kern_time.c revision 1.117.2.4 1 /* $NetBSD: kern_time.c,v 1.117.2.4 2007/07/14 22:09:47 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.117.2.4 2007/07/14 22:09:47 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #ifndef __HAVE_TIMECOUNTER
83 #include <sys/timevar.h>
84 #endif /* !__HAVE_TIMECOUNTER */
85 #include <sys/kauth.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #include <machine/cpu.h>
93
94 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 &pool_allocator_nointr, IPL_NONE);
96 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 &pool_allocator_nointr, IPL_NONE);
98
99 #ifdef __HAVE_TIMECOUNTER
100 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
101 #endif /* __HAVE_TIMECOUNTER */
102
103 /* Time of day and interval timer support.
104 *
105 * These routines provide the kernel entry points to get and set
106 * the time-of-day and per-process interval timers. Subroutines
107 * here provide support for adding and subtracting timeval structures
108 * and decrementing interval timers, optionally reloading the interval
109 * timers when they expire.
110 */
111
112 /* This function is used by clock_settime and settimeofday */
113 int
114 settime(struct proc *p, struct timespec *ts)
115 {
116 struct timeval delta, tv;
117 #ifdef __HAVE_TIMECOUNTER
118 struct timeval now;
119 struct timespec ts1;
120 #endif /* !__HAVE_TIMECOUNTER */
121 lwp_t *l;
122 int s;
123
124 /*
125 * Don't allow the time to be set forward so far it will wrap
126 * and become negative, thus allowing an attacker to bypass
127 * the next check below. The cutoff is 1 year before rollover
128 * occurs, so even if the attacker uses adjtime(2) to move
129 * the time past the cutoff, it will take a very long time
130 * to get to the wrap point.
131 *
132 * XXX: we check against INT_MAX since on 64-bit
133 * platforms, sizeof(int) != sizeof(long) and
134 * time_t is 32 bits even when atv.tv_sec is 64 bits.
135 */
136 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
137 struct proc *pp;
138
139 mutex_enter(&proclist_lock);
140 pp = p->p_pptr;
141 mutex_enter(&pp->p_mutex);
142 log(LOG_WARNING, "pid %d (%s) "
143 "invoked by uid %d ppid %d (%s) "
144 "tried to set clock forward to %ld\n",
145 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 mutex_exit(&pp->p_mutex);
148 mutex_exit(&proclist_lock);
149 return (EPERM);
150 }
151 TIMESPEC_TO_TIMEVAL(&tv, ts);
152
153 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
154 s = splclock();
155 #ifdef __HAVE_TIMECOUNTER
156 microtime(&now);
157 timersub(&tv, &now, &delta);
158 #else /* !__HAVE_TIMECOUNTER */
159 timersub(&tv, &time, &delta);
160 #endif /* !__HAVE_TIMECOUNTER */
161 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
162 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
163 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
164 splx(s);
165 return (EPERM);
166 }
167 #ifdef notyet
168 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
169 splx(s);
170 return (EPERM);
171 }
172 #endif
173
174 #ifdef __HAVE_TIMECOUNTER
175 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
176 tc_setclock(&ts1);
177 #else /* !__HAVE_TIMECOUNTER */
178 time = tv;
179 #endif /* !__HAVE_TIMECOUNTER */
180
181 timeradd(&boottime, &delta, &boottime);
182
183 /*
184 * XXXSMP: There is a short race between setting the time above
185 * and adjusting LWP's run times. Fixing this properly means
186 * pausing all CPUs while we adjust the clock.
187 */
188 mutex_enter(&proclist_lock);
189 LIST_FOREACH(l, &alllwp, l_list) {
190 lwp_lock(l);
191 timeradd(&l->l_stime, &delta, &l->l_stime);
192 lwp_unlock(l);
193 }
194 mutex_exit(&proclist_lock);
195 resettodr();
196 splx(s);
197
198 return (0);
199 }
200
201 /* ARGSUSED */
202 int
203 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
204 {
205 struct sys_clock_gettime_args /* {
206 syscallarg(clockid_t) clock_id;
207 syscallarg(struct timespec *) tp;
208 } */ *uap = v;
209 clockid_t clock_id;
210 struct timespec ats;
211
212 clock_id = SCARG(uap, clock_id);
213 switch (clock_id) {
214 case CLOCK_REALTIME:
215 nanotime(&ats);
216 break;
217 case CLOCK_MONOTONIC:
218 nanouptime(&ats);
219 break;
220 default:
221 return (EINVAL);
222 }
223
224 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
225 }
226
227 /* ARGSUSED */
228 int
229 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
230 {
231 struct sys_clock_settime_args /* {
232 syscallarg(clockid_t) clock_id;
233 syscallarg(const struct timespec *) tp;
234 } */ *uap = v;
235 int error;
236
237 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
238 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
239 return (error);
240
241 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
242 }
243
244
245 int
246 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
247 {
248 struct timespec ats;
