kern_time.c revision 1.113 1 /* $NetBSD: kern_time.c,v 1.113 2007/02/09 21:55:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.113 2007/02/09 21:55:31 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #ifdef __HAVE_TIMECOUNTER
82 #include <sys/timetc.h>
83 #else /* !__HAVE_TIMECOUNTER */
84 #include <sys/timevar.h>
85 #endif /* !__HAVE_TIMECOUNTER */
86 #include <sys/kauth.h>
87
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #include <machine/cpu.h>
94
95 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
96 &pool_allocator_nointr);
97 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
98 &pool_allocator_nointr);
99
100 #ifdef __HAVE_TIMECOUNTER
101 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
102 #endif /* __HAVE_TIMECOUNTER */
103
104 /* Time of day and interval timer support.
105 *
106 * These routines provide the kernel entry points to get and set
107 * the time-of-day and per-process interval timers. Subroutines
108 * here provide support for adding and subtracting timeval structures
109 * and decrementing interval timers, optionally reloading the interval
110 * timers when they expire.
111 */
112
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(struct proc *p, struct timespec *ts)
116 {
117 struct timeval delta, tv;
118 #ifdef __HAVE_TIMECOUNTER
119 struct timeval now;
120 struct timespec ts1;
121 #endif /* !__HAVE_TIMECOUNTER */
122 struct cpu_info *ci;
123 int s;
124
125 /*
126 * Don't allow the time to be set forward so far it will wrap
127 * and become negative, thus allowing an attacker to bypass
128 * the next check below. The cutoff is 1 year before rollover
129 * occurs, so even if the attacker uses adjtime(2) to move
130 * the time past the cutoff, it will take a very long time
131 * to get to the wrap point.
132 *
133 * XXX: we check against INT_MAX since on 64-bit
134 * platforms, sizeof(int) != sizeof(long) and
135 * time_t is 32 bits even when atv.tv_sec is 64 bits.
136 */
137 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
138 struct proc *pp;
139
140 rw_enter(&proclist_lock, RW_READER);
141 pp = p->p_pptr;
142 mutex_enter(&pp->p_mutex);
143 log(LOG_WARNING, "pid %d (%s) "
144 "invoked by uid %d ppid %d (%s) "
145 "tried to set clock forward to %ld\n",
146 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
147 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
148 mutex_exit(&pp->p_mutex);
149 rw_exit(&proclist_lock);
150 return (EPERM);
151 }
152 TIMESPEC_TO_TIMEVAL(&tv, ts);
153
154 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
155 s = splclock();
156 #ifdef __HAVE_TIMECOUNTER
157 microtime(&now);
158 timersub(&tv, &now, &delta);
159 #else /* !__HAVE_TIMECOUNTER */
160 timersub(&tv, &time, &delta);
161 #endif /* !__HAVE_TIMECOUNTER */
162 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
163 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
164 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
165 splx(s);
166 return (EPERM);
167 }
168 #ifdef notyet
169 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
170 splx(s);
171 return (EPERM);
172 }
173 #endif
174
175 #ifdef __HAVE_TIMECOUNTER
176 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
177 tc_setclock(&ts1);
178 #else /* !__HAVE_TIMECOUNTER */
179 time = tv;
180 #endif /* !__HAVE_TIMECOUNTER */
181
182 (void) spllowersoftclock();
183
184 timeradd(&boottime, &delta, &boottime);
185
186 /*
187 * XXXSMP
188 * This is wrong. We should traverse a list of all
189 * CPUs and add the delta to the runtime of those
190 * CPUs which have a process on them.
191 */
192 ci = curcpu();
193 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
194 &ci->ci_schedstate.spc_runtime);
195 splx(s);
196 resettodr();
197 return (0);
198 }
199
200 /* ARGSUSED */
201 int
202 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
203 {
204 struct sys_clock_gettime_args /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(struct timespec *) tp;
207 } */ *uap = v;
208 clockid_t clock_id;
209 struct timespec ats;
210
211 clock_id = SCARG(uap, clock_id);
212 switch (clock_id) {
213 case CLOCK_REALTIME:
214 nanotime(&ats);
215 break;
216 case CLOCK_MONOTONIC:
217 #ifdef __HAVE_TIMECOUNTER
218 nanouptime(&ats);
219 #else /* !__HAVE_TIMECOUNTER */
220 {
221 int s;
222
223 /* XXX "hz" granularity */
224 s = splclock();
225 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
226 splx(s);
227 }
228 #endif /* !__HAVE_TIMECOUNTER */
229 break;
230 default:
231 return (EINVAL);
232 }
233
234 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
235 }
236
237 /* ARGSUSED */
238 int
239 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
240 {
241 struct sys_clock_settime_args /* {
242 syscallarg(clockid_t) clock_id;
243 syscallarg(const struct timespec *) tp;
244 } */ *uap = v;
245 int error;
246
247 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
248 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
249 return (error);
250
251 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
252 }
253
254
255 int
256 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
257 {
258 struct timespec ats;
259 int error;
260
