kern_time.c revision 1.119 1 /* $NetBSD: kern_time.c,v 1.119 2007/05/12 20:27:57 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.119 2007/05/12 20:27:57 dsl Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #ifdef __HAVE_TIMECOUNTER
82 #include <sys/timetc.h>
83 #else /* !__HAVE_TIMECOUNTER */
84 #include <sys/timevar.h>
85 #endif /* !__HAVE_TIMECOUNTER */
86 #include <sys/kauth.h>
87
88 #include <sys/mount.h>
89 #include <sys/syscallargs.h>
90
91 #include <uvm/uvm_extern.h>
92
93 #include <machine/cpu.h>
94
95 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
96 &pool_allocator_nointr, IPL_NONE);
97 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
98 &pool_allocator_nointr, IPL_NONE);
99
100 #ifdef __HAVE_TIMECOUNTER
101 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
102 #endif /* __HAVE_TIMECOUNTER */
103
104 /* Time of day and interval timer support.
105 *
106 * These routines provide the kernel entry points to get and set
107 * the time-of-day and per-process interval timers. Subroutines
108 * here provide support for adding and subtracting timeval structures
109 * and decrementing interval timers, optionally reloading the interval
110 * timers when they expire.
111 */
112
113 /* This function is used by clock_settime and settimeofday */
114 int
115 settime(struct proc *p, struct timespec *ts)
116 {
117 struct timeval delta, tv;
118 #ifdef __HAVE_TIMECOUNTER
119 struct timeval now;
120 struct timespec ts1;
121 #endif /* !__HAVE_TIMECOUNTER */
122 struct cpu_info *ci;
123 int s1, s2;
124
125 /*
126 * Don't allow the time to be set forward so far it will wrap
127 * and become negative, thus allowing an attacker to bypass
128 * the next check below. The cutoff is 1 year before rollover
129 * occurs, so even if the attacker uses adjtime(2) to move
130 * the time past the cutoff, it will take a very long time
131 * to get to the wrap point.
132 *
133 * XXX: we check against INT_MAX since on 64-bit
134 * platforms, sizeof(int) != sizeof(long) and
135 * time_t is 32 bits even when atv.tv_sec is 64 bits.
136 */
137 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
138 struct proc *pp;
139
140 mutex_enter(&proclist_lock);
141 pp = p->p_pptr;
142 mutex_enter(&pp->p_mutex);
143 log(LOG_WARNING, "pid %d (%s) "
144 "invoked by uid %d ppid %d (%s) "
145 "tried to set clock forward to %ld\n",
146 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
147 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
148 mutex_exit(&pp->p_mutex);
149 mutex_exit(&proclist_lock);
150 return (EPERM);
151 }
152 TIMESPEC_TO_TIMEVAL(&tv, ts);
153
154 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
155 s1 = splsoftclock();
156 s2 = splclock();
157 #ifdef __HAVE_TIMECOUNTER
158 microtime(&now);
159 timersub(&tv, &now, &delta);
160 #else /* !__HAVE_TIMECOUNTER */
161 timersub(&tv, &time, &delta);
162 #endif /* !__HAVE_TIMECOUNTER */
163 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
164 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
165 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
166 splx(s1);
167 return (EPERM);
168 }
169 #ifdef notyet
170 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
171 splx(s1);
172 return (EPERM);
173 }
174 #endif
175
176 #ifdef __HAVE_TIMECOUNTER
177 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
178 tc_setclock(&ts1);
179 #else /* !__HAVE_TIMECOUNTER */
180 time = tv;
181 #endif /* !__HAVE_TIMECOUNTER */
182
183 splx(s2);
184
185 timeradd(&boottime, &delta, &boottime);
186
187 /*
188 * XXXSMP
189 * This is wrong. We should traverse a list of all
190 * CPUs and add the delta to the runtime of those
191 * CPUs which have a process on them.
