kern_time.c revision 1.118 1 /* $NetBSD: kern_time.c,v 1.118 2007/03/12 18:18:33 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.118 2007/03/12 18:18:33 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #ifdef __HAVE_TIMECOUNTER
82 #include <sys/timetc.h>
83 #else /* !__HAVE_TIMECOUNTER */
84 #include <sys/timevar.h>
85 #endif /* !__HAVE_TIMECOUNTER */
86 #include <sys/kauth.h>
87
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #include <machine/cpu.h>
94
95 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
96 &pool_allocator_nointr, IPL_NONE);
97 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
98 &pool_allocator_nointr, IPL_NONE);
99
100 #ifdef __HAVE_TIMECOUNTER
101 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
102 #endif /* __HAVE_TIMECOUNTER */
103
104 /* Time of day and interval timer support.
105 *
106 * These routines provide the kernel entry points to get and set
107 * the time-of-day and per-process interval timers. Subroutines
108 * here provide support for adding and subtracting timeval structures
109 * and decrementing interval timers, optionally reloading the interval
110 * timers when they expire.
111 */
112
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(struct proc *p, struct timespec *ts)
116 {
117 struct timeval delta, tv;
118 #ifdef __HAVE_TIMECOUNTER
119 struct timeval now;
120 struct timespec ts1;
121 #endif /* !__HAVE_TIMECOUNTER */
122 struct cpu_info *ci;
123 int s1, s2;
124
125 /*
126 * Don't allow the time to be set forward so far it will wrap
127 * and become negative, thus allowing an attacker to bypass
128 * the next check below. The cutoff is 1 year before rollover
129 * occurs, so even if the attacker uses adjtime(2) to move
130 * the time past the cutoff, it will take a very long time
131 * to get to the wrap point.
132 *
133 * XXX: we check against INT_MAX since on 64-bit
134 * platforms, sizeof(int) != sizeof(long) and
135 * time_t is 32 bits even when atv.tv_sec is 64 bits.
136 */
137 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
138 struct proc *pp;
139
140 mutex_enter(&proclist_lock);
141 pp = p->p_pptr;
142 mutex_enter(&pp->p_mutex);
143 log(LOG_WARNING, "pid %d (%s) "
144 "invoked by uid %d ppid %d (%s) "
145 "tried to set clock forward to %ld\n",
146 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
147 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
148 mutex_exit(&pp->p_mutex);
149 mutex_exit(&proclist_lock);
150 return (EPERM);
151 }
152 TIMESPEC_TO_TIMEVAL(&tv, ts);
153
154 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
155 s1 = splsoftclock();
156 s2 = splclock();
157 #ifdef __HAVE_TIMECOUNTER
158 microtime(&now);
159 timersub(&tv, &now, &delta);
160 #else /* !__HAVE_TIMECOUNTER */
161 timersub(&tv, &time, &delta);
162 #endif /* !__HAVE_TIMECOUNTER */
163 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
164 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
165 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
166 splx(s1);
167 return (EPERM);
168 }
169 #ifdef notyet
170 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
171 splx(s1);
172 return (EPERM);
173 }
174 #endif
175
176 #ifdef __HAVE_TIMECOUNTER
177 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
178 tc_setclock(&ts1);
179 #else /* !__HAVE_TIMECOUNTER */
180 time = tv;
181 #endif /* !__HAVE_TIMECOUNTER */
182
183 splx(s2);
184
185 timeradd(&boottime, &delta, &boottime);
186
187 /*
188 * XXXSMP
189 * This is wrong. We should traverse a list of all
190 * CPUs and add the delta to the runtime of those
191 * CPUs which have a process on them.
192 */
193 ci = curcpu();
194 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
195 &ci->ci_schedstate.spc_runtime);
196 splx(s1);
197 resettodr();
198 return (0);
199 }
200
201 /* ARGSUSED */
202 int
203 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
204 {
205 struct sys_clock_gettime_args /* {
206 syscallarg(clockid_t) clock_id;
207 syscallarg(struct timespec *) tp;
208 } */ *uap = v;
209 clockid_t clock_id;
210 struct timespec ats;
211
212 clock_id = SCARG(uap, clock_id);
213 switch (clock_id) {
214 case CLOCK_REALTIME:
215 nanotime(&ats);
216 break;
217 case CLOCK_MONOTONIC:
218 #ifdef __HAVE_TIMECOUNTER
219 nanouptime(&ats);
220 #else /* !__HAVE_TIMECOUNTER */
221 {
222 int s;
223
224 /* XXX "hz" granularity */
225 s = splclock();
226 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
227 splx(s);
228 }
229 #endif /* !__HAVE_TIMECOUNTER */
230 break;
231 default:
232 return (EINVAL);
233 }
234
235 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
236 }
237
238 /* ARGSUSED */
239 int
240 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
241 {
242 struct sys_clock_settime_args /* {
243 syscallarg(clockid_t) clock_id;
244 syscallarg(const struct timespec *) tp;
245 } */ *uap = v;
246 int error;
247
248 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
249 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
250 return (error);
251
252 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
253 }
254
255
256 int
257 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
258 {
259 struct timespec ats;
260 int error;
261