261 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
262 return (error);
263
264 switch (clock_id) {
265 case CLOCK_REALTIME:
266 if ((error = settime(p, &ats)) != 0)
267 return (error);
268 break;
269 case CLOCK_MONOTONIC:
270 return (EINVAL); /* read-only clock */
271 default:
272 return (EINVAL);
273 }
274
275 return 0;
276 }
277
278 int
279 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
280 {
281 struct sys_clock_getres_args /* {
282 syscallarg(clockid_t) clock_id;
283 syscallarg(struct timespec *) tp;
284 } */ *uap = v;
285 clockid_t clock_id;
286 struct timespec ts;
287 int error = 0;
288
289 clock_id = SCARG(uap, clock_id);
290 switch (clock_id) {
291 case CLOCK_REALTIME:
292 case CLOCK_MONOTONIC:
293 ts.tv_sec = 0;
294 #ifdef __HAVE_TIMECOUNTER
295 if (tc_getfrequency() > 1000000000)
296 ts.tv_nsec = 1;
297 else
298 ts.tv_nsec = 1000000000 / tc_getfrequency();
299 #else /* !__HAVE_TIMECOUNTER */
300 ts.tv_nsec = 1000000000 / hz;
301 #endif /* !__HAVE_TIMECOUNTER */
302 break;
303 default:
304 return (EINVAL);
305 }
306
307 if (SCARG(uap, tp))
308 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
309
310 return error;
311 }
312
313 /* ARGSUSED */
314 int
315 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
316 {
317 #ifdef __HAVE_TIMECOUNTER
318 struct sys_nanosleep_args/* {
319 syscallarg(struct timespec *) rqtp;
320 syscallarg(struct timespec *) rmtp;
321 } */ *uap = v;
322 struct timespec rmt, rqt;
323 int error, timo;
324
325 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
326 if (error)
327 return (error);
328
329 if (itimespecfix(&rqt))
330 return (EINVAL);
331
332 timo = tstohz(&rqt);
333 /*
334 * Avoid inadvertantly sleeping forever
335 */
336 if (timo == 0)
337 timo = 1;
338
339 getnanouptime(&rmt);
340
341 error = kpause("nanoslp", TRUE, timo, NULL);
342 if (error == ERESTART)
343 error = EINTR;
344 if (error == EWOULDBLOCK)
345 error = 0;
346
347 if (SCARG(uap, rmtp)) {
348 int error1;
349 struct timespec rmtend;
350
351 getnanouptime(&rmtend);
352
353 timespecsub(&rmtend, &rmt, &rmt);
354 timespecsub(&rqt, &rmt, &rmt);
355 if (rmt.tv_sec < 0)
356 timespecclear(&rmt);
357
358 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
359 sizeof(rmt));
360 if (error1)
361 return (error1);
362 }
363
364 return error;
365 #else /* !__HAVE_TIMECOUNTER */
366 struct sys_nanosleep_args/* {
367 syscallarg(struct timespec *) rqtp;
368 syscallarg(struct timespec *) rmtp;
369 } */ *uap = v;
370 struct timespec rqt;
371 struct timespec rmt;
372 struct timeval atv, utv;
373 int error, s, timo;
374
375 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
376 if (error)
377 return (error);
378
379 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
380 if (itimerfix(&atv))
381 return (EINVAL);
382
383 s = splclock();
384 timeradd(&atv,&time,&atv);
385 timo = hzto(&atv);
386 /*
387 * Avoid inadvertantly sleeping forever
388 */
389 if (timo == 0)
390 timo = 1;
391 splx(s);
392
393 error = kpause("nanoslp", TRUE, timo, NULL);
394 if (error == ERESTART)
395 error = EINTR;
396 if (error == EWOULDBLOCK)
397 error = 0;
398
399 if (SCARG(uap, rmtp)) {
400 int error1;
401
402 s = splclock();
403 utv = time;
404 splx(s);
405
406 timersub(&atv, &utv, &utv);
407 if (utv.tv_sec < 0)
408 timerclear(&utv);
409
410 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
411 error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
412 sizeof(rmt));
413 if (error1)
414 return (error1);
415 }
416
417 return error;
418 #endif /* !__HAVE_TIMECOUNTER */
419 }
420
421 /* ARGSUSED */
422 int
423 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
424 {
425 struct sys_gettimeofday_args /* {
426 syscallarg(struct timeval *) tp;
427 syscallarg(void *) tzp; really "struct timezone *"
428 } */ *uap = v;
429 struct timeval atv;
430 int error = 0;
431 struct timezone tzfake;
432
433 if (SCARG(uap, tp)) {
434 microtime(&atv);
435 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
436 if (error)
437 return (error);
438 }
439 if (SCARG(uap, tzp)) {
440 /*
441 * NetBSD has no kernel notion of time zone, so we just
442 * fake up a timezone struct and return it if demanded.
443 */
444 tzfake.tz_minuteswest = 0;
445 tzfake.tz_dsttime = 0;
446 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
447 }
448 return (error);
449 }
450
451 /* ARGSUSED */
452 int
453 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
454 {
455 struct sys_settimeofday_args /* {
456 syscallarg(const struct timeval *) tv;
457 syscallarg(const void *) tzp; really "const struct timezone *"
458 } */ *uap = v;
459 int error;
460
461 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
462 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
463 return (error);
464
465 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
466 }
467
468 int
469 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
470 struct proc *p)
471 {
472 struct timeval atv;
473 struct timespec ts;
474 int error;
475
476 /* Verify all parameters before changing time. */
477 /*
478 * NetBSD has no kernel notion of time zone, and only an
479 * obsolete program would try to set it, so we log a warning.
