kern_time.c revision 1.12 1 /* $NetBSD: kern_time.c,v 1.12 1994/12/11 18:06:10 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44
45 #include <sys/mount.h>
46 #include <sys/syscallargs.h>
47
48 #include <machine/cpu.h>
49
50 /*
51 * Time of day and interval timer support.
52 *
53 * These routines provide the kernel entry points to get and set
54 * the time-of-day and per-process interval timers. Subroutines
55 * here provide support for adding and subtracting timeval structures
56 * and decrementing interval timers, optionally reloading the interval
57 * timers when they expire.
58 */
59
60 /* ARGSUSED */
61 int
62 gettimeofday(p, uap, retval)
63 struct proc *p;
64 register struct gettimeofday_args /* {
65 syscallarg(struct timeval *) tp;
66 syscallarg(struct timezone *) tzp;
67 } */ *uap;
68 register_t *retval;
69 {
70 struct timeval atv;
71 int error = 0;
72
73 if (SCARG(uap, tp)) {
74 microtime(&atv);
75 if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
76 sizeof (atv)))
77 return (error);
78 }
79 if (SCARG(uap, tzp))
80 error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
81 sizeof (tz));
82 return (error);
83 }
84
85 /* ARGSUSED */
86 int
87 settimeofday(p, uap, retval)
88 struct proc *p;
89 struct settimeofday_args /* {
90 syscallarg(struct timeval *) tv;
91 syscallarg(struct timezone *) tzp;
92 } */ *uap;
93 register_t *retval;
94 {
95 struct timeval atv, delta;
96 struct timezone atz;
97 int error, s;
98
99 if (error = suser(p->p_ucred, &p->p_acflag))
100 return (error);
101 /* Verify all parameters before changing time. */
102 if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
103 (caddr_t)&atv, sizeof(atv))))
104 return (error);
105 if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
106 (caddr_t)&atz, sizeof(atz))))
107 return (error);
108 if (SCARG(uap, tv)) {
109 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
110 delta = atv;
111 s = splclock();
112 __timersub(&delta, &time);
113 time = atv;
114 (void) splsoftclock();
115 __timeradd(&boottime, &delta);
116 __timeradd(&runtime, &delta);
117 LEASE_UPDATETIME(delta.tv_sec);
118 splx(s);
119 resettodr();
120 }
121 if (SCARG(uap, tzp))
122 tz = atz;
123 return (0);
124 }
125
126 int tickdelta; /* current clock skew, us. per tick */
127 long timedelta; /* unapplied time correction, us. */
128 long bigadj = 1000000; /* use 10x skew above bigadj us. */
129
130 /* ARGSUSED */
131 int
132 adjtime(p, uap, retval)
133 struct proc *p;
134 register struct adjtime_args /* {
135 syscallarg(struct timeval *) delta;
136 syscallarg(struct timeval *) olddelta;
137 } */ *uap;
138 register_t *retval;
139 {
140 struct timeval atv;
141 register long ndelta, ntickdelta, odelta;
142 int s, error;
143
144 if (error = suser(p->p_ucred, &p->p_acflag))
145 return (error);
146 if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
147 sizeof(struct timeval)))
148 return (error);
149
150 /*
151 * Compute the total correction and the rate at which to apply it.
152 * Round the adjustment down to a whole multiple of the per-tick
153 * delta, so that after some number of incremental changes in
154 * hardclock(), tickdelta will become zero, lest the correction
155 * overshoot and start taking us away from the desired final time.
156 */
157 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
158 if (ndelta > bigadj)
159 ntickdelta = 10 * tickadj;
160 else
161 ntickdelta = tickadj;
162 if (ndelta % ntickdelta)
163 ndelta = ndelta / ntickdelta * ntickdelta;
164
165 /*
166 * To make hardclock()'s job easier, make the per-tick delta negative
167 * if we want time to run slower; then hardclock can simply compute
168 * tick + tickdelta, and subtract tickdelta from timedelta.
169 */
170 if (ndelta < 0)
171 ntickdelta = -ntickdelta;
172 s = splclock();
173 odelta = timedelta;
174 timedelta = ndelta;
175 tickdelta = ntickdelta;
176 splx(s);
177
178 if (SCARG(uap, olddelta)) {
179 atv.tv_sec = odelta / 1000000;
180 atv.tv_usec = odelta % 1000000;
181 (void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
182 sizeof(struct timeval));
183 }
184 return (0);
185 }
186
187 /*
188 * Get value of an interval timer. The process virtual and
189 * profiling virtual time timers are kept in the p_stats area, since
190 * they can be swapped out. These are kept internally in the
191 * way they are specified externally: in time until they expire.
192 *
193 * The real time interval timer is kept in the process table slot
194 * for the process, and its value (it_value) is kept as an
195 * absolute time rather than as a delta, so that it is easy to keep
196 * periodic real-time signals from drifting.
197 *
198 * Virtual time timers are processed in the hardclock() routine of
199 * kern_clock.c. The real time timer is processed by a timeout
200 * routine, called from the softclock() routine. Since a callout
201 * may be delayed in real time due to interrupt processing in the system,
202 * it is possible for the real time timeout routine (realitexpire, given below),
203 * to be delayed in real time past when it is supposed to occur. It
204 * does not suffice, therefore, to reload the real timer .it_value from the
205 * real time timers .it_interval. Rather, we compute the next time in
206 * absolute time the timer should go off.