262 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
263 return (error);
264
265 switch (clock_id) {
266 case CLOCK_REALTIME:
267 if ((error = settime(p, &ats)) != 0)
268 return (error);
269 break;
270 case CLOCK_MONOTONIC:
271 return (EINVAL); /* read-only clock */
272 default:
273 return (EINVAL);
274 }
275
276 return 0;
277 }
278
279 int
280 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
281 {
282 struct sys_clock_getres_args /* {
283 syscallarg(clockid_t) clock_id;
284 syscallarg(struct timespec *) tp;
285 } */ *uap = v;
286 clockid_t clock_id;
287 struct timespec ts;
288 int error = 0;
289
290 clock_id = SCARG(uap, clock_id);
291 switch (clock_id) {
292 case CLOCK_REALTIME:
293 case CLOCK_MONOTONIC:
294 ts.tv_sec = 0;
295 #ifdef __HAVE_TIMECOUNTER
296 if (tc_getfrequency() > 1000000000)
297 ts.tv_nsec = 1;
298 else
299 ts.tv_nsec = 1000000000 / tc_getfrequency();
300 #else /* !__HAVE_TIMECOUNTER */
301 ts.tv_nsec = 1000000000 / hz;
302 #endif /* !__HAVE_TIMECOUNTER */
303 break;
304 default:
305 return (EINVAL);
306 }
307
308 if (SCARG(uap, tp))
309 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
310
311 return error;
312 }
313
314 /* ARGSUSED */
315 int
316 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
317 {
318 #ifdef __HAVE_TIMECOUNTER
319 struct sys_nanosleep_args/* {
320 syscallarg(struct timespec *) rqtp;
321 syscallarg(struct timespec *) rmtp;
322 } */ *uap = v;
323 struct timespec rmt, rqt;
324 int error, timo;
325
326 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
327 if (error)
328 return (error);
329
330 if (itimespecfix(&rqt))
331 return (EINVAL);
332
333 timo = tstohz(&rqt);
334 /*
335 * Avoid inadvertantly sleeping forever
336 */
337 if (timo == 0)
338 timo = 1;
339
340 getnanouptime(&rmt);
341
342 error = kpause("nanoslp", true, timo, NULL);
343 if (error == ERESTART)
344 error = EINTR;
345 if (error == EWOULDBLOCK)
346 error = 0;
347
348 if (SCARG(uap, rmtp)) {
349 int error1;
350 struct timespec rmtend;
351
352 getnanouptime(&rmtend);
353
354 timespecsub(&rmtend, &rmt, &rmt);
355 timespecsub(&rqt, &rmt, &rmt);
356 if (rmt.tv_sec < 0)
357 timespecclear(&rmt);
358
359 error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
360 sizeof(rmt));
361 if (error1)
362 return (error1);
363 }
364
365 return error;
366 #else /* !__HAVE_TIMECOUNTER */
367 struct sys_nanosleep_args/* {
368 syscallarg(struct timespec *) rqtp;
369 syscallarg(struct timespec *) rmtp;
370 } */ *uap = v;
371 struct timespec rqt;
372 struct timespec rmt;
373 struct timeval atv, utv;
374 int error, s, timo;
375
376 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
377 if (error)
378 return (error);
379
380 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
381 if (itimerfix(&atv))
382 return (EINVAL);
383
384 s = splclock();
385 timeradd(&atv,&time,&atv);
386 timo = hzto(&atv);
387 /*
388 * Avoid inadvertantly sleeping forever
389 */
390 if (timo == 0)
391 timo = 1;
392 splx(s);
393
394 error = kpause("nanoslp", true, timo, NULL);
395 if (error == ERESTART)
396 error = EINTR;
397 if (error == EWOULDBLOCK)
398 error = 0;
399
400 if (SCARG(uap, rmtp)) {
401 int error1;
402
403 s = splclock();
404 utv = time;
405 splx(s);
406
407 timersub(&atv, &utv, &utv);
408 if (utv.tv_sec < 0)
409 timerclear(&utv);
410
411 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
412 error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
413 sizeof(rmt));
414 if (error1)
415 return (error1);
416 }
417
418 return error;
419 #endif /* !__HAVE_TIMECOUNTER */
420 }
421
422 /* ARGSUSED */
423 int
424 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
425 {
426 struct sys_gettimeofday_args /* {
427 syscallarg(struct timeval *) tp;
428 syscallarg(void *) tzp; really "struct timezone *"
429 } */ *uap = v;
430 struct timeval atv;
431 int error = 0;
432 struct timezone tzfake;
433
434 if (SCARG(uap, tp)) {
435 microtime(&atv);
436 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
437 if (error)
438 return (error);
439 }
440 if (SCARG(uap, tzp)) {
441 /*
442 * NetBSD has no kernel notion of time zone, so we just
443 * fake up a timezone struct and return it if demanded.
444 */
445 tzfake.tz_minuteswest = 0;
446 tzfake.tz_dsttime = 0;
447 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
448 }
449 return (error);
450 }
451
452 /* ARGSUSED */
453 int
454 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
455 {
456 struct sys_settimeofday_args /* {
457 syscallarg(const struct timeval *) tv;
458 syscallarg(const void *) tzp; really "const struct timezone *"
459 } */ *uap = v;
460 int error;
461
462 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
463 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
464 return (error);
465
466 return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
467 }
468
469 int
470 settimeofday1(const struct timeval *utv, const struct timezone *utzp,
471 struct proc *p)
472 {
473 struct timeval atv;
474 struct timespec ts;
475 int error;
476
477 /* Verify all parameters before changing time. */
478 /*
479 * NetBSD has no kernel notion of time zone, and only an
480 * obsolete program would try to set it, so we log a warning.