480 */
481 if (utzp)
482 log(LOG_WARNING, "pid %d attempted to set the "
483 "(obsolete) kernel time zone\n", p->p_pid);
484
485 if (utv == NULL)
486 return 0;
487
488 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
489 return error;
490 TIMEVAL_TO_TIMESPEC(&atv, &ts);
491 return settime(p, &ts);
492 }
493
494 #ifndef __HAVE_TIMECOUNTER
495 int tickdelta; /* current clock skew, us. per tick */
496 long timedelta; /* unapplied time correction, us. */
497 long bigadj = 1000000; /* use 10x skew above bigadj us. */
498 #endif
499
500 int time_adjusted; /* set if an adjustment is made */
501
502 /* ARGSUSED */
503 int
504 sys_adjtime(struct lwp *l, void *v, register_t *retval)
505 {
506 struct sys_adjtime_args /* {
507 syscallarg(const struct timeval *) delta;
508 syscallarg(struct timeval *) olddelta;
509 } */ *uap = v;
510 int error;
511
512 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
513 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
514 return (error);
515
516 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
517 }
518
519 int
520 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
521 {
522 struct timeval atv;
523 int error = 0;
524
525 #ifdef __HAVE_TIMECOUNTER
526 extern int64_t time_adjtime; /* in kern_ntptime.c */
527 #else /* !__HAVE_TIMECOUNTER */
528 long ndelta, ntickdelta, odelta;
529 int s;
530 #endif /* !__HAVE_TIMECOUNTER */
531
532 #ifdef __HAVE_TIMECOUNTER
533 if (olddelta) {
534 atv.tv_sec = time_adjtime / 1000000;
535 atv.tv_usec = time_adjtime % 1000000;
536 if (atv.tv_usec < 0) {
537 atv.tv_usec += 1000000;
538 atv.tv_sec--;
539 }
540 error = copyout(&atv, olddelta, sizeof(struct timeval));
541 if (error)
542 return (error);
543 }
544
545 if (delta) {
546 error = copyin(delta, &atv, sizeof(struct timeval));
547 if (error)
548 return (error);
549
550 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
551 atv.tv_usec;
552
553 if (time_adjtime)
554 /* We need to save the system time during shutdown */
555 time_adjusted |= 1;
556 }
557 #else /* !__HAVE_TIMECOUNTER */
558 error = copyin(delta, &atv, sizeof(struct timeval));
559 if (error)
560 return (error);
561
562 /*
563 * Compute the total correction and the rate at which to apply it.
564 * Round the adjustment down to a whole multiple of the per-tick
565 * delta, so that after some number of incremental changes in
566 * hardclock(), tickdelta will become zero, lest the correction
567 * overshoot and start taking us away from the desired final time.
568 */
569 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
570 if (ndelta > bigadj || ndelta < -bigadj)
571 ntickdelta = 10 * tickadj;
572 else
573 ntickdelta = tickadj;
574 if (ndelta % ntickdelta)
575 ndelta = ndelta / ntickdelta * ntickdelta;
576
577 /*
578 * To make hardclock()'s job easier, make the per-tick delta negative
579 * if we want time to run slower; then hardclock can simply compute
580 * tick + tickdelta, and subtract tickdelta from timedelta.
581 */
582 if (ndelta < 0)
583 ntickdelta = -ntickdelta;
584 if (ndelta != 0)
585 /* We need to save the system clock time during shutdown */
586 time_adjusted |= 1;
587 s = splclock();
588 odelta = timedelta;
589 timedelta = ndelta;
590 tickdelta = ntickdelta;
591 splx(s);
592
593 if (olddelta) {
594 atv.tv_sec = odelta / 1000000;
595 atv.tv_usec = odelta % 1000000;
596 error = copyout(&atv, olddelta, sizeof(struct timeval));
597 }
598 #endif /* __HAVE_TIMECOUNTER */
599
600 return error;
601 }
602
603 /*
604 * Interval timer support. Both the BSD getitimer() family and the POSIX
605 * timer_*() family of routines are supported.
606 *
607 * All timers are kept in an array pointed to by p_timers, which is
608 * allocated on demand - many processes don't use timers at all. The
609 * first three elements in this array are reserved for the BSD timers:
610 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
611 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
612 * syscall.
613 *
614 * Realtime timers are kept in the ptimer structure as an absolute
615 * time; virtual time timers are kept as a linked list of deltas.