249 int error;
250
251 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
252 return (error);
253
254 switch (clock_id) {
255 case CLOCK_REALTIME:
256 if ((error = settime(p, &ats)) != 0)
257 return (error);
258 break;
259 case CLOCK_MONOTONIC:
260 return (EINVAL); /* read-only clock */
261 default:
262 return (EINVAL);
263 }
264
265 return 0;
266 }
267
268 int
269 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
270 {
271 struct sys_clock_getres_args /* {
272 syscallarg(clockid_t) clock_id;
273 syscallarg(struct timespec *) tp;
274 } */ *uap = v;
275 clockid_t clock_id;
276 struct timespec ts;
277 int error = 0;
278
279 clock_id = SCARG(uap, clock_id);
280 switch (clock_id) {
281 case CLOCK_REALTIME:
282 case CLOCK_MONOTONIC:
283 ts.tv_sec = 0;
284 if (tc_getfrequency() > 1000000000)
285 ts.tv_nsec = 1;
286 else
287 ts.tv_nsec = 1000000000 / tc_getfrequency();
288 break;
289 default:
290 return (EINVAL);
291 }
292
293 if (SCARG(uap, tp))
294 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
295
296 return error;
297 }
298
299 /* ARGSUSED */
300 int
301 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
302 {
303 struct sys_nanosleep_args/* {
304 syscallarg(struct timespec *) rqtp;
305 syscallarg(struct timespec *) rmtp;
306 } */ *uap = v;
307 struct timespec rmt, rqt;
308 int error, error1;
309
310 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
311 if (error)
312 return (error);
313
314 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
315 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
316 return error;
317
318 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
319 return error1 ? error1 : error;
320 }
321
322 int
323 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
324 {
325 #ifdef __HAVE_TIMECOUNTER
326 int error, timo;
327
328 if (itimespecfix(rqt))
329 return (EINVAL);
330
331 timo = tstohz(rqt);
332 /*
333 * Avoid inadvertantly sleeping forever
334 */
335 if (timo == 0)
336 timo = 1;
337
338 if (rmt != NULL)
339 getnanouptime(rmt);
340
341 error = kpause("nanoslp", true, timo, NULL);
342 if (error == ERESTART)
343 error = EINTR;
344 if (error == EWOULDBLOCK)
345 error = 0;
346
347 if (rmt!= NULL) {
348 struct timespec rmtend;
349
350 getnanouptime(&rmtend);
351
352 timespecsub(&rmtend, rmt, rmt);
353 timespecsub(rqt, rmt, rmt);
354 if (rmt->tv_sec < 0)
355 timespecclear(rmt);
356 }
357
358 return error;
359 #else /* !__HAVE_TIMECOUNTER */
360 struct timeval atv, utv;
361 int error, s, timo;
362
363 TIMESPEC_TO_TIMEVAL(&atv, rqt);
364 if (itimerfix(&atv))
365 return (EINVAL);
366
367 s = splclock();
368 timeradd(&atv,&time,&atv);
369 timo = hzto(&atv);
370 /*
371 * Avoid inadvertantly sleeping forever
372 */
373 if (timo == 0)
374 timo = 1;
375 splx(s);
376
377 error = kpause("nanoslp", true, timo, NULL);
378 if (error == ERESTART)
379 error = EINTR;
380 if (error == EWOULDBLOCK)
381 error = 0;
382
383 if (rmt != NULL) {
384 s = splclock();
385 utv = time;
386 splx(s);
387
388 timersub(&atv, &utv, &utv);
389 if (utv.tv_sec < 0)
390 timerclear(&utv);
391
392 TIMEVAL_TO_TIMESPEC(&utv, rmt);
393 }
394
395 return error;
396 #endif /* !__HAVE_TIMECOUNTER */
397 }
398
399 /* ARGSUSED */
400 int
401 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
402 {
403 struct sys_gettimeofday_args /* {
404 syscallarg(struct timeval *) tp;
405 syscallarg(void *) tzp; really "struct timezone *"
406 } */ *uap = v;
407 struct timeval atv;
408 int error = 0;
409 struct timezone tzfake;
410
411 if (SCARG(uap, tp)) {
412 microtime(&atv);
413 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
414 if (error)
415 return (error);
416 }
417 if (SCARG(uap, tzp)) {
418 /*
419 * NetBSD has no kernel notion of time zone, so we just
420 * fake up a timezone struct and return it if demanded.
421 */
422 tzfake.tz_minuteswest = 0;
423 tzfake.tz_dsttime = 0;
424 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
425 }
426 return (error);
427 }
428
429 /* ARGSUSED */
430 int
431 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
432 {
433 struct sys_settimeofday_args /* {
434 syscallarg(const struct timeval *) tv;
435 syscallarg(const void *) tzp; really "const struct timezone *"
436 } */ *uap = v;
437
438 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
439 }
440
441 int
442 settimeofday1(const struct timeval *utv, bool userspace,
443 const void *utzp, struct lwp *l, bool check_kauth)
444 {
445 struct timeval atv;
446 struct timespec ts;
447 int error;
448
449 /* Verify all parameters before changing time. */
450
451 if (check_kauth) {
452 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
453 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
454 if (error != 0)
455 return (error);
456 }
457
458 /*
459 * NetBSD has no kernel notion of time zone, and only an
460 * obsolete program would try to set it, so we log a warning.