481 */
482 if (utzp)
483 log(LOG_WARNING, "pid %d attempted to set the "
484 "(obsolete) kernel time zone\n", p->p_pid);
485
486 if (utv == NULL)
487 return 0;
488
489 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
490 return error;
491 TIMEVAL_TO_TIMESPEC(&atv, &ts);
492 return settime(p, &ts);
493 }
494
495 #ifndef __HAVE_TIMECOUNTER
496 int tickdelta; /* current clock skew, us. per tick */
497 long timedelta; /* unapplied time correction, us. */
498 long bigadj = 1000000; /* use 10x skew above bigadj us. */
499 #endif
500
501 int time_adjusted; /* set if an adjustment is made */
502
503 /* ARGSUSED */
504 int
505 sys_adjtime(struct lwp *l, void *v, register_t *retval)
506 {
507 struct sys_adjtime_args /* {
508 syscallarg(const struct timeval *) delta;
509 syscallarg(struct timeval *) olddelta;
510 } */ *uap = v;
511 int error;
512
513 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
514 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
515 return (error);
516
517 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
518 }
519
520 int
521 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
522 {
523 struct timeval atv;
524 int error = 0;
525
526 #ifdef __HAVE_TIMECOUNTER
527 extern int64_t time_adjtime; /* in kern_ntptime.c */
528 #else /* !__HAVE_TIMECOUNTER */
529 long ndelta, ntickdelta, odelta;
530 int s;
531 #endif /* !__HAVE_TIMECOUNTER */
532
533 #ifdef __HAVE_TIMECOUNTER
534 if (olddelta) {
535 atv.tv_sec = time_adjtime / 1000000;
536 atv.tv_usec = time_adjtime % 1000000;
537 if (atv.tv_usec < 0) {
538 atv.tv_usec += 1000000;
539 atv.tv_sec--;
540 }
541 error = copyout(&atv, olddelta, sizeof(struct timeval));
542 if (error)
543 return (error);
544 }
545
546 if (delta) {
547 error = copyin(delta, &atv, sizeof(struct timeval));
548 if (error)
549 return (error);
550
551 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
552 atv.tv_usec;
553
554 if (time_adjtime)
555 /* We need to save the system time during shutdown */
556 time_adjusted |= 1;
557 }
558 #else /* !__HAVE_TIMECOUNTER */
559 error = copyin(delta, &atv, sizeof(struct timeval));
560 if (error)
561 return (error);
562
563 /*
564 * Compute the total correction and the rate at which to apply it.
565 * Round the adjustment down to a whole multiple of the per-tick
566 * delta, so that after some number of incremental changes in
567 * hardclock(), tickdelta will become zero, lest the correction
568 * overshoot and start taking us away from the desired final time.
569 */
570 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
571 if (ndelta > bigadj || ndelta < -bigadj)
572 ntickdelta = 10 * tickadj;
573 else
574 ntickdelta = tickadj;
575 if (ndelta % ntickdelta)
576 ndelta = ndelta / ntickdelta * ntickdelta;
577
578 /*
579 * To make hardclock()'s job easier, make the per-tick delta negative
580 * if we want time to run slower; then hardclock can simply compute
581 * tick + tickdelta, and subtract tickdelta from timedelta.
582 */
583 if (ndelta < 0)
584 ntickdelta = -ntickdelta;
585 if (ndelta != 0)
586 /* We need to save the system clock time during shutdown */
587 time_adjusted |= 1;
588 s = splclock();
589 odelta = timedelta;
590 timedelta = ndelta;
591 tickdelta = ntickdelta;
592 splx(s);
593
594 if (olddelta) {
595 atv.tv_sec = odelta / 1000000;
596 atv.tv_usec = odelta % 1000000;
597 error = copyout(&atv, olddelta, sizeof(struct timeval));
598 }
599 #endif /* __HAVE_TIMECOUNTER */
600
601 return error;
602 }
603
604 /*
605 * Interval timer support. Both the BSD getitimer() family and the POSIX
606 * timer_*() family of routines are supported.
607 *
608 * All timers are kept in an array pointed to by p_timers, which is
609 * allocated on demand - many processes don't use timers at all. The
610 * first three elements in this array are reserved for the BSD timers:
611 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
612 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
613 * syscall.
614 *
615 * Realtime timers are kept in the ptimer structure as an absolute
616 * time; virtual time timers are kept as a linked list of deltas.