616 * Virtual time timers are processed in the hardclock() routine of
617 * kern_clock.c. The real time timer is processed by a callout
618 * routine, called from the softclock() routine. Since a callout may
619 * be delayed in real time due to interrupt processing in the system,
620 * it is possible for the real time timeout routine (realtimeexpire,
621 * given below), to be delayed in real time past when it is supposed
622 * to occur. It does not suffice, therefore, to reload the real timer
623 * .it_value from the real time timers .it_interval. Rather, we
624 * compute the next time in absolute time the timer should go off. */
625
626 /* Allocate a POSIX realtime timer. */
627 int
628 sys_timer_create(struct lwp *l, void *v, register_t *retval)
629 {
630 struct sys_timer_create_args /* {
631 syscallarg(clockid_t) clock_id;
632 syscallarg(struct sigevent *) evp;
633 syscallarg(timer_t *) timerid;
634 } */ *uap = v;
635
636 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
637 SCARG(uap, evp), copyin, l);
638 }
639
640 int
641 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
642 copyin_t fetch_event, struct lwp *l)
643 {
644 int error;
645 timer_t timerid;
646 struct ptimer *pt;
647 struct proc *p;
648
649 p = l->l_proc;
650
651 if (id < CLOCK_REALTIME ||
652 id > CLOCK_PROF)
653 return (EINVAL);
654
655 if (p->p_timers == NULL)
656 timers_alloc(p);
657
658 /* Find a free timer slot, skipping those reserved for setitimer(). */
659 for (timerid = 3; timerid < TIMER_MAX; timerid++)
660 if (p->p_timers->pts_timers[timerid] == NULL)
661 break;
662
663 if (timerid == TIMER_MAX)
664 return EAGAIN;
665
666 pt = pool_get(&ptimer_pool, PR_WAITOK);
667 if (evp) {
668 if (((error =
669 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
670 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
671 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
672 pool_put(&ptimer_pool, pt);
673 return (error ? error : EINVAL);
674 }
675 } else {
676 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
677 switch (id) {
678 case CLOCK_REALTIME:
679 pt->pt_ev.sigev_signo = SIGALRM;
680 break;
681 case CLOCK_VIRTUAL:
682 pt->pt_ev.sigev_signo = SIGVTALRM;
683 break;
684 case CLOCK_PROF:
685 pt->pt_ev.sigev_signo = SIGPROF;
686 break;
687 }
688 pt->pt_ev.sigev_value.sival_int = timerid;
689 }
690 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
691 pt->pt_info.ksi_errno = 0;
692 pt->pt_info.ksi_code = 0;
693 pt->pt_info.ksi_pid = p->p_pid;
694 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
695 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
696
697 pt->pt_type = id;
698 pt->pt_proc = p;
699 pt->pt_overruns = 0;
700 pt->pt_poverruns = 0;
701 pt->pt_entry = timerid;
702 timerclear(&pt->pt_time.it_value);
703 if (id == CLOCK_REALTIME)
704 callout_init(&pt->pt_ch);
705 else
706 pt->pt_active = 0;
707
708 p->p_timers->pts_timers[timerid] = pt;
709
710 return copyout(&timerid, tid, sizeof(timerid));
711 }
712
713 /* Delete a POSIX realtime timer */
714 int
715 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
716 {
717 struct sys_timer_delete_args /* {
718 syscallarg(timer_t) timerid;
719 } */ *uap = v;
720 struct proc *p = l->l_proc;
721 timer_t timerid;
722 struct ptimer *pt, *ptn;
723 int s;
724
725 timerid = SCARG(uap, timerid);
726
727 if ((p->p_timers == NULL) ||
728 (timerid < 2) || (timerid >= TIMER_MAX) ||
729 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
730 return (EINVAL);
731
732 if (pt->pt_type == CLOCK_REALTIME)
733 callout_stop(&pt->pt_ch);
734 else if (pt->pt_active) {
735 s = splclock();
736 ptn = LIST_NEXT(pt, pt_list);
737 LIST_REMOVE(pt, pt_list);
738 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
739 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
740 &ptn->pt_time.it_value);
741 splx(s);
742 }
743
744 p->p_timers->pts_timers[timerid] = NULL;
745 pool_put(&ptimer_pool, pt);
746
747 return (0);
748 }
749
750 /*
751 * Set up the given timer. The value in pt->pt_time.it_value is taken
752 * to be an absolute time for CLOCK_REALTIME timers and a relative
753 * time for virtual timers.
754 * Must be called at splclock().
755 */
756 void
757 timer_settime(struct ptimer *pt)
758 {
759 struct ptimer *ptn, *pptn;
760 struct ptlist *ptl;
761
762 if (pt->pt_type == CLOCK_REALTIME) {
763 callout_stop(&pt->pt_ch);
764 if (timerisset(&pt->pt_time.it_value)) {
765 /*
766 * Don't need to check hzto() return value, here.
767 * callout_reset() does it for us.
768 */
769 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
770 realtimerexpire, pt);
771 }
772 } else {
773 if (pt->pt_active) {
774 ptn = LIST_NEXT(pt, pt_list);
775 LIST_REMOVE(pt, pt_list);
776 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
777 timeradd(&pt->pt_time.it_value,
778 &ptn->pt_time.it_value,
779 &ptn->pt_time.it_value);
780 }
781 if (timerisset(&pt->pt_time.it_value)) {
782 if (pt->pt_type == CLOCK_VIRTUAL)
783 ptl = &pt->pt_proc->p_timers->pts_virtual;
784 else
785 ptl = &pt->pt_proc->p_timers->pts_prof;
786
787 for (ptn = LIST_FIRST(ptl), pptn = NULL;
788 ptn && timercmp(&pt->pt_time.it_value,
789 &ptn->pt_time.it_value, >);
790 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
791 timersub(&pt->pt_time.it_value,
792 &ptn->pt_time.it_value,
793 &pt->pt_time.it_value);
794
795 if (pptn)
796 LIST_INSERT_AFTER(pptn, pt, pt_list);
797 else
798 LIST_INSERT_HEAD(ptl, pt, pt_list);
799
800 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
801 timersub(&ptn->pt_time.it_value,
802 &pt->pt_time.it_value,
803 &ptn->pt_time.it_value);
804
805 pt->pt_active = 1;
806 } else
807 pt->pt_active = 0;
808 }
809 }
810
811 void
812 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
813 {
814 #ifdef __HAVE_TIMECOUNTER
815 struct timeval now;
816 #endif
817 struct ptimer *ptn;
818
819 *aitv = pt->pt_time;
820 if (pt->pt_type == CLOCK_REALTIME) {
821 /*
822 * Convert from absolute to relative time in .it_value
823 * part of real time timer. If time for real time
824 * timer has passed return 0, else return difference
825 * between current time and time for the timer to go
826 * off.