461 */
462 if (utzp)
463 log(LOG_WARNING, "pid %d attempted to set the "
464 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
465
466 if (utv == NULL)
467 return 0;
468
469 if (userspace) {
470 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
471 return error;
472 utv = &atv;
473 }
474
475 TIMEVAL_TO_TIMESPEC(utv, &ts);
476 return settime(l->l_proc, &ts);
477 }
478
479 #ifndef __HAVE_TIMECOUNTER
480 int tickdelta; /* current clock skew, us. per tick */
481 long timedelta; /* unapplied time correction, us. */
482 long bigadj = 1000000; /* use 10x skew above bigadj us. */
483 #endif
484
485 int time_adjusted; /* set if an adjustment is made */
486
487 /* ARGSUSED */
488 int
489 sys_adjtime(struct lwp *l, void *v, register_t *retval)
490 {
491 struct sys_adjtime_args /* {
492 syscallarg(const struct timeval *) delta;
493 syscallarg(struct timeval *) olddelta;
494 } */ *uap = v;
495 int error;
496
497 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
498 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
499 return (error);
500
501 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
502 }
503
504 int
505 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
506 {
507 struct timeval atv;
508 int error = 0;
509
510 #ifdef __HAVE_TIMECOUNTER
511 extern int64_t time_adjtime; /* in kern_ntptime.c */
512 #else /* !__HAVE_TIMECOUNTER */
513 long ndelta, ntickdelta, odelta;
514 int s;
515 #endif /* !__HAVE_TIMECOUNTER */
516
517 #ifdef __HAVE_TIMECOUNTER
518 if (olddelta) {
519 atv.tv_sec = time_adjtime / 1000000;
520 atv.tv_usec = time_adjtime % 1000000;
521 if (atv.tv_usec < 0) {
522 atv.tv_usec += 1000000;
523 atv.tv_sec--;
524 }
525 error = copyout(&atv, olddelta, sizeof(struct timeval));
526 if (error)
527 return (error);
528 }
529
530 if (delta) {
531 error = copyin(delta, &atv, sizeof(struct timeval));
532 if (error)
533 return (error);
534
535 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
536 atv.tv_usec;
537
538 if (time_adjtime)
539 /* We need to save the system time during shutdown */
540 time_adjusted |= 1;
541 }
542 #else /* !__HAVE_TIMECOUNTER */
543 error = copyin(delta, &atv, sizeof(struct timeval));
544 if (error)
545 return (error);
546
547 /*
548 * Compute the total correction and the rate at which to apply it.
549 * Round the adjustment down to a whole multiple of the per-tick
550 * delta, so that after some number of incremental changes in
551 * hardclock(), tickdelta will become zero, lest the correction
552 * overshoot and start taking us away from the desired final time.
553 */
554 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
555 if (ndelta > bigadj || ndelta < -bigadj)
556 ntickdelta = 10 * tickadj;
557 else
558 ntickdelta = tickadj;
559 if (ndelta % ntickdelta)
560 ndelta = ndelta / ntickdelta * ntickdelta;
561
562 /*
563 * To make hardclock()'s job easier, make the per-tick delta negative
564 * if we want time to run slower; then hardclock can simply compute
565 * tick + tickdelta, and subtract tickdelta from timedelta.
566 */
567 if (ndelta < 0)
568 ntickdelta = -ntickdelta;
569 if (ndelta != 0)
570 /* We need to save the system clock time during shutdown */
571 time_adjusted |= 1;
572 s = splclock();
573 odelta = timedelta;
574 timedelta = ndelta;
575 tickdelta = ntickdelta;
576 splx(s);
577
578 if (olddelta) {
579 atv.tv_sec = odelta / 1000000;
580 atv.tv_usec = odelta % 1000000;
581 error = copyout(&atv, olddelta, sizeof(struct timeval));
582 }
583 #endif /* __HAVE_TIMECOUNTER */
584
585 return error;
586 }
587
588 /*
589 * Interval timer support. Both the BSD getitimer() family and the POSIX
590 * timer_*() family of routines are supported.
591 *
592 * All timers are kept in an array pointed to by p_timers, which is
593 * allocated on demand - many processes don't use timers at all. The
594 * first three elements in this array are reserved for the BSD timers:
595 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
596 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
597 * syscall.
598 *
599 * Realtime timers are kept in the ptimer structure as an absolute
600 * time; virtual time timers are kept as a linked list of deltas.