207 */
208 /* ARGSUSED */
209 int
210 getitimer(p, uap, retval)
211 struct proc *p;
212 register struct getitimer_args /* {
213 syscallarg(u_int) which;
214 syscallarg(struct itimerval *) itv;
215 } */ *uap;
216 register_t *retval;
217 {
218 struct itimerval aitv;
219 int s;
220
221 if (SCARG(uap, which) > ITIMER_PROF)
222 return (EINVAL);
223 s = splclock();
224 if (SCARG(uap, which) == ITIMER_REAL) {
225 /*
226 * Convert from absolute to relative time in .it_value
227 * part of real time timer. If time for real time timer
228 * has passed return 0, else return difference between
229 * current time and time for the timer to go off.
230 */
231 aitv = p->p_realtimer;
232 if (timerisset(&aitv.it_value))
233 if (timercmp(&aitv.it_value, &time, <))
234 timerclear(&aitv.it_value);
235 else
236 __timersub(&aitv.it_value, &time);
237 } else
238 aitv = p->p_stats->p_timer[SCARG(uap, which)];
239 splx(s);
240 return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
241 sizeof (struct itimerval)));
242 }
243
244 /* ARGSUSED */
245 int
246 setitimer(p, uap, retval)
247 struct proc *p;
248 register struct setitimer_args /* {
249 syscallarg(u_int) which;
250 syscallarg(struct itimerval *) itv;
251 syscallarg(struct itimerval *) oitv;
252 } */ *uap;
253 register_t *retval;
254 {
255 struct itimerval aitv;
256 register struct itimerval *itvp;
257 int s, error;
258
259 if (SCARG(uap, which) > ITIMER_PROF)
260 return (EINVAL);
261 itvp = SCARG(uap, itv);
262 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
263 sizeof(struct itimerval))))
264 return (error);
265 if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
266 (error = getitimer(p, uap, retval)))
267 return (error);
268 if (itvp == 0)
269 return (0);
270 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
271 return (EINVAL);
272 s = splclock();
273 if (SCARG(uap, which) == ITIMER_REAL) {
274 untimeout(realitexpire, p);
275 if (timerisset(&aitv.it_value)) {
276 __timeradd(&aitv.it_value, &time);
277 timeout(realitexpire, p, hzto(&aitv.it_value));
278 }
279 p->p_realtimer = aitv;
280 } else
281 p->p_stats->p_timer[SCARG(uap, which)] = aitv;
282 splx(s);
283 return (0);
284 }
285
286 /*
287 * Real interval timer expired:
288 * send process whose timer expired an alarm signal.
289 * If time is not set up to reload, then just return.
290 * Else compute next time timer should go off which is > current time.
291 * This is where delay in processing this timeout causes multiple
292 * SIGALRM calls to be compressed into one.
293 */
294 void
295 realitexpire(arg)
296 void *arg;
297 {
298 register struct proc *p;
299 int s;
300
301 p = (struct proc *)arg;
302 psignal(p, SIGALRM);
303 if (!timerisset(&p->p_realtimer.it_interval)) {
304 timerclear(&p->p_realtimer.it_value);
305 return;
306 }
307 for (;;) {
308 s = splclock();
309 __timeradd(&p->p_realtimer.it_value,
310 &p->p_realtimer.it_interval);
311 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
312 timeout(realitexpire, p,
313 hzto(&p->p_realtimer.it_value));
314 splx(s);
315 return;
316 }
317 splx(s);
318 }
319 }
320
321 /*
322 * Check that a proposed value to load into the .it_value or
323 * .it_interval part of an interval timer is acceptable, and
324 * fix it to have at least minimal value (i.e. if it is less
325 * than the resolution of the clock, round it up.)
326 */
327 int
328 itimerfix(tv)
329 struct timeval *tv;
330 {
331
332 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
333 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
334 return (EINVAL);
335 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
336 tv->tv_usec = tick;
337 return (0);
338 }
339
340 /*
341 * Decrement an interval timer by a specified number
342 * of microseconds, which must be less than a second,
343 * i.e. < 1000000. If the timer expires, then reload
344 * it. In this case, carry over (usec - old value) to
345 * reduce the value reloaded into the timer so that
346 * the timer does not drift. This routine assumes
347 * that it is called in a context where the timers
348 * on which it is operating cannot change in value.
349 */
350 int
351 itimerdecr(itp, usec)
352 register struct itimerval *itp;
353 int usec;
354 {
355
356 if (itp->it_value.tv_usec < usec) {
357 if (itp->it_value.tv_sec == 0) {
358 /* expired, and already in next interval */
359 usec -= itp->it_value.tv_usec;
360 goto expire;
361 }
362 itp->it_value.tv_usec += 1000000;
363 itp->it_value.tv_sec--;
364 }
365 itp->it_value.tv_usec -= usec;
366 usec = 0;
367 if (timerisset(&itp->it_value))
368 return (1);
369 /* expired, exactly at end of interval */
370 expire:
371 if (timerisset(&itp->it_interval)) {
372 itp->it_value = itp->it_interval;
373 itp->it_value.tv_usec -= usec;
374 if (itp->it_value.tv_usec < 0) {
375 itp->it_value.tv_usec += 1000000;
376 itp->it_value.tv_sec--;
377 }
378 } else
379 itp->it_value.tv_usec = 0; /* sec is already 0 */
380 return (0);
381 }
382