192 */
193 ci = curcpu();
194 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
195 &ci->ci_schedstate.spc_runtime);
196 splx(s1);
197 resettodr();
198 return (0);
199 }
200
201 /* ARGSUSED */
202 int
203 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
204 {
205 struct sys_clock_gettime_args /* {
206 syscallarg(clockid_t) clock_id;
207 syscallarg(struct timespec *) tp;
208 } */ *uap = v;
209 clockid_t clock_id;
210 struct timespec ats;
211
212 clock_id = SCARG(uap, clock_id);
213 switch (clock_id) {
214 case CLOCK_REALTIME:
215 nanotime(&ats);
216 break;
217 case CLOCK_MONOTONIC:
218 #ifdef __HAVE_TIMECOUNTER
219 nanouptime(&ats);
220 #else /* !__HAVE_TIMECOUNTER */
221 {
222 int s;
223
224 /* XXX "hz" granularity */
225 s = splclock();
226 TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
227 splx(s);
228 }
229 #endif /* !__HAVE_TIMECOUNTER */
230 break;
231 default:
232 return (EINVAL);
233 }
234
235 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
236 }
237
238 /* ARGSUSED */
239 int
240 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
241 {
242 struct sys_clock_settime_args /* {
243 syscallarg(clockid_t) clock_id;
244 syscallarg(const struct timespec *) tp;
245 } */ *uap = v;
246 int error;
247
248 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
249 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
250 return (error);
251
252 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
253 }
254
255
256 int
257 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
258 {
259 struct timespec ats;
260 int error;
261
262 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
263 return (error);
264
265 switch (clock_id) {
266 case CLOCK_REALTIME:
267 if ((error = settime(p, &ats)) != 0)
268 return (error);
269 break;
270 case CLOCK_MONOTONIC:
271 return (EINVAL); /* read-only clock */
272 default:
273 return (EINVAL);
274 }
275
276 return 0;
277 }
278
279 int
280 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
281 {
282 struct sys_clock_getres_args /* {
283 syscallarg(clockid_t) clock_id;
284 syscallarg(struct timespec *) tp;
285 } */ *uap = v;
286 clockid_t clock_id;
287 struct timespec ts;
288 int error = 0;
289
290 clock_id = SCARG(uap, clock_id);
291 switch (clock_id) {
292 case CLOCK_REALTIME:
293 case CLOCK_MONOTONIC:
294 ts.tv_sec = 0;
295 #ifdef __HAVE_TIMECOUNTER
296 if (tc_getfrequency() > 1000000000)
297 ts.tv_nsec = 1;
298 else
299 ts.tv_nsec = 1000000000 / tc_getfrequency();
300 #else /* !__HAVE_TIMECOUNTER */
301 ts.tv_nsec = 1000000000 / hz;
302 #endif /* !__HAVE_TIMECOUNTER */
303 break;
304 default:
305 return (EINVAL);
306 }
307
308 if (SCARG(uap, tp))
309 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
310
311 return error;
312 }
313
314 /* ARGSUSED */
315 int
316 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
317 {
318 #ifdef __HAVE_TIMECOUNTER
319 struct sys_nanosleep_args/* {
320 syscallarg(struct timespec *) rqtp;
321 syscallarg(struct timespec *) rmtp;
322 } */ *uap = v;
323 struct timespec rmt, rqt;
324 int error, timo;
325
326 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
327 if (error)
328 return (error);
329
330 if (itimespecfix(&rqt))
331 return (EINVAL);
332
333 timo = tstohz(&rqt);
334 /*
335 * Avoid inadvertantly sleeping forever
336 */
337 if (timo == 0)
338 timo = 1;
339
340 getnanouptime(&rmt);
341
342 error = kpause("nanoslp", true, timo, NULL);
343 if (error == ERESTART)
344 error = EINTR;
345 if (error == EWOULDBLOCK)
346 error = 0;
347
348 if (SCARG(uap, rmtp)) {
349 int error1;
350 struct timespec rmtend;
351
352 getnanouptime(&rmtend);
353
354 timespecsub(&rmtend, &rmt, &rmt);
355 timespecsub(&rqt, &rmt, &rmt);
356 if (rmt.tv_sec < 0)
357 timespecclear(&rmt);
358
359 error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
360 sizeof(rmt));
361 if (error1)
362 return (error1);
363 }
364
365 return error;
366 #else /* !__HAVE_TIMECOUNTER */
367 struct sys_nanosleep_args/* {
368 syscallarg(struct timespec *) rqtp;
369 syscallarg(struct timespec *) rmtp;
370 } */ *uap = v;
371 struct timespec rqt;
372 struct timespec rmt;
373 struct timeval atv, utv;
374 int error, s, timo;
375
376 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
377 if (error)
378 return (error);
379
380 TIMESPEC_TO_TIMEVAL(&atv,&rqt);
381 if (itimerfix(&atv))
382 return (EINVAL);
383
384 s = splclock();
385 timeradd(&atv,&time,&atv);
386 timo = hzto(&atv);
387 /*
388 * Avoid inadvertantly sleeping forever
389 */
390 if (timo == 0)
391 timo = 1;
392 splx(s);
393
394 error = kpause("nanoslp", true, timo, NULL);
395 if (error == ERESTART)
396 error = EINTR;
397 if (error == EWOULDBLOCK)
398 error = 0;
399
400 if (SCARG(uap, rmtp)) {
401 int error1;
402
403 s = splclock();
404 utv = time;
405 splx(s);
406
407 timersub(&atv, &utv, &utv);
408 if (utv.tv_sec < 0)
409 timerclear(&utv);
410
411 TIMEVAL_TO_TIMESPEC(&utv,&rmt);
412 error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
413 sizeof(rmt));
414 if (error1)
415 return (error1);
416 }
417
418 return error;
419 #endif /* !__HAVE_TIMECOUNTER */
420 }
421
422 /* ARGSUSED */
423 int
424 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
425 {
426 struct sys_gettimeofday_args /* {
427 syscallarg(struct timeval *) tp;
428 syscallarg(void *) tzp; really "struct timezone *"
429 } */ *uap = v;
430 struct timeval atv;
431 int error = 0;
432 struct timezone tzfake;
433
434 if (SCARG(uap, tp)) {
435 microtime(&atv);
436 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
437 if (error)
438 return (error);
439 }
440 if (SCARG(uap, tzp)) {
441 /*
442 * NetBSD has no kernel notion of time zone, so we just
443 * fake up a timezone struct and return it if demanded.
444 */
445 tzfake.tz_minuteswest = 0;
446 tzfake.tz_dsttime = 0;
447 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
448 }
449 return (error);
450 }
451
452 /* ARGSUSED */
453 int
454 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
455 {
456 struct sys_settimeofday_args /* {
457 syscallarg(const struct timeval *) tv;
458 syscallarg(const void *) tzp; really "const struct timezone *"
459 } */ *uap = v;
460
461 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
462 }
463
464 int
465 settimeofday1(const struct timeval *utv, bool userspace,
466 const void *utzp, struct lwp *l, bool check_kauth)
467 {
468 struct timeval atv;
469 struct timespec ts;
470 int error;
471
472 /* Verify all parameters before changing time. */
473
474 if (check_kauth) {
475 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
476 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
477 if (error != 0)
478 return (error);
479 }
480
481 /*
482 * NetBSD has no kernel notion of time zone, and only an
483 * obsolete program would try to set it, so we log a warning.
