057 siginfo_free(si);
1058 /* XXX What do we do here?? */
1059 } else
1060 done |= mask;
1061 fired &= ~mask;
1062 l->l_flag |= f;
1063 }
1064 pt->pts_fired &= ~done;
1065 if (pt->pts_fired == 0)
1066 l->l_proc->p_userret = NULL;
1067
1068 KERNEL_PROC_UNLOCK(l);
1069 }
1070
1071 /*
1072 * Real interval timer expired:
1073 * send process whose timer expired an alarm signal.
1074 * If time is not set up to reload, then just return.
1075 * Else compute next time timer should go off which is > current time.
1076 * This is where delay in processing this timeout causes multiple
1077 * SIGALRM calls to be compressed into one.
1078 */
1079 void
1080 realtimerexpire(void *arg)
1081 {
1082 #ifdef __HAVE_TIMECOUNTER
1083 struct timeval now;
1084 #endif
1085 struct ptimer *pt;
1086 int s;
1087
1088 pt = (struct ptimer *)arg;
1089
1090 itimerfire(pt);
1091
1092 if (!timerisset(&pt->pt_time.it_interval)) {
1093 timerclear(&pt->pt_time.it_value);
1094 return;
1095 }
1096 #ifdef __HAVE_TIMECOUNTER
1097 for (;;) {
1098 s = splclock(); /* XXX need spl now? */
1099 timeradd(&pt->pt_time.it_value,
1100 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1101 getmicrotime(&now);
1102 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1103 /*
1104 * Don't need to check hzto() return value, here.
1105 * callout_reset() does it for us.
1106 */
1107 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1108 realtimerexpire, pt);
1109 splx(s);
1110 return;
1111 }
1112 splx(s);
1113 pt->pt_overruns++;
1114 }
1115 #else /* !__HAVE_TIMECOUNTER */
1116 for (;;) {
1117 s = splclock();
1118 timeradd(&pt->pt_time.it_value,
1119 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1120 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1121 /*
1122 * Don't need to check hzto() return value, here.
1123 * callout_reset() does it for us.
1124 */
1125 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1126 realtimerexpire, pt);
1127 splx(s);
1128 return;
1129 }
1130 splx(s);
1131 pt->pt_overruns++;
1132 }
1133 #endif /* !__HAVE_TIMECOUNTER */
1134 }
1135
1136 /* BSD routine to get the value of an interval timer. */
1137 /* ARGSUSED */
1138 int
1139 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1140 {
1141 struct sys_getitimer_args /* {
1142 syscallarg(int) which;
1143 syscallarg(struct itimerval *) itv;
1144 } */ *uap = v;
1145 struct proc *p = l->l_proc;
1146 struct itimerval aitv;
1147 int error;
1148
1149 error = dogetitimer(p, SCARG(uap, which), &aitv);
1150 if (error)
1151 return error;
1152 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1153 }
1154
1155 int
1156 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1157 {
1158 int s;
1159
1160 if ((u_int)which > ITIMER_PROF)
1161 return (EINVAL);
1162
1163 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1164 timerclear(&itvp->it_value);
1165 timerclear(&itvp->it_interval);
1166 } else {
1167 s = splclock();
1168 timer_gettime(p->p_timers->pts_timers[which], itvp);
1169 splx(s);
1170 }
1171
1172 return 0;
1173 }
1174
1175 /* BSD routine to set/arm an interval timer. */
1176 /* ARGSUSED */
1177 int
1178 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1179 {
1180 struct sys_setitimer_args /* {
1181 syscallarg(int) which;
1182 syscallarg(const struct itimerval *) itv;
1183 syscallarg(struct itimerval *) oitv;
1184 } */ *uap = v;
1185 struct proc *p = l->l_proc;
1186 int which = SCARG(uap, which);
1187 struct sys_getitimer_args getargs;
1188 const struct itimerval *itvp;
1189 struct itimerval aitv;
1190 int error;
1191
1192 if ((u_int)which > ITIMER_PROF)
1193 return (EINVAL);
1194 itvp = SCARG(uap, itv);
1195 if (itvp &&
1196 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1197 return (error);
1198 if (SCARG(uap, oitv) != NULL) {
1199 SCARG(&getargs, which) = which;
1200 SCARG(&getargs, itv) = SCARG(uap, oitv);
1201 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1202 return (error);
1203 }
1204 if (itvp == 0)
1205 return (0);
1206
1207 return dosetitimer(p, which, &aitv);
1208 }
1209
1210 int
1211 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1212 {
1213 #ifdef __HAVE_TIMECOUNTER
1214 struct timeval now;
1215 #endif
1216 struct ptimer *pt;
1217 int s;
1218
1219 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1220 return (EINVAL);
1221
1222 /*
1223 * Don't bother allocating data structures if the process just
1224 * wants to clear the timer.