617 * Virtual time timers are processed in the hardclock() routine of
618 * kern_clock.c. The real time timer is processed by a callout
619 * routine, called from the softclock() routine. Since a callout may
620 * be delayed in real time due to interrupt processing in the system,
621 * it is possible for the real time timeout routine (realtimeexpire,
622 * given below), to be delayed in real time past when it is supposed
623 * to occur. It does not suffice, therefore, to reload the real timer
624 * .it_value from the real time timers .it_interval. Rather, we
625 * compute the next time in absolute time the timer should go off. */
626
627 /* Allocate a POSIX realtime timer. */
628 int
629 sys_timer_create(struct lwp *l, void *v, register_t *retval)
630 {
631 struct sys_timer_create_args /* {
632 syscallarg(clockid_t) clock_id;
633 syscallarg(struct sigevent *) evp;
634 syscallarg(timer_t *) timerid;
635 } */ *uap = v;
636
637 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
638 SCARG(uap, evp), copyin, l);
639 }
640
641 int
642 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
643 copyin_t fetch_event, struct lwp *l)
644 {
645 int error;
646 timer_t timerid;
647 struct ptimer *pt;
648 struct proc *p;
649
650 p = l->l_proc;
651
652 if (id < CLOCK_REALTIME ||
653 id > CLOCK_PROF)
654 return (EINVAL);
655
656 if (p->p_timers == NULL)
657 timers_alloc(p);
658
659 /* Find a free timer slot, skipping those reserved for setitimer(). */
660 for (timerid = 3; timerid < TIMER_MAX; timerid++)
661 if (p->p_timers->pts_timers[timerid] == NULL)
662 break;
663
664 if (timerid == TIMER_MAX)
665 return EAGAIN;
666
667 pt = pool_get(&ptimer_pool, PR_WAITOK);
668 if (evp) {
669 if (((error =
670 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
671 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
672 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
673 pool_put(&ptimer_pool, pt);
674 return (error ? error : EINVAL);
675 }
676 } else {
677 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
678 switch (id) {
679 case CLOCK_REALTIME:
680 pt->pt_ev.sigev_signo = SIGALRM;
681 break;
682 case CLOCK_VIRTUAL:
683 pt->pt_ev.sigev_signo = SIGVTALRM;
684 break;
685 case CLOCK_PROF:
686 pt->pt_ev.sigev_signo = SIGPROF;
687 break;
688 }
689 pt->pt_ev.sigev_value.sival_int = timerid;
690 }
691 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
692 pt->pt_info.ksi_errno = 0;
693 pt->pt_info.ksi_code = 0;
694 pt->pt_info.ksi_pid = p->p_pid;
695 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
696 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
697
698 pt->pt_type = id;
699 pt->pt_proc = p;
700 pt->pt_overruns = 0;
701 pt->pt_poverruns = 0;
702 pt->pt_entry = timerid;
703 timerclear(&pt->pt_time.it_value);
704 if (id == CLOCK_REALTIME)
705 callout_init(&pt->pt_ch);
706 else
707 pt->pt_active = 0;
708
709 p->p_timers->pts_timers[timerid] = pt;
710
711 return copyout(&timerid, tid, sizeof(timerid));
712 }
713
714 /* Delete a POSIX realtime timer */
715 int
716 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
717 {
718 struct sys_timer_delete_args /* {
719 syscallarg(timer_t) timerid;
720 } */ *uap = v;
721 struct proc *p = l->l_proc;
722 timer_t timerid;
723 struct ptimer *pt, *ptn;
724 int s;
725
726 timerid = SCARG(uap, timerid);
727
728 if ((p->p_timers == NULL) ||
729 (timerid < 2) || (timerid >= TIMER_MAX) ||
730 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
731 return (EINVAL);
732
733 if (pt->pt_type == CLOCK_REALTIME)
734 callout_stop(&pt->pt_ch);
735 else if (pt->pt_active) {
736 s = splclock();
737 ptn = LIST_NEXT(pt, pt_list);
738 LIST_REMOVE(pt, pt_list);
739 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
740 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
741 &ptn->pt_time.it_value);
742 splx(s);
743 }
744
745 p->p_timers->pts_timers[timerid] = NULL;
746 pool_put(&ptimer_pool, pt);
747
748 return (0);
749 }
750
751 /*
752 * Set up the given timer. The value in pt->pt_time.it_value is taken
753 * to be an absolute time for CLOCK_REALTIME timers and a relative
754 * time for virtual timers.
755 * Must be called at splclock().
756 */
757 void
758 timer_settime(struct ptimer *pt)
759 {
760 struct ptimer *ptn, *pptn;
761 struct ptlist *ptl;
762
763 if (pt->pt_type == CLOCK_REALTIME) {
764 callout_stop(&pt->pt_ch);
765 if (timerisset(&pt->pt_time.it_value)) {
766 /*
767 * Don't need to check hzto() return value, here.
768 * callout_reset() does it for us.
769 */
770 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
771 realtimerexpire, pt);
772 }
773 } else {
774 if (pt->pt_active) {
775 ptn = LIST_NEXT(pt, pt_list);
776 LIST_REMOVE(pt, pt_list);
777 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
778 timeradd(&pt->pt_time.it_value,
779 &ptn->pt_time.it_value,
780 &ptn->pt_time.it_value);
781 }
782 if (timerisset(&pt->pt_time.it_value)) {
783 if (pt->pt_type == CLOCK_VIRTUAL)
784 ptl = &pt->pt_proc->p_timers->pts_virtual;
785 else
786 ptl = &pt->pt_proc->p_timers->pts_prof;
787
788 for (ptn = LIST_FIRST(ptl), pptn = NULL;
789 ptn && timercmp(&pt->pt_time.it_value,
790 &ptn->pt_time.it_value, >);
791 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
792 timersub(&pt->pt_time.it_value,
793 &ptn->pt_time.it_value,
794 &pt->pt_time.it_value);
795
796 if (pptn)
797 LIST_INSERT_AFTER(pptn, pt, pt_list);
798 else
799 LIST_INSERT_HEAD(ptl, pt, pt_list);
800
801 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
802 timersub(&ptn->pt_time.it_value,
803 &pt->pt_time.it_value,
804 &ptn->pt_time.it_value);
805
806 pt->pt_active = 1;
807 } else
808 pt->pt_active = 0;
809 }
810 }
811
812 void
813 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
814 {
815 #ifdef __HAVE_TIMECOUNTER
816 struct timeval now;
817 #endif
818 struct ptimer *ptn;
819
820 *aitv = pt->pt_time;
821 if (pt->pt_type == CLOCK_REALTIME) {
822 /*
823 * Convert from absolute to relative time in .it_value
824 * part of real time timer. If time for real time
825 * timer has passed return 0, else return difference
826 * between current time and time for the timer to go
827 * off.