601 * Virtual time timers are processed in the hardclock() routine of
602 * kern_clock.c. The real time timer is processed by a callout
603 * routine, called from the softclock() routine. Since a callout may
604 * be delayed in real time due to interrupt processing in the system,
605 * it is possible for the real time timeout routine (realtimeexpire,
606 * given below), to be delayed in real time past when it is supposed
607 * to occur. It does not suffice, therefore, to reload the real timer
608 * .it_value from the real time timers .it_interval. Rather, we
609 * compute the next time in absolute time the timer should go off. */
610
611 /* Allocate a POSIX realtime timer. */
612 int
613 sys_timer_create(struct lwp *l, void *v, register_t *retval)
614 {
615 struct sys_timer_create_args /* {
616 syscallarg(clockid_t) clock_id;
617 syscallarg(struct sigevent *) evp;
618 syscallarg(timer_t *) timerid;
619 } */ *uap = v;
620
621 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
622 SCARG(uap, evp), copyin, l);
623 }
624
625 int
626 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
627 copyin_t fetch_event, struct lwp *l)
628 {
629 int error;
630 timer_t timerid;
631 struct ptimer *pt;
632 struct proc *p;
633
634 p = l->l_proc;
635
636 if (id < CLOCK_REALTIME ||
637 id > CLOCK_PROF)
638 return (EINVAL);
639
640 if (p->p_timers == NULL)
641 timers_alloc(p);
642
643 /* Find a free timer slot, skipping those reserved for setitimer(). */
644 for (timerid = 3; timerid < TIMER_MAX; timerid++)
645 if (p->p_timers->pts_timers[timerid] == NULL)
646 break;
647
648 if (timerid == TIMER_MAX)
649 return EAGAIN;
650
651 pt = pool_get(&ptimer_pool, PR_WAITOK);
652 if (evp) {
653 if (((error =
654 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
655 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
656 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
657 pool_put(&ptimer_pool, pt);
658 return (error ? error : EINVAL);
659 }
660 } else {
661 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
662 switch (id) {
663 case CLOCK_REALTIME:
664 pt->pt_ev.sigev_signo = SIGALRM;
665 break;
666 case CLOCK_VIRTUAL:
667 pt->pt_ev.sigev_signo = SIGVTALRM;
668 break;
669 case CLOCK_PROF:
670 pt->pt_ev.sigev_signo = SIGPROF;
671 break;
672 }
673 pt->pt_ev.sigev_value.sival_int = timerid;
674 }
675 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
676 pt->pt_info.ksi_errno = 0;
677 pt->pt_info.ksi_code = 0;
678 pt->pt_info.ksi_pid = p->p_pid;
679 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
680 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
681
682 pt->pt_type = id;
683 pt->pt_proc = p;
684 pt->pt_overruns = 0;
685 pt->pt_poverruns = 0;
686 pt->pt_entry = timerid;
687 timerclear(&pt->pt_time.it_value);
688 if (id == CLOCK_REALTIME)
689 callout_init(&pt->pt_ch, 0);
690 else
691 pt->pt_active = 0;
692
693 p->p_timers->pts_timers[timerid] = pt;
694
695 return copyout(&timerid, tid, sizeof(timerid));
696 }
697
698 /* Delete a POSIX realtime timer */
699 int
700 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
701 {
702 struct sys_timer_delete_args /* {
703 syscallarg(timer_t) timerid;
704 } */ *uap = v;
705 struct proc *p = l->l_proc;
706 timer_t timerid;
707 struct ptimer *pt, *ptn;
708 int s;
709
710 timerid = SCARG(uap, timerid);
711
712 if ((p->p_timers == NULL) ||
713 (timerid < 2) || (timerid >= TIMER_MAX) ||
714 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
715 return (EINVAL);
716
717 if (pt->pt_type == CLOCK_REALTIME) {
718 callout_stop(&pt->pt_ch);
719 callout_destroy(&pt->pt_ch);
720 } else if (pt->pt_active) {
721 s = splclock();
722 ptn = LIST_NEXT(pt, pt_list);
723 LIST_REMOVE(pt, pt_list);
724 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
725 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
726 &ptn->pt_time.it_value);
727 splx(s);
728 }
729
730 p->p_timers->pts_timers[timerid] = NULL;
731 pool_put(&ptimer_pool, pt);
732
733 return (0);
734 }
735
736 /*
737 * Set up the given timer. The value in pt->pt_time.it_value is taken
738 * to be an absolute time for CLOCK_REALTIME timers and a relative
739 * time for virtual timers.
740 * Must be called at splclock().
741 */
742 void
743 timer_settime(struct ptimer *pt)
744 {
745 struct ptimer *ptn, *pptn;
746 struct ptlist *ptl;
747
748 if (pt->pt_type == CLOCK_REALTIME) {
749 callout_stop(&pt->pt_ch);
750 if (timerisset(&pt->pt_time.it_value)) {
751 /*
752 * Don't need to check hzto() return value, here.
753 * callout_reset() does it for us.
754 */
755 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
756 realtimerexpire, pt);
757 }
758 } else {
759 if (pt->pt_active) {
760 ptn = LIST_NEXT(pt, pt_list);
761 LIST_REMOVE(pt, pt_list);
762 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
763 timeradd(&pt->pt_time.it_value,
764 &ptn->pt_time.it_value,
765 &ptn->pt_time.it_value);
766 }
767 if (timerisset(&pt->pt_time.it_value)) {
768 if (pt->pt_type == CLOCK_VIRTUAL)
769 ptl = &pt->pt_proc->p_timers->pts_virtual;
770 else
771 ptl = &pt->pt_proc->p_timers->pts_prof;
772
773 for (ptn = LIST_FIRST(ptl), pptn = NULL;
774 ptn && timercmp(&pt->pt_time.it_value,
775 &ptn->pt_time.it_value, >);
776 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
777 timersub(&pt->pt_time.it_value,
778 &ptn->pt_time.it_value,
779 &pt->pt_time.it_value);
780
781 if (pptn)
782 LIST_INSERT_AFTER(pptn, pt, pt_list);
783 else
784 LIST_INSERT_HEAD(ptl, pt, pt_list);
785
786 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
787 timersub(&ptn->pt_time.it_value,
788 &pt->pt_time.it_value,
789 &ptn->pt_time.it_value);
790
791 pt->pt_active = 1;
792 } else
793 pt->pt_active = 0;
794 }
795 }
796
797 void
798 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
799 {
800 #ifdef __HAVE_TIMECOUNTER
801 struct timeval now;
802 #endif
803 struct ptimer *ptn;
804
805 *aitv = pt->pt_time;
806 if (pt->pt_type == CLOCK_REALTIME) {
807 /*
808 * Convert from absolute to relative time in .it_value
809 * part of real time timer. If time for real time
810 * timer has passed return 0, else return difference
811 * between current time and time for the timer to go
812 * off.