827 */
828 if (timerisset(&aitv->it_value)) {
829 #ifdef __HAVE_TIMECOUNTER
830 getmicrotime(&now);
831 if (timercmp(&aitv->it_value, &now, <))
832 timerclear(&aitv->it_value);
833 else
834 timersub(&aitv->it_value, &now,
835 &aitv->it_value);
836 #else /* !__HAVE_TIMECOUNTER */
837 if (timercmp(&aitv->it_value, &time, <))
838 timerclear(&aitv->it_value);
839 else
840 timersub(&aitv->it_value, &time,
841 &aitv->it_value);
842 #endif /* !__HAVE_TIMECOUNTER */
843 }
844 } else if (pt->pt_active) {
845 if (pt->pt_type == CLOCK_VIRTUAL)
846 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
847 else
848 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
849 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
850 timeradd(&aitv->it_value,
851 &ptn->pt_time.it_value, &aitv->it_value);
852 KASSERT(ptn != NULL); /* pt should be findable on the list */
853 } else
854 timerclear(&aitv->it_value);
855 }
856
857
858
859 /* Set and arm a POSIX realtime timer */
860 int
861 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
862 {
863 struct sys_timer_settime_args /* {
864 syscallarg(timer_t) timerid;
865 syscallarg(int) flags;
866 syscallarg(const struct itimerspec *) value;
867 syscallarg(struct itimerspec *) ovalue;
868 } */ *uap = v;
869 int error;
870 struct itimerspec value, ovalue, *ovp = NULL;
871
872 if ((error = copyin(SCARG(uap, value), &value,
873 sizeof(struct itimerspec))) != 0)
874 return (error);
875
876 if (SCARG(uap, ovalue))
877 ovp = &ovalue;
878
879 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
880 SCARG(uap, flags), l->l_proc)) != 0)
881 return error;
882
883 if (ovp)
884 return copyout(&ovalue, SCARG(uap, ovalue),
885 sizeof(struct itimerspec));
886 return 0;
887 }
888
889 int
890 dotimer_settime(int timerid, struct itimerspec *value,
891 struct itimerspec *ovalue, int flags, struct proc *p)
892 {
893 #ifdef __HAVE_TIMECOUNTER
894 struct timeval now;
895 #endif
896 struct itimerval val, oval;
897 struct ptimer *pt;
898 int s;
899
900 if ((p->p_timers == NULL) ||
901 (timerid < 2) || (timerid >= TIMER_MAX) ||
902 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
903 return (EINVAL);
904
905 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
906 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
907 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
908 return (EINVAL);
909
910 oval = pt->pt_time;
911 pt->pt_time = val;
912
913 s = splclock();
914 /*
915 * If we've been passed a relative time for a realtime timer,
916 * convert it to absolute; if an absolute time for a virtual
917 * timer, convert it to relative and make sure we don't set it
918 * to zero, which would cancel the timer, or let it go
919 * negative, which would confuse the comparison tests.
920 */
921 if (timerisset(&pt->pt_time.it_value)) {
922 if (pt->pt_type == CLOCK_REALTIME) {
923 #ifdef __HAVE_TIMECOUNTER
924 if ((flags & TIMER_ABSTIME) == 0) {
925 getmicrotime(&now);
926 timeradd(&pt->pt_time.it_value, &now,
927 &pt->pt_time.it_value);
928 }
929 #else /* !__HAVE_TIMECOUNTER */
930 if ((flags & TIMER_ABSTIME) == 0)
931 timeradd(&pt->pt_time.it_value, &time,
932 &pt->pt_time.it_value);
933 #endif /* !__HAVE_TIMECOUNTER */
934 } else {
935 if ((flags & TIMER_ABSTIME) != 0) {
936 #ifdef __HAVE_TIMECOUNTER
937 getmicrotime(&now);
938 timersub(&pt->pt_time.it_value, &now,
939 &pt->pt_time.it_value);
940 #else /* !__HAVE_TIMECOUNTER */
941 timersub(&pt->pt_time.it_value, &time,
942 &pt->pt_time.it_value);
943 #endif /* !__HAVE_TIMECOUNTER */
944 if (!timerisset(&pt->pt_time.it_value) ||
945 pt->pt_time.it_value.tv_sec < 0) {
946 pt->pt_time.it_value.tv_sec = 0;
947 pt->pt_time.it_value.tv_usec = 1;
948 }
949 }
950 }
951 }
952
953 timer_settime(pt);
954 splx(s);
955
956 if (ovalue) {
957 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
958 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
959 }
960
961 return (0);
962 }
963
964 /* Return the time remaining until a POSIX timer fires. */
965 int
966 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
967 {
968 struct sys_timer_gettime_args /* {
969 syscallarg(timer_t) timerid;
970 syscallarg(struct itimerspec *) value;
971 } */ *uap = v;
972 struct itimerspec its;
973 int error;
974
975 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
976 &its)) != 0)
977 return error;
978
979 return copyout(&its, SCARG(uap, value), sizeof(its));
980 }
981
982 int
983 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
984 {
985 int s;
986 struct ptimer *pt;
987 struct itimerval aitv;
988
989 if ((p->p_timers == NULL) ||
990 (timerid < 2) || (timerid >= TIMER_MAX) ||
991 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
992 return (EINVAL);
993
994 s = splclock();
995 timer_gettime(pt, &aitv);
996 splx(s);
997
998 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
999 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * Return the count of the number of times a periodic timer expired
1006 * while a notification was already pending. The counter is reset when
1007 * a timer expires and a notification can be posted.