828 */
829 if (timerisset(&aitv->it_value)) {
830 #ifdef __HAVE_TIMECOUNTER
831 getmicrotime(&now);
832 if (timercmp(&aitv->it_value, &now, <))
833 timerclear(&aitv->it_value);
834 else
835 timersub(&aitv->it_value, &now,
836 &aitv->it_value);
837 #else /* !__HAVE_TIMECOUNTER */
838 if (timercmp(&aitv->it_value, &time, <))
839 timerclear(&aitv->it_value);
840 else
841 timersub(&aitv->it_value, &time,
842 &aitv->it_value);
843 #endif /* !__HAVE_TIMECOUNTER */
844 }
845 } else if (pt->pt_active) {
846 if (pt->pt_type == CLOCK_VIRTUAL)
847 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
848 else
849 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
850 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
851 timeradd(&aitv->it_value,
852 &ptn->pt_time.it_value, &aitv->it_value);
853 KASSERT(ptn != NULL); /* pt should be findable on the list */
854 } else
855 timerclear(&aitv->it_value);
856 }
857
858
859
860 /* Set and arm a POSIX realtime timer */
861 int
862 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
863 {
864 struct sys_timer_settime_args /* {
865 syscallarg(timer_t) timerid;
866 syscallarg(int) flags;
867 syscallarg(const struct itimerspec *) value;
868 syscallarg(struct itimerspec *) ovalue;
869 } */ *uap = v;
870 int error;
871 struct itimerspec value, ovalue, *ovp = NULL;
872
873 if ((error = copyin(SCARG(uap, value), &value,
874 sizeof(struct itimerspec))) != 0)
875 return (error);
876
877 if (SCARG(uap, ovalue))
878 ovp = &ovalue;
879
880 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
881 SCARG(uap, flags), l->l_proc)) != 0)
882 return error;
883
884 if (ovp)
885 return copyout(&ovalue, SCARG(uap, ovalue),
886 sizeof(struct itimerspec));
887 return 0;
888 }
889
890 int
891 dotimer_settime(int timerid, struct itimerspec *value,
892 struct itimerspec *ovalue, int flags, struct proc *p)
893 {
894 #ifdef __HAVE_TIMECOUNTER
895 struct timeval now;
896 #endif
897 struct itimerval val, oval;
898 struct ptimer *pt;
899 int s;
900
901 if ((p->p_timers == NULL) ||
902 (timerid < 2) || (timerid >= TIMER_MAX) ||
903 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
904 return (EINVAL);
905
906 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
907 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
908 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
909 return (EINVAL);
910
911 oval = pt->pt_time;
912 pt->pt_time = val;
913
914 s = splclock();
915 /*
916 * If we've been passed a relative time for a realtime timer,
917 * convert it to absolute; if an absolute time for a virtual
918 * timer, convert it to relative and make sure we don't set it
919 * to zero, which would cancel the timer, or let it go
920 * negative, which would confuse the comparison tests.
921 */
922 if (timerisset(&pt->pt_time.it_value)) {
923 if (pt->pt_type == CLOCK_REALTIME) {
924 #ifdef __HAVE_TIMECOUNTER
925 if ((flags & TIMER_ABSTIME) == 0) {
926 getmicrotime(&now);
927 timeradd(&pt->pt_time.it_value, &now,
928 &pt->pt_time.it_value);
929 }
930 #else /* !__HAVE_TIMECOUNTER */
931 if ((flags & TIMER_ABSTIME) == 0)
932 timeradd(&pt->pt_time.it_value, &time,
933 &pt->pt_time.it_value);
934 #endif /* !__HAVE_TIMECOUNTER */
935 } else {
936 if ((flags & TIMER_ABSTIME) != 0) {
937 #ifdef __HAVE_TIMECOUNTER
938 getmicrotime(&now);
939 timersub(&pt->pt_time.it_value, &now,
940 &pt->pt_time.it_value);
941 #else /* !__HAVE_TIMECOUNTER */
942 timersub(&pt->pt_time.it_value, &time,
943 &pt->pt_time.it_value);
944 #endif /* !__HAVE_TIMECOUNTER */
945 if (!timerisset(&pt->pt_time.it_value) ||
946 pt->pt_time.it_value.tv_sec < 0) {
947 pt->pt_time.it_value.tv_sec = 0;
948 pt->pt_time.it_value.tv_usec = 1;
949 }
950 }
951 }
952 }
953
954 timer_settime(pt);
955 splx(s);
956
957 if (ovalue) {
958 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
959 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
960 }
961
962 return (0);
963 }
964
965 /* Return the time remaining until a POSIX timer fires. */
966 int
967 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
968 {
969 struct sys_timer_gettime_args /* {
970 syscallarg(timer_t) timerid;
971 syscallarg(struct itimerspec *) value;
972 } */ *uap = v;
973 struct itimerspec its;
974 int error;
975
976 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
977 &its)) != 0)
978 return error;
979
980 return copyout(&its, SCARG(uap, value), sizeof(its));
981 }
982
983 int
984 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
985 {
986 int s;
987 struct ptimer *pt;
988 struct itimerval aitv;
989
990 if ((p->p_timers == NULL) ||
991 (timerid < 2) || (timerid >= TIMER_MAX) ||
992 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
993 return (EINVAL);
994
995 s = splclock();
996 timer_gettime(pt, &aitv);
997 splx(s);
998
999 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1000 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * Return the count of the number of times a periodic timer expired
1007 * while a notification was already pending. The counter is reset when
1008 * a timer expires and a notification can be posted.