813 */
814 if (timerisset(&aitv->it_value)) {
815 #ifdef __HAVE_TIMECOUNTER
816 getmicrotime(&now);
817 if (timercmp(&aitv->it_value, &now, <))
818 timerclear(&aitv->it_value);
819 else
820 timersub(&aitv->it_value, &now,
821 &aitv->it_value);
822 #else /* !__HAVE_TIMECOUNTER */
823 if (timercmp(&aitv->it_value, &time, <))
824 timerclear(&aitv->it_value);
825 else
826 timersub(&aitv->it_value, &time,
827 &aitv->it_value);
828 #endif /* !__HAVE_TIMECOUNTER */
829 }
830 } else if (pt->pt_active) {
831 if (pt->pt_type == CLOCK_VIRTUAL)
832 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
833 else
834 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
835 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
836 timeradd(&aitv->it_value,
837 &ptn->pt_time.it_value, &aitv->it_value);
838 KASSERT(ptn != NULL); /* pt should be findable on the list */
839 } else
840 timerclear(&aitv->it_value);
841 }
842
843
844
845 /* Set and arm a POSIX realtime timer */
846 int
847 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
848 {
849 struct sys_timer_settime_args /* {
850 syscallarg(timer_t) timerid;
851 syscallarg(int) flags;
852 syscallarg(const struct itimerspec *) value;
853 syscallarg(struct itimerspec *) ovalue;
854 } */ *uap = v;
855 int error;
856 struct itimerspec value, ovalue, *ovp = NULL;
857
858 if ((error = copyin(SCARG(uap, value), &value,
859 sizeof(struct itimerspec))) != 0)
860 return (error);
861
862 if (SCARG(uap, ovalue))
863 ovp = &ovalue;
864
865 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
866 SCARG(uap, flags), l->l_proc)) != 0)
867 return error;
868
869 if (ovp)
870 return copyout(&ovalue, SCARG(uap, ovalue),
871 sizeof(struct itimerspec));
872 return 0;
873 }
874
875 int
876 dotimer_settime(int timerid, struct itimerspec *value,
877 struct itimerspec *ovalue, int flags, struct proc *p)
878 {
879 #ifdef __HAVE_TIMECOUNTER
880 struct timeval now;
881 #endif
882 struct itimerval val, oval;
883 struct ptimer *pt;
884 int s;
885
886 if ((p->p_timers == NULL) ||
887 (timerid < 2) || (timerid >= TIMER_MAX) ||
888 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
889 return (EINVAL);
890
891 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
892 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
893 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
894 return (EINVAL);
895
896 oval = pt->pt_time;
897 pt->pt_time = val;
898
899 s = splclock();
900 /*
901 * If we've been passed a relative time for a realtime timer,
902 * convert it to absolute; if an absolute time for a virtual
903 * timer, convert it to relative and make sure we don't set it
904 * to zero, which would cancel the timer, or let it go
905 * negative, which would confuse the comparison tests.
906 */
907 if (timerisset(&pt->pt_time.it_value)) {
908 if (pt->pt_type == CLOCK_REALTIME) {
909 #ifdef __HAVE_TIMECOUNTER
910 if ((flags & TIMER_ABSTIME) == 0) {
911 getmicrotime(&now);
912 timeradd(&pt->pt_time.it_value, &now,
913 &pt->pt_time.it_value);
914 }
915 #else /* !__HAVE_TIMECOUNTER */
916 if ((flags & TIMER_ABSTIME) == 0)
917 timeradd(&pt->pt_time.it_value, &time,
918 &pt->pt_time.it_value);
919 #endif /* !__HAVE_TIMECOUNTER */
920 } else {
921 if ((flags & TIMER_ABSTIME) != 0) {
922 #ifdef __HAVE_TIMECOUNTER
923 getmicrotime(&now);
924 timersub(&pt->pt_time.it_value, &now,
925 &pt->pt_time.it_value);
926 #else /* !__HAVE_TIMECOUNTER */
927 timersub(&pt->pt_time.it_value, &time,
928 &pt->pt_time.it_value);
929 #endif /* !__HAVE_TIMECOUNTER */
930 if (!timerisset(&pt->pt_time.it_value) ||
931 pt->pt_time.it_value.tv_sec < 0) {
932 pt->pt_time.it_value.tv_sec = 0;
933 pt->pt_time.it_value.tv_usec = 1;
934 }
935 }
936 }
937 }
938
939 timer_settime(pt);
940 splx(s);
941
942 if (ovalue) {
943 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
944 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
945 }
946
947 return (0);
948 }
949
950 /* Return the time remaining until a POSIX timer fires. */
951 int
952 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
953 {
954 struct sys_timer_gettime_args /* {
955 syscallarg(timer_t) timerid;
956 syscallarg(struct itimerspec *) value;
957 } */ *uap = v;
958 struct itimerspec its;
959 int error;
960
961 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
962 &its)) != 0)
963 return error;
964
965 return copyout(&its, SCARG(uap, value), sizeof(its));
966 }
967
968 int
969 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
970 {
971 int s;
972 struct ptimer *pt;
973 struct itimerval aitv;
974
975 if ((p->p_timers == NULL) ||
976 (timerid < 2) || (timerid >= TIMER_MAX) ||
977 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
978 return (EINVAL);
979
980 s = splclock();
981 timer_gettime(pt, &aitv);
982 splx(s);
983
984 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
985 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
986
987 return 0;
988 }
989
990 /*
991 * Return the count of the number of times a periodic timer expired
992 * while a notification was already pending. The counter is reset when
993 * a timer expires and a notification can be posted.