1225 */
1226 if (!timerisset(&itvp->it_value) &&
1227 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1228 return (0);
1229
1230 if (p->p_timers == NULL)
1231 timers_alloc(p);
1232 if (p->p_timers->pts_timers[which] == NULL) {
1233 pt = pool_get(&ptimer_pool, PR_WAITOK);
1234 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1235 pt->pt_ev.sigev_value.sival_int = which;
1236 pt->pt_overruns = 0;
1237 pt->pt_proc = p;
1238 pt->pt_type = which;
1239 pt->pt_entry = which;
1240 switch (which) {
1241 case ITIMER_REAL:
1242 callout_init(&pt->pt_ch);
1243 pt->pt_ev.sigev_signo = SIGALRM;
1244 break;
1245 case ITIMER_VIRTUAL:
1246 pt->pt_active = 0;
1247 pt->pt_ev.sigev_signo = SIGVTALRM;
1248 break;
1249 case ITIMER_PROF:
1250 pt->pt_active = 0;
1251 pt->pt_ev.sigev_signo = SIGPROF;
1252 break;
1253 }
1254 } else
1255 pt = p->p_timers->pts_timers[which];
1256
1257 pt->pt_time = *itvp;
1258 p->p_timers->pts_timers[which] = pt;
1259
1260 s = splclock();
1261 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1262 /* Convert to absolute time */
1263 #ifdef __HAVE_TIMECOUNTER
1264 /* XXX need to wrap in splclock for timecounters case? */
1265 getmicrotime(&now);
1266 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1267 #else /* !__HAVE_TIMECOUNTER */
1268 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1269 #endif /* !__HAVE_TIMECOUNTER */
1270 }
1271 timer_settime(pt);
1272 splx(s);
1273
1274 return (0);
1275 }
1276
1277 /* Utility routines to manage the array of pointers to timers. */
1278 void
1279 timers_alloc(struct proc *p)
1280 {
1281 int i;
1282 struct ptimers *pts;
1283
1284 pts = pool_get(&ptimers_pool, PR_WAITOK);
1285 LIST_INIT(&pts->pts_virtual);
1286 LIST_INIT(&pts->pts_prof);
1287 for (i = 0; i < TIMER_MAX; i++)
1288 pts->pts_timers[i] = NULL;
1289 pts->pts_fired = 0;
1290 p->p_timers = pts;
1291 }
1292
1293 /*
1294 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1295 * then clean up all timers and free all the data structures. If
1296 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1297 * by timer_create(), not the BSD setitimer() timers, and only free the
1298 * structure if none of those remain.
1299 */
1300 void
1301 timers_free(struct proc *p, int which)
1302 {
1303 int i, s;
1304 struct ptimers *pts;
1305 struct ptimer *pt, *ptn;
1306 struct timeval tv;
1307
1308 if (p->p_timers) {
1309 pts = p->p_timers;
1310 if (which == TIMERS_ALL)
1311 i = 0;
1312 else {
1313 s = splclock();
1314 timerclear(&tv);
1315 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1316 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1317 ptn = LIST_NEXT(ptn, pt_list))
1318 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1319 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1320 if (ptn) {
1321 timeradd(&tv, &ptn->pt_time.it_value,
1322 &ptn->pt_time.it_value);
1323 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1324 ptn, pt_list);
1325 }
1326
1327 timerclear(&tv);
1328 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1329 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1330 ptn = LIST_NEXT(ptn, pt_list))
1331 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1332 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1333 if (ptn) {
1334 timeradd(&tv, &ptn->pt_time.it_value,
1335 &ptn->pt_time.it_value);
1336 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1337 pt_list);
1338 }
1339 splx(s);
1340 i = 3;
1341 }
1342 for ( ; i < TIMER_MAX; i++)
1343 if ((pt = pts->pts_timers[i]) != NULL) {
1344 if (pt->pt_type == CLOCK_REALTIME)
1345 callout_stop(&pt->pt_ch);
1346 pts->pts_timers[i] = NULL;
1347 pool_put(&ptimer_pool, pt);
1348 }
1349 if ((pts->pts_timers[0] == NULL) &&
1350 (pts->pts_timers[1] == NULL) &&
1351 (pts->pts_timers[2] == NULL)) {
1352 p->p_timers = NULL;
1353 pool_put(&ptimers_pool, pts);
1354 }
1355 }
1356 }
1357
1358 /*
1359 * Check that a proposed value to load into the .it_value or
1360 * .it_interval part of an interval timer is acceptable, and
1361 * fix it to have at least minimal value (i.e. if it is less
1362 * than the resolution of the clock, round it up.)