1009 */
1010 int
1011 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1012 {
1013 struct sys_timer_getoverrun_args /* {
1014 syscallarg(timer_t) timerid;
1015 } */ *uap = v;
1016 struct proc *p = l->l_proc;
1017 int timerid;
1018 struct ptimer *pt;
1019
1020 timerid = SCARG(uap, timerid);
1021
1022 if ((p->p_timers == NULL) ||
1023 (timerid < 2) || (timerid >= TIMER_MAX) ||
1024 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1025 return (EINVAL);
1026
1027 *retval = pt->pt_poverruns;
1028
1029 return (0);
1030 }
1031
1032 /*
1033 * Real interval timer expired:
1034 * send process whose timer expired an alarm signal.
1035 * If time is not set up to reload, then just return.
1036 * Else compute next time timer should go off which is > current time.
1037 * This is where delay in processing this timeout causes multiple
1038 * SIGALRM calls to be compressed into one.
1039 */
1040 void
1041 realtimerexpire(void *arg)
1042 {
1043 #ifdef __HAVE_TIMECOUNTER
1044 struct timeval now;
1045 #endif
1046 struct ptimer *pt;
1047 int s;
1048
1049 pt = (struct ptimer *)arg;
1050
1051 itimerfire(pt);
1052
1053 if (!timerisset(&pt->pt_time.it_interval)) {
1054 timerclear(&pt->pt_time.it_value);
1055 return;
1056 }
1057 #ifdef __HAVE_TIMECOUNTER
1058 for (;;) {
1059 s = splclock(); /* XXX need spl now? */
1060 timeradd(&pt->pt_time.it_value,
1061 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1062 getmicrotime(&now);
1063 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1064 /*
1065 * Don't need to check hzto() return value, here.
1066 * callout_reset() does it for us.
1067 */
1068 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1069 realtimerexpire, pt);
1070 splx(s);
1071 return;
1072 }
1073 splx(s);
1074 pt->pt_overruns++;
1075 }
1076 #else /* !__HAVE_TIMECOUNTER */
1077 for (;;) {
1078 s = splclock();
1079 timeradd(&pt->pt_time.it_value,
1080 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1081 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1082 /*
1083 * Don't need to check hzto() return value, here.
1084 * callout_reset() does it for us.
1085 */
1086 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1087 realtimerexpire, pt);
1088 splx(s);
1089 return;
1090 }
1091 splx(s);
1092 pt->pt_overruns++;
1093 }
1094 #endif /* !__HAVE_TIMECOUNTER */
1095 }
1096
1097 /* BSD routine to get the value of an interval timer. */
1098 /* ARGSUSED */
1099 int
1100 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1101 {
1102 struct sys_getitimer_args /* {
1103 syscallarg(int) which;
1104 syscallarg(struct itimerval *) itv;
1105 } */ *uap = v;
1106 struct proc *p = l->l_proc;
1107 struct itimerval aitv;
1108 int error;
1109
1110 error = dogetitimer(p, SCARG(uap, which), &aitv);
1111 if (error)
1112 return error;
1113 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1114 }
1115
1116 int
1117 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1118 {
1119 int s;
1120
1121 if ((u_int)which > ITIMER_PROF)
1122 return (EINVAL);
1123
1124 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1125 timerclear(&itvp->it_value);
1126 timerclear(&itvp->it_interval);
1127 } else {
1128 s = splclock();
1129 timer_gettime(p->p_timers->pts_timers[which], itvp);
1130 splx(s);
1131 }
1132
1133 return 0;
1134 }
1135
1136 /* BSD routine to set/arm an interval timer. */
1137 /* ARGSUSED */
1138 int
1139 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1140 {
1141 struct sys_setitimer_args /* {
1142 syscallarg(int) which;
1143 syscallarg(const struct itimerval *) itv;
1144 syscallarg(struct itimerval *) oitv;
1145 } */ *uap = v;
1146 struct proc *p = l->l_proc;
1147 int which = SCARG(uap, which);
1148 struct sys_getitimer_args getargs;
1149 const struct itimerval *itvp;
1150 struct itimerval aitv;
1151 int error;
1152
1153 if ((u_int)which > ITIMER_PROF)
1154 return (EINVAL);
1155 itvp = SCARG(uap, itv);
1156 if (itvp &&
1157 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1158 return (error);
1159 if (SCARG(uap, oitv) != NULL) {
1160 SCARG(&getargs, which) = which;
1161 SCARG(&getargs, itv) = SCARG(uap, oitv);
1162 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1163 return (error);
1164 }
1165 if (itvp == 0)
1166 return (0);
1167
1168 return dosetitimer(p, which, &aitv);
1169 }
1170
1171 int
1172 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1173 {
1174 #ifdef __HAVE_TIMECOUNTER
1175 struct timeval now;
1176 #endif
1177 struct ptimer *pt;
1178 int s;
1179
1180 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1181 return (EINVAL);
1182
1183 /*
1184 * Don't bother allocating data structures if the process just
1185 * wants to clear the timer.