1008 */
1009 int
1010 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1011 {
1012 struct sys_timer_getoverrun_args /* {
1013 syscallarg(timer_t) timerid;
1014 } */ *uap = v;
1015 struct proc *p = l->l_proc;
1016 int timerid;
1017 struct ptimer *pt;
1018
1019 timerid = SCARG(uap, timerid);
1020
1021 if ((p->p_timers == NULL) ||
1022 (timerid < 2) || (timerid >= TIMER_MAX) ||
1023 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1024 return (EINVAL);
1025
1026 *retval = pt->pt_poverruns;
1027
1028 return (0);
1029 }
1030
1031 /*
1032 * Real interval timer expired:
1033 * send process whose timer expired an alarm signal.
1034 * If time is not set up to reload, then just return.
1035 * Else compute next time timer should go off which is > current time.
1036 * This is where delay in processing this timeout causes multiple
1037 * SIGALRM calls to be compressed into one.
1038 */
1039 void
1040 realtimerexpire(void *arg)
1041 {
1042 #ifdef __HAVE_TIMECOUNTER
1043 struct timeval now;
1044 #endif
1045 struct ptimer *pt;
1046 int s;
1047
1048 pt = (struct ptimer *)arg;
1049
1050 itimerfire(pt);
1051
1052 if (!timerisset(&pt->pt_time.it_interval)) {
1053 timerclear(&pt->pt_time.it_value);
1054 return;
1055 }
1056 #ifdef __HAVE_TIMECOUNTER
1057 for (;;) {
1058 s = splclock(); /* XXX need spl now? */
1059 timeradd(&pt->pt_time.it_value,
1060 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1061 getmicrotime(&now);
1062 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1063 /*
1064 * Don't need to check hzto() return value, here.
1065 * callout_reset() does it for us.
1066 */
1067 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1068 realtimerexpire, pt);
1069 splx(s);
1070 return;
1071 }
1072 splx(s);
1073 pt->pt_overruns++;
1074 }
1075 #else /* !__HAVE_TIMECOUNTER */
1076 for (;;) {
1077 s = splclock();
1078 timeradd(&pt->pt_time.it_value,
1079 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1080 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1081 /*
1082 * Don't need to check hzto() return value, here.
1083 * callout_reset() does it for us.
1084 */
1085 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1086 realtimerexpire, pt);
1087 splx(s);
1088 return;
1089 }
1090 splx(s);
1091 pt->pt_overruns++;
1092 }
1093 #endif /* !__HAVE_TIMECOUNTER */
1094 }
1095
1096 /* BSD routine to get the value of an interval timer. */
1097 /* ARGSUSED */
1098 int
1099 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1100 {
1101 struct sys_getitimer_args /* {
1102 syscallarg(int) which;
1103 syscallarg(struct itimerval *) itv;
1104 } */ *uap = v;
1105 struct proc *p = l->l_proc;
1106 struct itimerval aitv;
1107 int error;
1108
1109 error = dogetitimer(p, SCARG(uap, which), &aitv);
1110 if (error)
1111 return error;
1112 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1113 }
1114
1115 int
1116 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1117 {
1118 int s;
1119
1120 if ((u_int)which > ITIMER_PROF)
1121 return (EINVAL);
1122
1123 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1124 timerclear(&itvp->it_value);
1125 timerclear(&itvp->it_interval);
1126 } else {
1127 s = splclock();
1128 timer_gettime(p->p_timers->pts_timers[which], itvp);
1129 splx(s);
1130 }
1131
1132 return 0;
1133 }
1134
1135 /* BSD routine to set/arm an interval timer. */
1136 /* ARGSUSED */
1137 int
1138 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1139 {
1140 struct sys_setitimer_args /* {
1141 syscallarg(int) which;
1142 syscallarg(const struct itimerval *) itv;
1143 syscallarg(struct itimerval *) oitv;
1144 } */ *uap = v;
1145 struct proc *p = l->l_proc;
1146 int which = SCARG(uap, which);
1147 struct sys_getitimer_args getargs;
1148 const struct itimerval *itvp;
1149 struct itimerval aitv;
1150 int error;
1151
1152 if ((u_int)which > ITIMER_PROF)
1153 return (EINVAL);
1154 itvp = SCARG(uap, itv);
1155 if (itvp &&
1156 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1157 return (error);
1158 if (SCARG(uap, oitv) != NULL) {
1159 SCARG(&getargs, which) = which;
1160 SCARG(&getargs, itv) = SCARG(uap, oitv);
1161 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1162 return (error);
1163 }
1164 if (itvp == 0)
1165 return (0);
1166
1167 return dosetitimer(p, which, &aitv);
1168 }
1169
1170 int
1171 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1172 {
1173 #ifdef __HAVE_TIMECOUNTER
1174 struct timeval now;
1175 #endif
1176 struct ptimer *pt;
1177 int s;
1178
1179 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1180 return (EINVAL);
1181
1182 /*
1183 * Don't bother allocating data structures if the process just
1184 * wants to clear the timer.