484 */
485 if (utzp)
486 log(LOG_WARNING, "pid %d attempted to set the "
487 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
488
489 if (utv == NULL)
490 return 0;
491
492 if (userspace) {
493 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
494 return error;
495 utv = &atv;
496 }
497
498 TIMEVAL_TO_TIMESPEC(utv, &ts);
499 return settime(l->l_proc, &ts);
500 }
501
502 #ifndef __HAVE_TIMECOUNTER
503 int tickdelta; /* current clock skew, us. per tick */
504 long timedelta; /* unapplied time correction, us. */
505 long bigadj = 1000000; /* use 10x skew above bigadj us. */
506 #endif
507
508 int time_adjusted; /* set if an adjustment is made */
509
510 /* ARGSUSED */
511 int
512 sys_adjtime(struct lwp *l, void *v, register_t *retval)
513 {
514 struct sys_adjtime_args /* {
515 syscallarg(const struct timeval *) delta;
516 syscallarg(struct timeval *) olddelta;
517 } */ *uap = v;
518 int error;
519
520 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
521 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
522 return (error);
523
524 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
525 }
526
527 int
528 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
529 {
530 struct timeval atv;
531 int error = 0;
532
533 #ifdef __HAVE_TIMECOUNTER
534 extern int64_t time_adjtime; /* in kern_ntptime.c */
535 #else /* !__HAVE_TIMECOUNTER */
536 long ndelta, ntickdelta, odelta;
537 int s;
538 #endif /* !__HAVE_TIMECOUNTER */
539
540 #ifdef __HAVE_TIMECOUNTER
541 if (olddelta) {
542 atv.tv_sec = time_adjtime / 1000000;
543 atv.tv_usec = time_adjtime % 1000000;
544 if (atv.tv_usec < 0) {
545 atv.tv_usec += 1000000;
546 atv.tv_sec--;
547 }
548 error = copyout(&atv, olddelta, sizeof(struct timeval));
549 if (error)
550 return (error);
551 }
552
553 if (delta) {
554 error = copyin(delta, &atv, sizeof(struct timeval));
555 if (error)
556 return (error);
557
558 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
559 atv.tv_usec;
560
561 if (time_adjtime)
562 /* We need to save the system time during shutdown */
563 time_adjusted |= 1;
564 }
565 #else /* !__HAVE_TIMECOUNTER */
566 error = copyin(delta, &atv, sizeof(struct timeval));
567 if (error)
568 return (error);
569
570 /*
571 * Compute the total correction and the rate at which to apply it.
572 * Round the adjustment down to a whole multiple of the per-tick
573 * delta, so that after some number of incremental changes in
574 * hardclock(), tickdelta will become zero, lest the correction
575 * overshoot and start taking us away from the desired final time.
576 */
577 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
578 if (ndelta > bigadj || ndelta < -bigadj)
579 ntickdelta = 10 * tickadj;
580 else
581 ntickdelta = tickadj;
582 if (ndelta % ntickdelta)
583 ndelta = ndelta / ntickdelta * ntickdelta;
584
585 /*
586 * To make hardclock()'s job easier, make the per-tick delta negative
587 * if we want time to run slower; then hardclock can simply compute
588 * tick + tickdelta, and subtract tickdelta from timedelta.
589 */
590 if (ndelta < 0)
591 ntickdelta = -ntickdelta;
592 if (ndelta != 0)
593 /* We need to save the system clock time during shutdown */
594 time_adjusted |= 1;
595 s = splclock();
596 odelta = timedelta;
597 timedelta = ndelta;
598 tickdelta = ntickdelta;
599 splx(s);
600
601 if (olddelta) {
602 atv.tv_sec = odelta / 1000000;
603 atv.tv_usec = odelta % 1000000;
604 error = copyout(&atv, olddelta, sizeof(struct timeval));
605 }
606 #endif /* __HAVE_TIMECOUNTER */
607
608 return error;
609 }
610
611 /*
612 * Interval timer support. Both the BSD getitimer() family and the POSIX
613 * timer_*() family of routines are supported.
614 *
615 * All timers are kept in an array pointed to by p_timers, which is
616 * allocated on demand - many processes don't use timers at all. The
617 * first three elements in this array are reserved for the BSD timers:
618 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
619 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
620 * syscall.
621 *
622 * Realtime timers are kept in the ptimer structure as an absolute
623 * time; virtual time timers are kept as a linked list of deltas.