1186 */
1187 if (!timerisset(&itvp->it_value) &&
1188 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1189 return (0);
1190
1191 if (p->p_timers == NULL)
1192 timers_alloc(p);
1193 if (p->p_timers->pts_timers[which] == NULL) {
1194 pt = pool_get(&ptimer_pool, PR_WAITOK);
1195 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1196 pt->pt_ev.sigev_value.sival_int = which;
1197 pt->pt_overruns = 0;
1198 pt->pt_proc = p;
1199 pt->pt_type = which;
1200 pt->pt_entry = which;
1201 switch (which) {
1202 case ITIMER_REAL:
1203 callout_init(&pt->pt_ch);
1204 pt->pt_ev.sigev_signo = SIGALRM;
1205 break;
1206 case ITIMER_VIRTUAL:
1207 pt->pt_active = 0;
1208 pt->pt_ev.sigev_signo = SIGVTALRM;
1209 break;
1210 case ITIMER_PROF:
1211 pt->pt_active = 0;
1212 pt->pt_ev.sigev_signo = SIGPROF;
1213 break;
1214 }
1215 } else
1216 pt = p->p_timers->pts_timers[which];
1217
1218 pt->pt_time = *itvp;
1219 p->p_timers->pts_timers[which] = pt;
1220
1221 s = splclock();
1222 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1223 /* Convert to absolute time */
1224 #ifdef __HAVE_TIMECOUNTER
1225 /* XXX need to wrap in splclock for timecounters case? */
1226 getmicrotime(&now);
1227 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1228 #else /* !__HAVE_TIMECOUNTER */
1229 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1230 #endif /* !__HAVE_TIMECOUNTER */
1231 }
1232 timer_settime(pt);
1233 splx(s);
1234
1235 return (0);
1236 }
1237
1238 /* Utility routines to manage the array of pointers to timers. */
1239 void
1240 timers_alloc(struct proc *p)
1241 {
1242 int i;
1243 struct ptimers *pts;
1244
1245 pts = pool_get(&ptimers_pool, PR_WAITOK);
1246 LIST_INIT(&pts->pts_virtual);
1247 LIST_INIT(&pts->pts_prof);
1248 for (i = 0; i < TIMER_MAX; i++)
1249 pts->pts_timers[i] = NULL;
1250 pts->pts_fired = 0;
1251 p->p_timers = pts;
1252 }
1253
1254 /*
1255 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1256 * then clean up all timers and free all the data structures. If
1257 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1258 * by timer_create(), not the BSD setitimer() timers, and only free the
1259 * structure if none of those remain.
1260 */
1261 void
1262 timers_free(struct proc *p, int which)
1263 {
1264 int i, s;
1265 struct ptimers *pts;
1266 struct ptimer *pt, *ptn;
1267 struct timeval tv;
1268
1269 if (p->p_timers) {
1270 pts = p->p_timers;
1271 if (which == TIMERS_ALL)
1272 i = 0;
1273 else {
1274 s = splclock();
1275 timerclear(&tv);
1276 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1277 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1278 ptn = LIST_NEXT(ptn, pt_list))
1279 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1280 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1281 if (ptn) {
1282 timeradd(&tv, &ptn->pt_time.it_value,
1283 &ptn->pt_time.it_value);
1284 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1285 ptn, pt_list);
1286 }
1287
1288 timerclear(&tv);
1289 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1290 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1291 ptn = LIST_NEXT(ptn, pt_list))
1292 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1293 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1294 if (ptn) {
1295 timeradd(&tv, &ptn->pt_time.it_value,
1296 &ptn->pt_time.it_value);
1297 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1298 pt_list);
1299 }
1300 splx(s);
1301 i = 3;
1302 }
1303 for ( ; i < TIMER_MAX; i++)
1304 if ((pt = pts->pts_timers[i]) != NULL) {
1305 if (pt->pt_type == CLOCK_REALTIME)
1306 callout_stop(&pt->pt_ch);
1307 pts->pts_timers[i] = NULL;
1308 pool_put(&ptimer_pool, pt);
1309 }
1310 if ((pts->pts_timers[0] == NULL) &&
1311 (pts->pts_timers[1] == NULL) &&
1312 (pts->pts_timers[2] == NULL)) {
1313 p->p_timers = NULL;
1314 pool_put(&ptimers_pool, pts);
1315 }
1316 }
1317 }
1318
1319 /*
1320 * Check that a proposed value to load into the .it_value or
1321 * .it_interval part of an interval timer is acceptable, and
1322 * fix it to have at least minimal value (i.e. if it is less
1323 * than the resolution of the clock, round it up.)