1185 */
1186 if (!timerisset(&itvp->it_value) &&
1187 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1188 return (0);
1189
1190 if (p->p_timers == NULL)
1191 timers_alloc(p);
1192 if (p->p_timers->pts_timers[which] == NULL) {
1193 pt = pool_get(&ptimer_pool, PR_WAITOK);
1194 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1195 pt->pt_ev.sigev_value.sival_int = which;
1196 pt->pt_overruns = 0;
1197 pt->pt_proc = p;
1198 pt->pt_type = which;
1199 pt->pt_entry = which;
1200 switch (which) {
1201 case ITIMER_REAL:
1202 callout_init(&pt->pt_ch);
1203 pt->pt_ev.sigev_signo = SIGALRM;
1204 break;
1205 case ITIMER_VIRTUAL:
1206 pt->pt_active = 0;
1207 pt->pt_ev.sigev_signo = SIGVTALRM;
1208 break;
1209 case ITIMER_PROF:
1210 pt->pt_active = 0;
1211 pt->pt_ev.sigev_signo = SIGPROF;
1212 break;
1213 }
1214 } else
1215 pt = p->p_timers->pts_timers[which];
1216
1217 pt->pt_time = *itvp;
1218 p->p_timers->pts_timers[which] = pt;
1219
1220 s = splclock();
1221 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1222 /* Convert to absolute time */
1223 #ifdef __HAVE_TIMECOUNTER
1224 /* XXX need to wrap in splclock for timecounters case? */
1225 getmicrotime(&now);
1226 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1227 #else /* !__HAVE_TIMECOUNTER */
1228 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1229 #endif /* !__HAVE_TIMECOUNTER */
1230 }
1231 timer_settime(pt);
1232 splx(s);
1233
1234 return (0);
1235 }
1236
1237 /* Utility routines to manage the array of pointers to timers. */
1238 void
1239 timers_alloc(struct proc *p)
1240 {
1241 int i;
1242 struct ptimers *pts;
1243
1244 pts = pool_get(&ptimers_pool, PR_WAITOK);
1245 LIST_INIT(&pts->pts_virtual);
1246 LIST_INIT(&pts->pts_prof);
1247 for (i = 0; i < TIMER_MAX; i++)
1248 pts->pts_timers[i] = NULL;
1249 pts->pts_fired = 0;
1250 p->p_timers = pts;
1251 }
1252
1253 /*
1254 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1255 * then clean up all timers and free all the data structures. If
1256 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1257 * by timer_create(), not the BSD setitimer() timers, and only free the
1258 * structure if none of those remain.
1259 */
1260 void
1261 timers_free(struct proc *p, int which)
1262 {
1263 int i, s;
1264 struct ptimers *pts;
1265 struct ptimer *pt, *ptn;
1266 struct timeval tv;
1267
1268 if (p->p_timers) {
1269 pts = p->p_timers;
1270 if (which == TIMERS_ALL)
1271 i = 0;
1272 else {
1273 s = splclock();
1274 timerclear(&tv);
1275 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1276 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1277 ptn = LIST_NEXT(ptn, pt_list))
1278 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1279 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1280 if (ptn) {
1281 timeradd(&tv, &ptn->pt_time.it_value,
1282 &ptn->pt_time.it_value);
1283 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1284 ptn, pt_list);
1285 }
1286
1287 timerclear(&tv);
1288 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1289 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1290 ptn = LIST_NEXT(ptn, pt_list))
1291 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1292 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1293 if (ptn) {
1294 timeradd(&tv, &ptn->pt_time.it_value,
1295 &ptn->pt_time.it_value);
1296 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1297 pt_list);
1298 }
1299 splx(s);
1300 i = 3;
1301 }
1302 for ( ; i < TIMER_MAX; i++)
1303 if ((pt = pts->pts_timers[i]) != NULL) {
1304 if (pt->pt_type == CLOCK_REALTIME)
1305 callout_stop(&pt->pt_ch);
1306 pts->pts_timers[i] = NULL;
1307 pool_put(&ptimer_pool, pt);
1308 }
1309 if ((pts->pts_timers[0] == NULL) &&
1310 (pts->pts_timers[1] == NULL) &&
1311 (pts->pts_timers[2] == NULL)) {
1312 p->p_timers = NULL;
1313 pool_put(&ptimers_pool, pts);
1314 }
1315 }
1316 }
1317
1318 /*
1319 * Check that a proposed value to load into the .it_value or
1320 * .it_interval part of an interval timer is acceptable, and
1321 * fix it to have at least minimal value (i.e. if it is less
1322 * than the resolution of the clock, round it up.)