994 */
995 int
996 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
997 {
998 struct sys_timer_getoverrun_args /* {
999 syscallarg(timer_t) timerid;
1000 } */ *uap = v;
1001 struct proc *p = l->l_proc;
1002 int timerid;
1003 struct ptimer *pt;
1004
1005 timerid = SCARG(uap, timerid);
1006
1007 if ((p->p_timers == NULL) ||
1008 (timerid < 2) || (timerid >= TIMER_MAX) ||
1009 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1010 return (EINVAL);
1011
1012 *retval = pt->pt_poverruns;
1013
1014 return (0);
1015 }
1016
1017 /*
1018 * Real interval timer expired:
1019 * send process whose timer expired an alarm signal.
1020 * If time is not set up to reload, then just return.
1021 * Else compute next time timer should go off which is > current time.
1022 * This is where delay in processing this timeout causes multiple
1023 * SIGALRM calls to be compressed into one.
1024 */
1025 void
1026 realtimerexpire(void *arg)
1027 {
1028 #ifdef __HAVE_TIMECOUNTER
1029 struct timeval now;
1030 #endif
1031 struct ptimer *pt;
1032 int s;
1033
1034 pt = (struct ptimer *)arg;
1035
1036 itimerfire(pt);
1037
1038 if (!timerisset(&pt->pt_time.it_interval)) {
1039 timerclear(&pt->pt_time.it_value);
1040 return;
1041 }
1042 #ifdef __HAVE_TIMECOUNTER
1043 for (;;) {
1044 s = splclock(); /* XXX need spl now? */
1045 timeradd(&pt->pt_time.it_value,
1046 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1047 getmicrotime(&now);
1048 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1049 /*
1050 * Don't need to check hzto() return value, here.
1051 * callout_reset() does it for us.
1052 */
1053 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1054 realtimerexpire, pt);
1055 splx(s);
1056 return;
1057 }
1058 splx(s);
1059 pt->pt_overruns++;
1060 }
1061 #else /* !__HAVE_TIMECOUNTER */
1062 for (;;) {
1063 s = splclock();
1064 timeradd(&pt->pt_time.it_value,
1065 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1066 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1067 /*
1068 * Don't need to check hzto() return value, here.
1069 * callout_reset() does it for us.
1070 */
1071 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1072 realtimerexpire, pt);
1073 splx(s);
1074 return;
1075 }
1076 splx(s);
1077 pt->pt_overruns++;
1078 }
1079 #endif /* !__HAVE_TIMECOUNTER */
1080 }
1081
1082 /* BSD routine to get the value of an interval timer. */
1083 /* ARGSUSED */
1084 int
1085 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1086 {
1087 struct sys_getitimer_args /* {
1088 syscallarg(int) which;
1089 syscallarg(struct itimerval *) itv;
1090 } */ *uap = v;
1091 struct proc *p = l->l_proc;
1092 struct itimerval aitv;
1093 int error;
1094
1095 error = dogetitimer(p, SCARG(uap, which), &aitv);
1096 if (error)
1097 return error;
1098 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1099 }
1100
1101 int
1102 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1103 {
1104 int s;
1105
1106 if ((u_int)which > ITIMER_PROF)
1107 return (EINVAL);
1108
1109 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1110 timerclear(&itvp->it_value);
1111 timerclear(&itvp->it_interval);
1112 } else {
1113 s = splclock();
1114 timer_gettime(p->p_timers->pts_timers[which], itvp);
1115 splx(s);
1116 }
1117
1118 return 0;
1119 }
1120
1121 /* BSD routine to set/arm an interval timer. */
1122 /* ARGSUSED */
1123 int
1124 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1125 {
1126 struct sys_setitimer_args /* {
1127 syscallarg(int) which;
1128 syscallarg(const struct itimerval *) itv;
1129 syscallarg(struct itimerval *) oitv;
1130 } */ *uap = v;
1131 struct proc *p = l->l_proc;
1132 int which = SCARG(uap, which);
1133 struct sys_getitimer_args getargs;
1134 const struct itimerval *itvp;
1135 struct itimerval aitv;
1136 int error;
1137
1138 if ((u_int)which > ITIMER_PROF)
1139 return (EINVAL);
1140 itvp = SCARG(uap, itv);
1141 if (itvp &&
1142 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1143 return (error);
1144 if (SCARG(uap, oitv) != NULL) {
1145 SCARG(&getargs, which) = which;
1146 SCARG(&getargs, itv) = SCARG(uap, oitv);
1147 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1148 return (error);
1149 }
1150 if (itvp == 0)
1151 return (0);
1152
1153 return dosetitimer(p, which, &aitv);
1154 }
1155
1156 int
1157 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1158 {
1159 #ifdef __HAVE_TIMECOUNTER
1160 struct timeval now;
1161 #endif
1162 struct ptimer *pt;
1163 int s;
1164
1165 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1166 return (EINVAL);
1167
1168 /*
1169 * Don't bother allocating data structures if the process just
1170 * wants to clear the timer.