1363 */
1364 int
1365 itimerfix(struct timeval *tv)
1366 {
1367
1368 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1369 return (EINVAL);
1370 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1371 tv->tv_usec = tick;
1372 return (0);
1373 }
1374
1375 #ifdef __HAVE_TIMECOUNTER
1376 int
1377 itimespecfix(struct timespec *ts)
1378 {
1379
1380 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1381 return (EINVAL);
1382 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1383 ts->tv_nsec = tick * 1000;
1384 return (0);
1385 }
1386 #endif /* __HAVE_TIMECOUNTER */
1387
1388 /*
1389 * Decrement an interval timer by a specified number
1390 * of microseconds, which must be less than a second,
1391 * i.e. < 1000000. If the timer expires, then reload
1392 * it. In this case, carry over (usec - old value) to
1393 * reduce the value reloaded into the timer so that
1394 * the timer does not drift. This routine assumes
1395 * that it is called in a context where the timers
1396 * on which it is operating cannot change in value.
1397 */
1398 int
1399 itimerdecr(struct ptimer *pt, int usec)
1400 {
1401 struct itimerval *itp;
1402
1403 itp = &pt->pt_time;
1404 if (itp->it_value.tv_usec < usec) {
1405 if (itp->it_value.tv_sec == 0) {
1406 /* expired, and already in next interval */
1407 usec -= itp->it_value.tv_usec;
1408 goto expire;
1409 }
1410 itp->it_value.tv_usec += 1000000;
1411 itp->it_value.tv_sec--;
1412 }
1413 itp->it_value.tv_usec -= usec;
1414 usec = 0;
1415 if (timerisset(&itp->it_value))
1416 return (1);
1417 /* expired, exactly at end of interval */
1418 expire:
1419 if (timerisset(&itp->it_interval)) {
1420 itp->it_value = itp->it_interval;
1421 itp->it_value.tv_usec -= usec;
1422 if (itp->it_value.tv_usec < 0) {
1423 itp->it_value.tv_usec += 1000000;
1424 itp->it_value.tv_sec--;
1425 }
1426 timer_settime(pt);
1427 } else
1428 itp->it_value.tv_usec = 0; /* sec is already 0 */
1429 return (0);
1430 }
1431
1432 void
1433 itimerfire(struct ptimer *pt)
1434 {
1435 struct proc *p = pt->pt_proc;
1436 struct sadata_vp *vp;
1437 int s;
1438 unsigned int i;
1439
1440 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1441 /*
1442 * No RT signal infrastructure exists at this time;
1443 * just post the signal number and throw away the
1444 * value.
1445 */
1446 if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1447 pt->pt_overruns++;
1448 else {
1449 ksiginfo_t ksi;
1450 KSI_INIT(&ksi);
1451 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1452 ksi.ksi_code = SI_TIMER;
1453 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1454 pt->pt_poverruns = pt->pt_overruns;
1455 pt->pt_overruns = 0;
1456 kpsignal(p, &ksi, NULL);
1457 }
1458 } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1459 /* Cause the process to generate an upcall when it returns. */
1460 signotify(p);
1461 if (p->p_userret == NULL) {
1462 /*
1463 * XXX stop signals can be processed inside tsleep,
1464 * which can be inside sa_yield's inner loop, which
1465 * makes testing for sa_idle alone insuffucent to
1466 * determine if we really should call setrunnable.