624 * Virtual time timers are processed in the hardclock() routine of
625 * kern_clock.c. The real time timer is processed by a callout
626 * routine, called from the softclock() routine. Since a callout may
627 * be delayed in real time due to interrupt processing in the system,
628 * it is possible for the real time timeout routine (realtimeexpire,
629 * given below), to be delayed in real time past when it is supposed
630 * to occur. It does not suffice, therefore, to reload the real timer
631 * .it_value from the real time timers .it_interval. Rather, we
632 * compute the next time in absolute time the timer should go off. */
633
634 /* Allocate a POSIX realtime timer. */
635 int
636 sys_timer_create(struct lwp *l, void *v, register_t *retval)
637 {
638 struct sys_timer_create_args /* {
639 syscallarg(clockid_t) clock_id;
640 syscallarg(struct sigevent *) evp;
641 syscallarg(timer_t *) timerid;
642 } */ *uap = v;
643
644 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
645 SCARG(uap, evp), copyin, l);
646 }
647
648 int
649 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
650 copyin_t fetch_event, struct lwp *l)
651 {
652 int error;
653 timer_t timerid;
654 struct ptimer *pt;
655 struct proc *p;
656
657 p = l->l_proc;
658
659 if (id < CLOCK_REALTIME ||
660 id > CLOCK_PROF)
661 return (EINVAL);
662
663 if (p->p_timers == NULL)
664 timers_alloc(p);
665
666 /* Find a free timer slot, skipping those reserved for setitimer(). */
667 for (timerid = 3; timerid < TIMER_MAX; timerid++)
668 if (p->p_timers->pts_timers[timerid] == NULL)
669 break;
670
671 if (timerid == TIMER_MAX)
672 return EAGAIN;
673
674 pt = pool_get(&ptimer_pool, PR_WAITOK);
675 if (evp) {
676 if (((error =
677 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
678 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
679 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
680 pool_put(&ptimer_pool, pt);
681 return (error ? error : EINVAL);
682 }
683 } else {
684 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
685 switch (id) {
686 case CLOCK_REALTIME:
687 pt->pt_ev.sigev_signo = SIGALRM;
688 break;
689 case CLOCK_VIRTUAL:
690 pt->pt_ev.sigev_signo = SIGVTALRM;
691 break;
692 case CLOCK_PROF:
693 pt->pt_ev.sigev_signo = SIGPROF;
694 break;
695 }
696 pt->pt_ev.sigev_value.sival_int = timerid;
697 }
698 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
699 pt->pt_info.ksi_errno = 0;
700 pt->pt_info.ksi_code = 0;
701 pt->pt_info.ksi_pid = p->p_pid;
702 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
703 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
704
705 pt->pt_type = id;
706 pt->pt_proc = p;
707 pt->pt_overruns = 0;
708 pt->pt_poverruns = 0;
709 pt->pt_entry = timerid;
710 timerclear(&pt->pt_time.it_value);
711 if (id == CLOCK_REALTIME)
712 callout_init(&pt->pt_ch);
713 else
714 pt->pt_active = 0;
715
716 p->p_timers->pts_timers[timerid] = pt;
717
718 return copyout(&timerid, tid, sizeof(timerid));
719 }
720
721 /* Delete a POSIX realtime timer */
722 int
723 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
724 {
725 struct sys_timer_delete_args /* {
726 syscallarg(timer_t) timerid;
727 } */ *uap = v;
728 struct proc *p = l->l_proc;
729 timer_t timerid;
730 struct ptimer *pt, *ptn;
731 int s;
732
733 timerid = SCARG(uap, timerid);
734
735 if ((p->p_timers == NULL) ||
736 (timerid < 2) || (timerid >= TIMER_MAX) ||
737 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
738 return (EINVAL);
739
740 if (pt->pt_type == CLOCK_REALTIME)
741 callout_stop(&pt->pt_ch);
742 else if (pt->pt_active) {
743 s = splclock();
744 ptn = LIST_NEXT(pt, pt_list);
745 LIST_REMOVE(pt, pt_list);
746 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
747 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
748 &ptn->pt_time.it_value);
749 splx(s);
750 }
751
752 p->p_timers->pts_timers[timerid] = NULL;
753 pool_put(&ptimer_pool, pt);
754
755 return (0);
756 }
757
758 /*
759 * Set up the given timer. The value in pt->pt_time.it_value is taken
760 * to be an absolute time for CLOCK_REALTIME timers and a relative
761 * time for virtual timers.
762 * Must be called at splclock().
763 */
764 void
765 timer_settime(struct ptimer *pt)
766 {
767 struct ptimer *ptn, *pptn;
768 struct ptlist *ptl;
769
770 if (pt->pt_type == CLOCK_REALTIME) {
771 callout_stop(&pt->pt_ch);
772 if (timerisset(&pt->pt_time.it_value)) {
773 /*
774 * Don't need to check hzto() return value, here.
775 * callout_reset() does it for us.
776 */
777 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
778 realtimerexpire, pt);
779 }
780 } else {
781 if (pt->pt_active) {
782 ptn = LIST_NEXT(pt, pt_list);
783 LIST_REMOVE(pt, pt_list);
784 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
785 timeradd(&pt->pt_time.it_value,
786 &ptn->pt_time.it_value,
787 &ptn->pt_time.it_value);
788 }
789 if (timerisset(&pt->pt_time.it_value)) {
790 if (pt->pt_type == CLOCK_VIRTUAL)
791 ptl = &pt->pt_proc->p_timers->pts_virtual;
792 else
793 ptl = &pt->pt_proc->p_timers->pts_prof;
794
795 for (ptn = LIST_FIRST(ptl), pptn = NULL;
796 ptn && timercmp(&pt->pt_time.it_value,
797 &ptn->pt_time.it_value, >);
798 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
799 timersub(&pt->pt_time.it_value,
800 &ptn->pt_time.it_value,
801 &pt->pt_time.it_value);
802
803 if (pptn)
804 LIST_INSERT_AFTER(pptn, pt, pt_list);
805 else
806 LIST_INSERT_HEAD(ptl, pt, pt_list);
807
808 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
809 timersub(&ptn->pt_time.it_value,
810 &pt->pt_time.it_value,
811 &ptn->pt_time.it_value);
812
813 pt->pt_active = 1;
814 } else
815 pt->pt_active = 0;
816 }
817 }
818
819 void
820 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
821 {
822 #ifdef __HAVE_TIMECOUNTER
823 struct timeval now;
824 #endif
825 struct ptimer *ptn;
826
827 *aitv = pt->pt_time;
828 if (pt->pt_type == CLOCK_REALTIME) {
829 /*
830 * Convert from absolute to relative time in .it_value
831 * part of real time timer. If time for real time
832 * timer has passed return 0, else return difference
833 * between current time and time for the timer to go
834 * off.