1171 */
1172 if (!timerisset(&itvp->it_value) &&
1173 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1174 return (0);
1175
1176 if (p->p_timers == NULL)
1177 timers_alloc(p);
1178 if (p->p_timers->pts_timers[which] == NULL) {
1179 pt = pool_get(&ptimer_pool, PR_WAITOK);
1180 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1181 pt->pt_ev.sigev_value.sival_int = which;
1182 pt->pt_overruns = 0;
1183 pt->pt_proc = p;
1184 pt->pt_type = which;
1185 pt->pt_entry = which;
1186 switch (which) {
1187 case ITIMER_REAL:
1188 callout_init(&pt->pt_ch, 0);
1189 pt->pt_ev.sigev_signo = SIGALRM;
1190 break;
1191 case ITIMER_VIRTUAL:
1192 pt->pt_active = 0;
1193 pt->pt_ev.sigev_signo = SIGVTALRM;
1194 break;
1195 case ITIMER_PROF:
1196 pt->pt_active = 0;
1197 pt->pt_ev.sigev_signo = SIGPROF;
1198 break;
1199 }
1200 } else
1201 pt = p->p_timers->pts_timers[which];
1202
1203 pt->pt_time = *itvp;
1204 p->p_timers->pts_timers[which] = pt;
1205
1206 s = splclock();
1207 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1208 /* Convert to absolute time */
1209 #ifdef __HAVE_TIMECOUNTER
1210 /* XXX need to wrap in splclock for timecounters case? */
1211 getmicrotime(&now);
1212 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1213 #else /* !__HAVE_TIMECOUNTER */
1214 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1215 #endif /* !__HAVE_TIMECOUNTER */
1216 }
1217 timer_settime(pt);
1218 splx(s);
1219
1220 return (0);
1221 }
1222
1223 /* Utility routines to manage the array of pointers to timers. */
1224 void
1225 timers_alloc(struct proc *p)
1226 {
1227 int i;
1228 struct ptimers *pts;
1229
1230 pts = pool_get(&ptimers_pool, PR_WAITOK);
1231 LIST_INIT(&pts->pts_virtual);
1232 LIST_INIT(&pts->pts_prof);
1233 for (i = 0; i < TIMER_MAX; i++)
1234 pts->pts_timers[i] = NULL;
1235 pts->pts_fired = 0;
1236 p->p_timers = pts;
1237 }
1238
1239 /*
1240 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1241 * then clean up all timers and free all the data structures. If
1242 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1243 * by timer_create(), not the BSD setitimer() timers, and only free the
1244 * structure if none of those remain.
1245 */
1246 void
1247 timers_free(struct proc *p, int which)
1248 {
1249 int i, s;
1250 struct ptimers *pts;
1251 struct ptimer *pt, *ptn;
1252 struct timeval tv;
1253
1254 if (p->p_timers) {
1255 pts = p->p_timers;
1256 if (which == TIMERS_ALL)
1257 i = 0;
1258 else {
1259 s = splclock();
1260 timerclear(&tv);
1261 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1262 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1263 ptn = LIST_NEXT(ptn, pt_list))
1264 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1265 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1266 if (ptn) {
1267 timeradd(&tv, &ptn->pt_time.it_value,
1268 &ptn->pt_time.it_value);
1269 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1270 ptn, pt_list);
1271 }
1272
1273 timerclear(&tv);
1274 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1275 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1276 ptn = LIST_NEXT(ptn, pt_list))
1277 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1278 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1279 if (ptn) {
1280 timeradd(&tv, &ptn->pt_time.it_value,
1281 &ptn->pt_time.it_value);
1282 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1283 pt_list);
1284 }
1285 splx(s);
1286 i = 3;
1287 }
1288 for ( ; i < TIMER_MAX; i++)
1289 if ((pt = pts->pts_timers[i]) != NULL) {
1290 if (pt->pt_type == CLOCK_REALTIME) {
1291 callout_stop(&pt->pt_ch);
1292 callout_destroy(&pt->pt_ch);
1293 }
1294 pts->pts_timers[i] = NULL;
1295 pool_put(&ptimer_pool, pt);
1296 }
1297 if ((pts->pts_timers[0] == NULL) &&
1298 (pts->pts_timers[1] == NULL) &&
1299 (pts->pts_timers[2] == NULL)) {
1300 p->p_timers = NULL;
1301 pool_put(&ptimers_pool, pts);
1302 }
1303 }
1304 }
1305
1306 /*
1307 * Check that a proposed value to load into the .it_value or
1308 * .it_interval part of an interval timer is acceptable, and
1309 * fix it to have at least minimal value (i.e. if it is less
1310 * than the resolution of the clock, round it up.)
1311 */
1312 int
1313 itimerfix(struct timeval *tv)
1314 {
1315
1316 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1317 return (EINVAL);
1318 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1319 tv->tv_usec = tick;
1320 return (0);
1321 }
1322
1323 #ifdef __HAVE_TIMECOUNTER
1324 int
1325 itimespecfix(struct timespec *ts)
1326 {
1327
1328 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1329 return (EINVAL);
1330 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1331 ts->tv_nsec = tick * 1000;
1332 return (0);
1333 }
1334 #endif /* __HAVE_TIMECOUNTER */
1335
1336 /*
1337 * Decrement an interval timer by a specified number
1338 * of microseconds, which must be less than a second,
1339 * i.e. < 1000000. If the timer expires, then reload
1340 * it. In this case, carry over (usec - old value) to
1341 * reduce the value reloaded into the timer so that
1342 * the timer does not drift. This routine assumes
1343 * that it is called in a context where the timers
1344 * on which it is operating cannot change in value.