1324 */
1325 int
1326 itimerfix(struct timeval *tv)
1327 {
1328
1329 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1330 return (EINVAL);
1331 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1332 tv->tv_usec = tick;
1333 return (0);
1334 }
1335
1336 #ifdef __HAVE_TIMECOUNTER
1337 int
1338 itimespecfix(struct timespec *ts)
1339 {
1340
1341 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1342 return (EINVAL);
1343 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1344 ts->tv_nsec = tick * 1000;
1345 return (0);
1346 }
1347 #endif /* __HAVE_TIMECOUNTER */
1348
1349 /*
1350 * Decrement an interval timer by a specified number
1351 * of microseconds, which must be less than a second,
1352 * i.e. < 1000000. If the timer expires, then reload
1353 * it. In this case, carry over (usec - old value) to
1354 * reduce the value reloaded into the timer so that
1355 * the timer does not drift. This routine assumes
1356 * that it is called in a context where the timers
1357 * on which it is operating cannot change in value.
1358 */
1359 int
1360 itimerdecr(struct ptimer *pt, int usec)
1361 {
1362 struct itimerval *itp;
1363
1364 itp = &pt->pt_time;
1365 if (itp->it_value.tv_usec < usec) {
1366 if (itp->it_value.tv_sec == 0) {
1367 /* expired, and already in next interval */
1368 usec -= itp->it_value.tv_usec;
1369 goto expire;
1370 }
1371 itp->it_value.tv_usec += 1000000;
1372 itp->it_value.tv_sec--;
1373 }
1374 itp->it_value.tv_usec -= usec;
1375 usec = 0;
1376 if (timerisset(&itp->it_value))
1377 return (1);
1378 /* expired, exactly at end of interval */
1379 expire:
1380 if (timerisset(&itp->it_interval)) {
1381 itp->it_value = itp->it_interval;
1382 itp->it_value.tv_usec -= usec;
1383 if (itp->it_value.tv_usec < 0) {
1384 itp->it_value.tv_usec += 1000000;
1385 itp->it_value.tv_sec--;
1386 }
1387 timer_settime(pt);
1388 } else
1389 itp->it_value.tv_usec = 0; /* sec is already 0 */
1390 return (0);
1391 }
1392
1393 void
1394 itimerfire(struct ptimer *pt)
1395 {
1396 struct proc *p = pt->pt_proc;
1397
1398 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1399 /*
1400 * No RT signal infrastructure exists at this time;
1401 * just post the signal number and throw away the
1402 * value.
1403 */
1404 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1405 pt->pt_overruns++;
1406 else {
1407 ksiginfo_t ksi;
1408 KSI_INIT(&ksi);
1409 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1410 ksi.ksi_code = SI_TIMER;
1411 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1412 pt->pt_poverruns = pt->pt_overruns;
1413 pt->pt_overruns = 0;
1414 mutex_enter(&proclist_mutex);
1415 kpsignal(p, &ksi, NULL);
1416 mutex_exit(&proclist_mutex);
1417 }
1418 }
1419 }
1420
1421 /*
1422 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1423 * for usage and rationale.
1424 */
1425 int
1426 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1427 {
1428 struct timeval tv, delta;
1429 int rv = 0;
1430 #ifndef __HAVE_TIMECOUNTER
1431 int s;
1432 #endif
1433
1434 #ifdef __HAVE_TIMECOUNTER
1435 getmicrouptime(&tv);
1436 #else /* !__HAVE_TIMECOUNTER */
1437 s = splclock();
1438 tv = mono_time;
1439 splx(s);
1440 #endif /* !__HAVE_TIMECOUNTER */
1441 timersub(&tv, lasttime, &delta);
1442
1443 /*
1444 * check for 0,0 is so that the message will be seen at least once,
1445 * even if interval is huge.
1446 */
1447 if (timercmp(&delta, mininterval, >=) ||
1448 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1449 *lasttime = tv;
1450 rv = 1;
1451 }
1452
1453 return (rv);
1454 }
1455
1456 /*
1457 * ppsratecheck(): packets (or events) per second limitation.
1458 */
1459 int
1460 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1461 {
1462 struct timeval tv, delta;
1463 int rv;
1464 #ifndef __HAVE_TIMECOUNTER
1465 int s;
1466 #endif
1467
1468 #ifdef __HAVE_TIMECOUNTER
1469 getmicrouptime(&tv);
1470 #else /* !__HAVE_TIMECOUNTER */
1471 s = splclock();
1472 tv = mono_time;
1473 splx(s);
1474 #endif /* !__HAVE_TIMECOUNTER */
1475 timersub(&tv, lasttime, &delta);
1476
1477 /*
1478 * check for 0,0 is so that the message will be seen at least once.
1479 * if more than one second have passed since the last update of
1480 * lasttime, reset the counter.
1481 *
1482 * we do increment *curpps even in *curpps < maxpps case, as some may
1483 * try to use *curpps for stat purposes as well.
1484 */
1485 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1486 delta.tv_sec >= 1) {
1487 *lasttime = tv;
1488 *curpps = 0;
1489 }
1490 if (maxpps < 0)
1491 rv = 1;
1492 else if (*curpps < maxpps)
1493 rv = 1;
1494 else
1495 rv = 0;
1496
1497 #if 1 /*DIAGNOSTIC?*/
1498 /* be careful about wrap-around */
1499 if (*curpps + 1 > *curpps)
1500 *curpps = *curpps + 1;
1501 #else
1502 /*
1503 * assume that there's not too many calls to this function.
1504 * not sure if the assumption holds, as it depends on *caller's*
1505 * behavior, not the behavior of this function.
1506 * IMHO it is wrong to make assumption on the caller's behavior,
1507 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1508 */
1509 *curpps = *curpps + 1;
1510 #endif
1511
1512 return (rv);
1513 }
1514