835 */
836 if (timerisset(&aitv->it_value)) {
837 #ifdef __HAVE_TIMECOUNTER
838 getmicrotime(&now);
839 if (timercmp(&aitv->it_value, &now, <))
840 timerclear(&aitv->it_value);
841 else
842 timersub(&aitv->it_value, &now,
843 &aitv->it_value);
844 #else /* !__HAVE_TIMECOUNTER */
845 if (timercmp(&aitv->it_value, &time, <))
846 timerclear(&aitv->it_value);
847 else
848 timersub(&aitv->it_value, &time,
849 &aitv->it_value);
850 #endif /* !__HAVE_TIMECOUNTER */
851 }
852 } else if (pt->pt_active) {
853 if (pt->pt_type == CLOCK_VIRTUAL)
854 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
855 else
856 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
857 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
858 timeradd(&aitv->it_value,
859 &ptn->pt_time.it_value, &aitv->it_value);
860 KASSERT(ptn != NULL); /* pt should be findable on the list */
861 } else
862 timerclear(&aitv->it_value);
863 }
864
865
866
867 /* Set and arm a POSIX realtime timer */
868 int
869 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
870 {
871 struct sys_timer_settime_args /* {
872 syscallarg(timer_t) timerid;
873 syscallarg(int) flags;
874 syscallarg(const struct itimerspec *) value;
875 syscallarg(struct itimerspec *) ovalue;
876 } */ *uap = v;
877 int error;
878 struct itimerspec value, ovalue, *ovp = NULL;
879
880 if ((error = copyin(SCARG(uap, value), &value,
881 sizeof(struct itimerspec))) != 0)
882 return (error);
883
884 if (SCARG(uap, ovalue))
885 ovp = &ovalue;
886
887 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
888 SCARG(uap, flags), l->l_proc)) != 0)
889 return error;
890
891 if (ovp)
892 return copyout(&ovalue, SCARG(uap, ovalue),
893 sizeof(struct itimerspec));
894 return 0;
895 }
896
897 int
898 dotimer_settime(int timerid, struct itimerspec *value,
899 struct itimerspec *ovalue, int flags, struct proc *p)
900 {
901 #ifdef __HAVE_TIMECOUNTER
902 struct timeval now;
903 #endif
904 struct itimerval val, oval;
905 struct ptimer *pt;
906 int s;
907
908 if ((p->p_timers == NULL) ||
909 (timerid < 2) || (timerid >= TIMER_MAX) ||
910 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
911 return (EINVAL);
912
913 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
914 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
915 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
916 return (EINVAL);
917
918 oval = pt->pt_time;
919 pt->pt_time = val;
920
921 s = splclock();
922 /*
923 * If we've been passed a relative time for a realtime timer,
924 * convert it to absolute; if an absolute time for a virtual
925 * timer, convert it to relative and make sure we don't set it
926 * to zero, which would cancel the timer, or let it go
927 * negative, which would confuse the comparison tests.
928 */
929 if (timerisset(&pt->pt_time.it_value)) {
930 if (pt->pt_type == CLOCK_REALTIME) {
931 #ifdef __HAVE_TIMECOUNTER
932 if ((flags & TIMER_ABSTIME) == 0) {
933 getmicrotime(&now);
934 timeradd(&pt->pt_time.it_value, &now,
935 &pt->pt_time.it_value);
936 }
937 #else /* !__HAVE_TIMECOUNTER */
938 if ((flags & TIMER_ABSTIME) == 0)
939 timeradd(&pt->pt_time.it_value, &time,
940 &pt->pt_time.it_value);
941 #endif /* !__HAVE_TIMECOUNTER */
942 } else {
943 if ((flags & TIMER_ABSTIME) != 0) {
944 #ifdef __HAVE_TIMECOUNTER
945 getmicrotime(&now);
946 timersub(&pt->pt_time.it_value, &now,
947 &pt->pt_time.it_value);
948 #else /* !__HAVE_TIMECOUNTER */
949 timersub(&pt->pt_time.it_value, &time,
950 &pt->pt_time.it_value);
951 #endif /* !__HAVE_TIMECOUNTER */
952 if (!timerisset(&pt->pt_time.it_value) ||
953 pt->pt_time.it_value.tv_sec < 0) {
954 pt->pt_time.it_value.tv_sec = 0;
955 pt->pt_time.it_value.tv_usec = 1;
956 }
957 }
958 }
959 }
960
961 timer_settime(pt);
962 splx(s);
963
964 if (ovalue) {
965 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
966 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
967 }
968
969 return (0);
970 }
971
972 /* Return the time remaining until a POSIX timer fires. */
973 int
974 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
975 {
976 struct sys_timer_gettime_args /* {
977 syscallarg(timer_t) timerid;
978 syscallarg(struct itimerspec *) value;
979 } */ *uap = v;
980 struct itimerspec its;
981 int error;
982
983 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
984 &its)) != 0)
985 return error;
986
987 return copyout(&its, SCARG(uap, value), sizeof(its));
988 }
989
990 int
991 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
992 {
993 int s;
994 struct ptimer *pt;
995 struct itimerval aitv;
996
997 if ((p->p_timers == NULL) ||
998 (timerid < 2) || (timerid >= TIMER_MAX) ||
999 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1000 return (EINVAL);
1001
1002 s = splclock();
1003 timer_gettime(pt, &aitv);
1004 splx(s);
1005
1006 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1007 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * Return the count of the number of times a periodic timer expired
1014 * while a notification was already pending. The counter is reset when
1015 * a timer expires and a notification can be posted.