1345 */
1346 int
1347 itimerdecr(struct ptimer *pt, int usec)
1348 {
1349 struct itimerval *itp;
1350
1351 itp = &pt->pt_time;
1352 if (itp->it_value.tv_usec < usec) {
1353 if (itp->it_value.tv_sec == 0) {
1354 /* expired, and already in next interval */
1355 usec -= itp->it_value.tv_usec;
1356 goto expire;
1357 }
1358 itp->it_value.tv_usec += 1000000;
1359 itp->it_value.tv_sec--;
1360 }
1361 itp->it_value.tv_usec -= usec;
1362 usec = 0;
1363 if (timerisset(&itp->it_value))
1364 return (1);
1365 /* expired, exactly at end of interval */
1366 expire:
1367 if (timerisset(&itp->it_interval)) {
1368 itp->it_value = itp->it_interval;
1369 itp->it_value.tv_usec -= usec;
1370 if (itp->it_value.tv_usec < 0) {
1371 itp->it_value.tv_usec += 1000000;
1372 itp->it_value.tv_sec--;
1373 }
1374 timer_settime(pt);
1375 } else
1376 itp->it_value.tv_usec = 0; /* sec is already 0 */
1377 return (0);
1378 }
1379
1380 void
1381 itimerfire(struct ptimer *pt)
1382 {
1383 struct proc *p = pt->pt_proc;
1384
1385 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1386 /*
1387 * No RT signal infrastructure exists at this time;
1388 * just post the signal number and throw away the
1389 * value.
1390 */
1391 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1392 pt->pt_overruns++;
1393 else {
1394 ksiginfo_t ksi;
1395 KSI_INIT(&ksi);
1396 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1397 ksi.ksi_code = SI_TIMER;
1398 ksi.ksi_value = pt->pt_ev.sigev_value;
1399 pt->pt_poverruns = pt->pt_overruns;
1400 pt->pt_overruns = 0;
1401 mutex_enter(&proclist_mutex);
1402 kpsignal(p, &ksi, NULL);
1403 mutex_exit(&proclist_mutex);
1404 }
1405 }
1406 }
1407
1408 /*
1409 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1410 * for usage and rationale.
1411 */
1412 int
1413 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1414 {
1415 struct timeval tv, delta;
1416 int rv = 0;
1417 #ifndef __HAVE_TIMECOUNTER
1418 int s;
1419 #endif
1420
1421 #ifdef __HAVE_TIMECOUNTER
1422 getmicrouptime(&tv);
1423 #else /* !__HAVE_TIMECOUNTER */
1424 s = splclock();
1425 tv = mono_time;
1426 splx(s);
1427 #endif /* !__HAVE_TIMECOUNTER */
1428 timersub(&tv, lasttime, &delta);
1429
1430 /*
1431 * check for 0,0 is so that the message will be seen at least once,
1432 * even if interval is huge.
1433 */
1434 if (timercmp(&delta, mininterval, >=) ||
1435 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1436 *lasttime = tv;
1437 rv = 1;
1438 }
1439
1440 return (rv);
1441 }
1442
1443 /*
1444 * ppsratecheck(): packets (or events) per second limitation.
1445 */
1446 int
1447 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1448 {
1449 struct timeval tv, delta;
1450 int rv;
1451 #ifndef __HAVE_TIMECOUNTER
1452 int s;
1453 #endif
1454
1455 #ifdef __HAVE_TIMECOUNTER
1456 getmicrouptime(&tv);
1457 #else /* !__HAVE_TIMECOUNTER */
1458 s = splclock();
1459 tv = mono_time;
1460 splx(s);
1461 #endif /* !__HAVE_TIMECOUNTER */
1462 timersub(&tv, lasttime, &delta);
1463
1464 /*
1465 * check for 0,0 is so that the message will be seen at least once.
1466 * if more than one second have passed since the last update of
1467 * lasttime, reset the counter.
1468 *
1469 * we do increment *curpps even in *curpps < maxpps case, as some may
1470 * try to use *curpps for stat purposes as well.
1471 */
1472 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1473 delta.tv_sec >= 1) {
1474 *lasttime = tv;
1475 *curpps = 0;
1476 }
1477 if (maxpps < 0)
1478 rv = 1;
1479 else if (*curpps < maxpps)
1480 rv = 1;
1481 else
1482 rv = 0;
1483
1484 #if 1 /*DIAGNOSTIC?*/
1485 /* be careful about wrap-around */
1486 if (*curpps + 1 > *curpps)
1487 *curpps = *curpps + 1;
1488 #else
1489 /*
1490 * assume that there's not too many calls to this function.
1491 * not sure if the assumption holds, as it depends on *caller's*
1492 * behavior, not the behavior of this function.
1493 * IMHO it is wrong to make assumption on the caller's behavior,
1494 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1495 */
1496 *curpps = *curpps + 1;
1497 #endif
1498
1499 return (rv);
1500 }
1501