1323 */
1324 int
1325 itimerfix(struct timeval *tv)
1326 {
1327
1328 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1329 return (EINVAL);
1330 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1331 tv->tv_usec = tick;
1332 return (0);
1333 }
1334
1335 #ifdef __HAVE_TIMECOUNTER
1336 int
1337 itimespecfix(struct timespec *ts)
1338 {
1339
1340 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1341 return (EINVAL);
1342 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1343 ts->tv_nsec = tick * 1000;
1344 return (0);
1345 }
1346 #endif /* __HAVE_TIMECOUNTER */
1347
1348 /*
1349 * Decrement an interval timer by a specified number
1350 * of microseconds, which must be less than a second,
1351 * i.e. < 1000000. If the timer expires, then reload
1352 * it. In this case, carry over (usec - old value) to
1353 * reduce the value reloaded into the timer so that
1354 * the timer does not drift. This routine assumes
1355 * that it is called in a context where the timers
1356 * on which it is operating cannot change in value.
1357 */
1358 int
1359 itimerdecr(struct ptimer *pt, int usec)
1360 {
1361 struct itimerval *itp;
1362
1363 itp = &pt->pt_time;
1364 if (itp->it_value.tv_usec < usec) {
1365 if (itp->it_value.tv_sec == 0) {
1366 /* expired, and already in next interval */
1367 usec -= itp->it_value.tv_usec;
1368 goto expire;
1369 }
1370 itp->it_value.tv_usec += 1000000;
1371 itp->it_value.tv_sec--;
1372 }
1373 itp->it_value.tv_usec -= usec;
1374 usec = 0;
1375 if (timerisset(&itp->it_value))
1376 return (1);
1377 /* expired, exactly at end of interval */
1378 expire:
1379 if (timerisset(&itp->it_interval)) {
1380 itp->it_value = itp->it_interval;
1381 itp->it_value.tv_usec -= usec;
1382 if (itp->it_value.tv_usec < 0) {
1383 itp->it_value.tv_usec += 1000000;
1384 itp->it_value.tv_sec--;
1385 }
1386 timer_settime(pt);
1387 } else
1388 itp->it_value.tv_usec = 0; /* sec is already 0 */
1389 return (0);
1390 }
1391
1392 void
1393 itimerfire(struct ptimer *pt)
1394 {
1395 struct proc *p = pt->pt_proc;
1396
1397 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1398 /*
1399 * No RT signal infrastructure exists at this time;
1400 * just post the signal number and throw away the
1401 * value.
1402 */
1403 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1404 pt->pt_overruns++;
1405 else {
1406 ksiginfo_t ksi;
1407 KSI_INIT(&ksi);
1408 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1409 ksi.ksi_code = SI_TIMER;
1410 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1411 pt->pt_poverruns = pt->pt_overruns;
1412 pt->pt_overruns = 0;
1413 mutex_enter(&proclist_mutex);
1414 kpsignal(p, &ksi, NULL);
1415 mutex_exit(&proclist_mutex);
1416 }
1417 }
1418 }
1419
1420 /*
1421 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1422 * for usage and rationale.
1423 */
1424 int
1425 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1426 {
1427 struct timeval tv, delta;
1428 int rv = 0;
1429 #ifndef __HAVE_TIMECOUNTER
1430 int s;
1431 #endif
1432
1433 #ifdef __HAVE_TIMECOUNTER
1434 getmicrouptime(&tv);
1435 #else /* !__HAVE_TIMECOUNTER */
1436 s = splclock();
1437 tv = mono_time;
1438 splx(s);
1439 #endif /* !__HAVE_TIMECOUNTER */
1440 timersub(&tv, lasttime, &delta);
1441
1442 /*
1443 * check for 0,0 is so that the message will be seen at least once,
1444 * even if interval is huge.
1445 */
1446 if (timercmp(&delta, mininterval, >=) ||
1447 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1448 *lasttime = tv;
1449 rv = 1;
1450 }
1451
1452 return (rv);
1453 }
1454
1455 /*
1456 * ppsratecheck(): packets (or events) per second limitation.
1457 */
1458 int
1459 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1460 {
1461 struct timeval tv, delta;
1462 int rv;
1463 #ifndef __HAVE_TIMECOUNTER
1464 int s;
1465 #endif
1466
1467 #ifdef __HAVE_TIMECOUNTER
1468 getmicrouptime(&tv);
1469 #else /* !__HAVE_TIMECOUNTER */
1470 s = splclock();
1471 tv = mono_time;
1472 splx(s);
1473 #endif /* !__HAVE_TIMECOUNTER */
1474 timersub(&tv, lasttime, &delta);
1475
1476 /*
1477 * check for 0,0 is so that the message will be seen at least once.
1478 * if more than one second have passed since the last update of
1479 * lasttime, reset the counter.
1480 *
1481 * we do increment *curpps even in *curpps < maxpps case, as some may
1482 * try to use *curpps for stat purposes as well.
1483 */
1484 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1485 delta.tv_sec >= 1) {
1486 *lasttime = tv;
1487 *curpps = 0;
1488 }
1489 if (maxpps < 0)
1490 rv = 1;
1491 else if (*curpps < maxpps)
1492 rv = 1;
1493 else
1494 rv = 0;
1495
1496 #if 1 /*DIAGNOSTIC?*/
1497 /* be careful about wrap-around */
1498 if (*curpps + 1 > *curpps)
1499 *curpps = *curpps + 1;
1500 #else
1501 /*
1502 * assume that there's not too many calls to this function.
1503 * not sure if the assumption holds, as it depends on *caller's*
1504 * behavior, not the behavior of this function.
1505 * IMHO it is wrong to make assumption on the caller's behavior,
1506 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1507 */
1508 *curpps = *curpps + 1;
1509 #endif
1510
1511 return (rv);
1512 }
1513