1016 */
1017 int
1018 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1019 {
1020 struct sys_timer_getoverrun_args /* {
1021 syscallarg(timer_t) timerid;
1022 } */ *uap = v;
1023 struct proc *p = l->l_proc;
1024 int timerid;
1025 struct ptimer *pt;
1026
1027 timerid = SCARG(uap, timerid);
1028
1029 if ((p->p_timers == NULL) ||
1030 (timerid < 2) || (timerid >= TIMER_MAX) ||
1031 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1032 return (EINVAL);
1033
1034 *retval = pt->pt_poverruns;
1035
1036 return (0);
1037 }
1038
1039 /*
1040 * Real interval timer expired:
1041 * send process whose timer expired an alarm signal.
1042 * If time is not set up to reload, then just return.
1043 * Else compute next time timer should go off which is > current time.
1044 * This is where delay in processing this timeout causes multiple
1045 * SIGALRM calls to be compressed into one.
1046 */
1047 void
1048 realtimerexpire(void *arg)
1049 {
1050 #ifdef __HAVE_TIMECOUNTER
1051 struct timeval now;
1052 #endif
1053 struct ptimer *pt;
1054 int s;
1055
1056 pt = (struct ptimer *)arg;
1057
1058 itimerfire(pt);
1059
1060 if (!timerisset(&pt->pt_time.it_interval)) {
1061 timerclear(&pt->pt_time.it_value);
1062 return;
1063 }
1064 #ifdef __HAVE_TIMECOUNTER
1065 for (;;) {
1066 s = splclock(); /* XXX need spl now? */
1067 timeradd(&pt->pt_time.it_value,
1068 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1069 getmicrotime(&now);
1070 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1071 /*
1072 * Don't need to check hzto() return value, here.
1073 * callout_reset() does it for us.
1074 */
1075 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1076 realtimerexpire, pt);
1077 splx(s);
1078 return;
1079 }
1080 splx(s);
1081 pt->pt_overruns++;
1082 }
1083 #else /* !__HAVE_TIMECOUNTER */
1084 for (;;) {
1085 s = splclock();
1086 timeradd(&pt->pt_time.it_value,
1087 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1088 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1089 /*
1090 * Don't need to check hzto() return value, here.
1091 * callout_reset() does it for us.
1092 */
1093 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1094 realtimerexpire, pt);
1095 splx(s);
1096 return;
1097 }
1098 splx(s);
1099 pt->pt_overruns++;
1100 }
1101 #endif /* !__HAVE_TIMECOUNTER */
1102 }
1103
1104 /* BSD routine to get the value of an interval timer. */
1105 /* ARGSUSED */
1106 int
1107 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1108 {
1109 struct sys_getitimer_args /* {
1110 syscallarg(int) which;
1111 syscallarg(struct itimerval *) itv;
1112 } */ *uap = v;
1113 struct proc *p = l->l_proc;
1114 struct itimerval aitv;
1115 int error;
1116
1117 error = dogetitimer(p, SCARG(uap, which), &aitv);
1118 if (error)
1119 return error;
1120 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1121 }
1122
1123 int
1124 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1125 {
1126 int s;
1127
1128 if ((u_int)which > ITIMER_PROF)
1129 return (EINVAL);
1130
1131 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1132 timerclear(&itvp->it_value);
1133 timerclear(&itvp->it_interval);
1134 } else {
1135 s = splclock();
1136 timer_gettime(p->p_timers->pts_timers[which], itvp);
1137 splx(s);
1138 }
1139
1140 return 0;
1141 }
1142
1143 /* BSD routine to set/arm an interval timer. */
1144 /* ARGSUSED */
1145 int
1146 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1147 {
1148 struct sys_setitimer_args /* {
1149 syscallarg(int) which;
1150 syscallarg(const struct itimerval *) itv;
1151 syscallarg(struct itimerval *) oitv;
1152 } */ *uap = v;
1153 struct proc *p = l->l_proc;
1154 int which = SCARG(uap, which);
1155 struct sys_getitimer_args getargs;
1156 const struct itimerval *itvp;
1157 struct itimerval aitv;
1158 int error;
1159
1160 if ((u_int)which > ITIMER_PROF)
1161 return (EINVAL);
1162 itvp = SCARG(uap, itv);
1163 if (itvp &&
1164 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1165 return (error);
1166 if (SCARG(uap, oitv) != NULL) {
1167 SCARG(&getargs, which) = which;
1168 SCARG(&getargs, itv) = SCARG(uap, oitv);
1169 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1170 return (error);
1171 }
1172 if (itvp == 0)
1173 return (0);
1174
1175 return dosetitimer(p, which, &aitv);
1176 }
1177
1178 int
1179 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1180 {
1181 #ifdef __HAVE_TIMECOUNTER
1182 struct timeval now;
1183 #endif
1184 struct ptimer *pt;
1185 int s;
1186
1187 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1188 return (EINVAL);
1189
1190 /*
1191 * Don't bother allocating data structures if the process just
1192 * wants to clear the timer.