1467 */
1468 pt->pt_poverruns = pt->pt_overruns;
1469 pt->pt_overruns = 0;
1470 i = 1 << pt->pt_entry;
1471 p->p_timers->pts_fired = i;
1472 p->p_userret = timerupcall;
1473 p->p_userret_arg = p->p_timers;
1474
1475 SCHED_LOCK(s);
1476 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1477 if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1478 vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1479 sched_wakeup(vp->savp_lwp);
1480 break;
1481 }
1482 }
1483 SCHED_UNLOCK(s);
1484 } else if (p->p_userret == timerupcall) {
1485 i = 1 << pt->pt_entry;
1486 if ((p->p_timers->pts_fired & i) == 0) {
1487 pt->pt_poverruns = pt->pt_overruns;
1488 pt->pt_overruns = 0;
1489 p->p_timers->pts_fired |= i;
1490 } else
1491 pt->pt_overruns++;
1492 } else {
1493 pt->pt_overruns++;
1494 if ((p->p_flag & P_WEXIT) == 0)
1495 printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1496 p->p_pid, pt->pt_overruns,
1497 pt->pt_ev.sigev_value.sival_int,
1498 p->p_userret);
1499 }
1500 }
1501
1502 }
1503
1504 /*
1505 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1506 * for usage and rationale.
1507 */
1508 int
1509 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1510 {
1511 struct timeval tv, delta;
1512 int rv = 0;
1513 #ifndef __HAVE_TIMECOUNTER
1514 int s;
1515 #endif
1516
1517 #ifdef __HAVE_TIMECOUNTER
1518 getmicrouptime(&tv);
1519 #else /* !__HAVE_TIMECOUNTER */
1520 s = splclock();
1521 tv = mono_time;
1522 splx(s);
1523 #endif /* !__HAVE_TIMECOUNTER */
1524 timersub(&tv, lasttime, &delta);
1525
1526 /*
1527 * check for 0,0 is so that the message will be seen at least once,
1528 * even if interval is huge.
1529 */
1530 if (timercmp(&delta, mininterval, >=) ||
1531 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1532 *lasttime = tv;
1533 rv = 1;
1534 }
1535
1536 return (rv);
1537 }
1538
1539 /*
1540 * ppsratecheck(): packets (or events) per second limitation.
1541 */
1542 int
1543 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1544 {
1545 struct timeval tv, delta;
1546 int rv;
1547 #ifndef __HAVE_TIMECOUNTER
1548 int s;
1549 #endif
1550
1551 #ifdef __HAVE_TIMECOUNTER
1552 getmicrouptime(&tv);
1553 #else /* !__HAVE_TIMECOUNTER */
1554 s = splclock();
1555 tv = mono_time;
1556 splx(s);
1557 #endif /* !__HAVE_TIMECOUNTER */
1558 timersub(&tv, lasttime, &delta);
1559
1560 /*
1561 * check for 0,0 is so that the message will be seen at least once.
1562 * if more than one second have passed since the last update of
1563 * lasttime, reset the counter.
1564 *
1565 * we do increment *curpps even in *curpps < maxpps case, as some may
1566 * try to use *curpps for stat purposes as well.
1567 */
1568 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1569 delta.tv_sec >= 1) {
1570 *lasttime = tv;
1571 *curpps = 0;
1572 }
1573 if (maxpps < 0)
1574 rv = 1;
1575 else if (*curpps < maxpps)
1576 rv = 1;
1577 else
1578 rv = 0;
1579
1580 #if 1 /*DIAGNOSTIC?*/
1581 /* be careful about wrap-around */
1582 if (*curpps + 1 > *curpps)
1583 *curpps = *curpps + 1;
1584 #else
1585 /*
1586 * assume that there's not too many calls to this function.
1587 * not sure if the assumption holds, as it depends on *caller's*
1588 * behavior, not the behavior of this function.
1589 * IMHO it is wrong to make assumption on the caller's behavior,
1590 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1591 */
1592 *curpps = *curpps + 1;
1593 #endif
1594
1595 return (rv);
1596 }
1597