1193 */
1194 if (!timerisset(&itvp->it_value) &&
1195 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1196 return (0);
1197
1198 if (p->p_timers == NULL)
1199 timers_alloc(p);
1200 if (p->p_timers->pts_timers[which] == NULL) {
1201 pt = pool_get(&ptimer_pool, PR_WAITOK);
1202 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1203 pt->pt_ev.sigev_value.sival_int = which;
1204 pt->pt_overruns = 0;
1205 pt->pt_proc = p;
1206 pt->pt_type = which;
1207 pt->pt_entry = which;
1208 switch (which) {
1209 case ITIMER_REAL:
1210 callout_init(&pt->pt_ch);
1211 pt->pt_ev.sigev_signo = SIGALRM;
1212 break;
1213 case ITIMER_VIRTUAL:
1214 pt->pt_active = 0;
1215 pt->pt_ev.sigev_signo = SIGVTALRM;
1216 break;
1217 case ITIMER_PROF:
1218 pt->pt_active = 0;
1219 pt->pt_ev.sigev_signo = SIGPROF;
1220 break;
1221 }
1222 } else
1223 pt = p->p_timers->pts_timers[which];
1224
1225 pt->pt_time = *itvp;
1226 p->p_timers->pts_timers[which] = pt;
1227
1228 s = splclock();
1229 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1230 /* Convert to absolute time */
1231 #ifdef __HAVE_TIMECOUNTER
1232 /* XXX need to wrap in splclock for timecounters case? */
1233 getmicrotime(&now);
1234 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1235 #else /* !__HAVE_TIMECOUNTER */
1236 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1237 #endif /* !__HAVE_TIMECOUNTER */
1238 }
1239 timer_settime(pt);
1240 splx(s);
1241
1242 return (0);
1243 }
1244
1245 /* Utility routines to manage the array of pointers to timers. */
1246 void
1247 timers_alloc(struct proc *p)
1248 {
1249 int i;
1250 struct ptimers *pts;
1251
1252 pts = pool_get(&ptimers_pool, PR_WAITOK);
1253 LIST_INIT(&pts->pts_virtual);
1254 LIST_INIT(&pts->pts_prof);
1255 for (i = 0; i < TIMER_MAX; i++)
1256 pts->pts_timers[i] = NULL;
1257 pts->pts_fired = 0;
1258 p->p_timers = pts;
1259 }
1260
1261 /*
1262 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1263 * then clean up all timers and free all the data structures. If
1264 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1265 * by timer_create(), not the BSD setitimer() timers, and only free the
1266 * structure if none of those remain.
1267 */
1268 void
1269 timers_free(struct proc *p, int which)
1270 {
1271 int i, s;
1272 struct ptimers *pts;
1273 struct ptimer *pt, *ptn;
1274 struct timeval tv;
1275
1276 if (p->p_timers) {
1277 pts = p->p_timers;
1278 if (which == TIMERS_ALL)
1279 i = 0;
1280 else {
1281 s = splclock();
1282 timerclear(&tv);
1283 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1284 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1285 ptn = LIST_NEXT(ptn, pt_list))
1286 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1287 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1288 if (ptn) {
1289 timeradd(&tv, &ptn->pt_time.it_value,
1290 &ptn->pt_time.it_value);
1291 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1292 ptn, pt_list);
1293 }
1294
1295 timerclear(&tv);
1296 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1297 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1298 ptn = LIST_NEXT(ptn, pt_list))
1299 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1300 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1301 if (ptn) {
1302 timeradd(&tv, &ptn->pt_time.it_value,
1303 &ptn->pt_time.it_value);
1304 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1305 pt_list);
1306 }
1307 splx(s);
1308 i = 3;
1309 }
1310 for ( ; i < TIMER_MAX; i++)
1311 if ((pt = pts->pts_timers[i]) != NULL) {
1312 if (pt->pt_type == CLOCK_REALTIME)
1313 callout_stop(&pt->pt_ch);
1314 pts->pts_timers[i] = NULL;
1315 pool_put(&ptimer_pool, pt);
1316 }
1317 if ((pts->pts_timers[0] == NULL) &&
1318 (pts->pts_timers[1] == NULL) &&
1319 (pts->pts_timers[2] == NULL)) {
1320 p->p_timers = NULL;
1321 pool_put(&ptimers_pool, pts);
1322 }
1323 }
1324 }
1325
1326 /*
1327 * Check that a proposed value to load into the .it_value or
1328 * .it_interval part of an interval timer is acceptable, and
1329 * fix it to have at least minimal value (i.e. if it is less
1330 * than the resolution of the clock, round it up.)
1331 */
1332 int
1333 itimerfix(struct timeval *tv)
1334 {
1335
1336 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1337 return (EINVAL);
1338 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1339 tv->tv_usec = tick;
1340 return (0);
1341 }
1342
1343 #ifdef __HAVE_TIMECOUNTER
1344 int
1345 itimespecfix(struct timespec *ts)
1346 {
1347
1348 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1349 return (EINVAL);
1350 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1351 ts->tv_nsec = tick * 1000;
1352 return (0);
1353 }
1354 #endif /* __HAVE_TIMECOUNTER */
1355
1356 /*
1357 * Decrement an interval timer by a specified number
1358 * of microseconds, which must be less than a second,
1359 * i.e. < 1000000. If the timer expires, then reload
1360 * it. In this case, carry over (usec - old value) to
1361 * reduce the value reloaded into the timer so that
1362 * the timer does not drift. This routine assumes
1363 * that it is called in a context where the timers
1364 * on which it is operating cannot change in value.
1365 */
1366 int
1367 itimerdecr(struct ptimer *pt, int usec)
1368 {
1369 struct itimerval *itp;
1370
1371 itp = &pt->pt_time;
1372 if (itp->it_value.tv_usec < usec) {
1373 if (itp->it_value.tv_sec == 0) {
1374 /* expired, and already in next interval */
1375 usec -= itp->it_value.tv_usec;
1376 goto expire;
1377 }
1378 itp->it_value.tv_usec += 1000000;
1379 itp->it_value.tv_sec--;
1380 }
1381 itp->it_value.tv_usec -= usec;
1382 usec = 0;
1383 if (timerisset(&itp->it_value))
1384 return (1);
1385 /* expired, exactly at end of interval */
1386 expire:
1387 if (timerisset(&itp->it_interval)) {
1388 itp->it_value = itp->it_interval;
1389 itp->it_value.tv_usec -= usec;
1390 if (itp->it_value.tv_usec < 0) {
1391 itp->it_value.tv_usec += 1000000;
1392 itp->it_value.tv_sec--;
1393 }
1394 timer_settime(pt);
1395 } else
1396 itp->it_value.tv_usec = 0; /* sec is already 0 */
1397 return (0);
1398 }
1399
1400 void
1401 itimerfire(struct ptimer *pt)
1402 {
1403 struct proc *p = pt->pt_proc;
1404
1405 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1406 /*
1407 * No RT signal infrastructure exists at this time;
1408 * just post the signal number and throw away the
1409 * value.
1410 */
1411 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1412 pt->pt_overruns++;
1413 else {
1414 ksiginfo_t ksi;
1415 KSI_INIT(&ksi);
1416 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1417 ksi.ksi_code = SI_TIMER;
1418 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1419 pt->pt_poverruns = pt->pt_overruns;
1420 pt->pt_overruns = 0;
1421 mutex_enter(&proclist_mutex);
1422 kpsignal(p, &ksi, NULL);
1423 mutex_exit(&proclist_mutex);
1424 }
1425 }
1426 }
1427
1428 /*
1429 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1430 * for usage and rationale.
1431 */
1432 int
1433 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1434 {
1435 struct timeval tv, delta;
1436 int rv = 0;
1437 #ifndef __HAVE_TIMECOUNTER
1438 int s;
1439 #endif
1440
1441 #ifdef __HAVE_TIMECOUNTER
1442 getmicrouptime(&tv);
1443 #else /* !__HAVE_TIMECOUNTER */
1444 s = splclock();
1445 tv = mono_time;
1446 splx(s);
1447 #endif /* !__HAVE_TIMECOUNTER */
1448 timersub(&tv, lasttime, &delta);
1449
1450 /*
1451 * check for 0,0 is so that the message will be seen at least once,
1452 * even if interval is huge.
1453 */
1454 if (timercmp(&delta, mininterval, >=) ||
1455 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1456 *lasttime = tv;
1457 rv = 1;
1458 }
1459
1460 return (rv);
1461 }
1462
1463 /*
1464 * ppsratecheck(): packets (or events) per second limitation.
1465 */
1466 int
1467 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1468 {
1469 struct timeval tv, delta;
1470 int rv;
1471 #ifndef __HAVE_TIMECOUNTER
1472 int s;
1473 #endif
1474
1475 #ifdef __HAVE_TIMECOUNTER
1476 getmicrouptime(&tv);
1477 #else /* !__HAVE_TIMECOUNTER */
1478 s = splclock();
1479 tv = mono_time;
1480 splx(s);
1481 #endif /* !__HAVE_TIMECOUNTER */
1482 timersub(&tv, lasttime, &delta);
1483
1484 /*
1485 * check for 0,0 is so that the message will be seen at least once.
1486 * if more than one second have passed since the last update of
1487 * lasttime, reset the counter.
1488 *
1489 * we do increment *curpps even in *curpps < maxpps case, as some may
1490 * try to use *curpps for stat purposes as well.
1491 */
1492 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1493 delta.tv_sec >= 1) {
1494 *lasttime = tv;
1495 *curpps = 0;
1496 }
1497 if (maxpps < 0)
1498 rv = 1;
1499 else if (*curpps < maxpps)
1500 rv = 1;
1501 else
1502 rv = 0;
1503
1504 #if 1 /*DIAGNOSTIC?*/
1505 /* be careful about wrap-around */
1506 if (*curpps + 1 > *curpps)
1507 *curpps = *curpps + 1;
1508 #else
1509 /*
1510 * assume that there's not too many calls to this function.
1511 * not sure if the assumption holds, as it depends on *caller's*
1512 * behavior, not the behavior of this function.
1513 * IMHO it is wrong to make assumption on the caller's behavior,
1514 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1515 */
1516 *curpps = *curpps + 1;
1517 #endif
1518
1519 return (rv);
1520 }
1521