kern_time.c revision 1.122 1 /* $NetBSD: kern_time.c,v 1.122 2007/05/13 14:43:53 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.122 2007/05/13 14:43:53 dsl Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #ifndef __HAVE_TIMECOUNTER
83 #include <sys/timevar.h>
84 #endif /* !__HAVE_TIMECOUNTER */
85 #include <sys/kauth.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #include <machine/cpu.h>
93
94 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 &pool_allocator_nointr, IPL_NONE);
96 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 &pool_allocator_nointr, IPL_NONE);
98
99 #ifdef __HAVE_TIMECOUNTER
100 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
101 #endif /* __HAVE_TIMECOUNTER */
102
103 /* Time of day and interval timer support.
104 *
105 * These routines provide the kernel entry points to get and set
106 * the time-of-day and per-process interval timers. Subroutines
107 * here provide support for adding and subtracting timeval structures
108 * and decrementing interval timers, optionally reloading the interval
109 * timers when they expire.
110 */
111
112 /* This function is used by clock_settime and settimeofday */
113 int
114 settime(struct proc *p, struct timespec *ts)
115 {
116 struct timeval delta, tv;
117 #ifdef __HAVE_TIMECOUNTER
118 struct timeval now;
119 struct timespec ts1;
120 #endif /* !__HAVE_TIMECOUNTER */
121 struct cpu_info *ci;
122 int s1, s2;
123
124 /*
125 * Don't allow the time to be set forward so far it will wrap
126 * and become negative, thus allowing an attacker to bypass
127 * the next check below. The cutoff is 1 year before rollover
128 * occurs, so even if the attacker uses adjtime(2) to move
129 * the time past the cutoff, it will take a very long time
130 * to get to the wrap point.
131 *
132 * XXX: we check against INT_MAX since on 64-bit
133 * platforms, sizeof(int) != sizeof(long) and
134 * time_t is 32 bits even when atv.tv_sec is 64 bits.
135 */
136 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
137 struct proc *pp;
138
139 mutex_enter(&proclist_lock);
140 pp = p->p_pptr;
141 mutex_enter(&pp->p_mutex);
142 log(LOG_WARNING, "pid %d (%s) "
143 "invoked by uid %d ppid %d (%s) "
144 "tried to set clock forward to %ld\n",
145 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 mutex_exit(&pp->p_mutex);
148 mutex_exit(&proclist_lock);
149 return (EPERM);
150 }
151 TIMESPEC_TO_TIMEVAL(&tv, ts);
152
153 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
154 s1 = splsoftclock();
155 s2 = splclock();
156 #ifdef __HAVE_TIMECOUNTER
157 microtime(&now);
158 timersub(&tv, &now, &delta);
159 #else /* !__HAVE_TIMECOUNTER */
160 timersub(&tv, &time, &delta);
161 #endif /* !__HAVE_TIMECOUNTER */
162 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
163 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
164 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
165 splx(s1);
166 return (EPERM);
167 }
168 #ifdef notyet
169 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
170 splx(s1);
171 return (EPERM);
172 }
173 #endif
174
175 #ifdef __HAVE_TIMECOUNTER
176 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
177 tc_setclock(&ts1);
178 #else /* !__HAVE_TIMECOUNTER */
179 time = tv;
180 #endif /* !__HAVE_TIMECOUNTER */
181
182 splx(s2);
183
184 timeradd(&boottime, &delta, &boottime);
185
186 /*
187 * XXXSMP
188 * This is wrong. We should traverse a list of all
189 * CPUs and add the delta to the runtime of those
190 * CPUs which have a process on them.
191 */
192 ci = curcpu();
193 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
194 &ci->ci_schedstate.spc_runtime);
195 splx(s1);
196 resettodr();
197 return (0);
198 }
199
200 /* ARGSUSED */
201 int
202 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
203 {
204 struct sys_clock_gettime_args /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(struct timespec *) tp;
207 } */ *uap = v;
208 clockid_t clock_id;
209 struct timespec ats;
210
211 clock_id = SCARG(uap, clock_id);
212 switch (clock_id) {
213 case CLOCK_REALTIME:
214 nanotime(&ats);
215 break;
216 case CLOCK_MONOTONIC:
217 nanouptime(&ats);
218 break;
219 default:
220 return (EINVAL);
221 }
222
223 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
224 }
225
226 /* ARGSUSED */
227 int
228 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
229 {
230 struct sys_clock_settime_args /* {
231 syscallarg(clockid_t) clock_id;
232 syscallarg(const struct timespec *) tp;
233 } */ *uap = v;
234 int error;
235
236 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
237 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
238 return (error);
239
240 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
241 }
242
243
244 int
245 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
246 {
247 struct timespec ats;
248 int error;
249
250 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
251 return (error);
252
253 switch (clock_id) {
254 case CLOCK_REALTIME:
255 if ((error = settime(p, &ats)) != 0)
256 return (error);
257 break;
258 case CLOCK_MONOTONIC:
259 return (EINVAL); /* read-only clock */
260 default:
261 return (EINVAL);
262 }
263
264 return 0;
265 }
266
267 int
268 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
269 {
270 struct sys_clock_getres_args /* {
271 syscallarg(clockid_t) clock_id;
272 syscallarg(struct timespec *) tp;
273 } */ *uap = v;
274 clockid_t clock_id;
275 struct timespec ts;
276 int error = 0;
277
278 clock_id = SCARG(uap, clock_id);
279 switch (clock_id) {
280 case CLOCK_REALTIME:
281 case CLOCK_MONOTONIC:
282 ts.tv_sec = 0;
283 if (tc_getfrequency() > 1000000000)
284 ts.tv_nsec = 1;
285 else
286 ts.tv_nsec = 1000000000 / tc_getfrequency();
287 break;
288 default:
289 return (EINVAL);
290 }
291
292 if (SCARG(uap, tp))
293 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
294
295 return error;
296 }
297
298 /* ARGSUSED */
299 int
300 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
301 {
302 struct sys_nanosleep_args/* {
303 syscallarg(struct timespec *) rqtp;
304 syscallarg(struct timespec *) rmtp;
305 } */ *uap = v;
306 struct timespec rmt, rqt;
307 int error, error1;
308
309 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310 if (error)
311 return (error);
312
313 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
314 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
315 return error;
316
317 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
318 return error1 ? error1 : error;
319 }
320
321 int
322 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
323 {
324 #ifdef __HAVE_TIMECOUNTER
325 int error, timo;
326
327 if (itimespecfix(rqt))
328 return (EINVAL);
329
330 timo = tstohz(rqt);
331 /*
332 * Avoid inadvertantly sleeping forever
333 */
334 if (timo == 0)
335 timo = 1;
336
337 getnanouptime(rmt);
338
339 error = kpause("nanoslp", true, timo, NULL);
340 if (error == ERESTART)
341 error = EINTR;
342 if (error == EWOULDBLOCK)
343 error = 0;
344
345 if (rmt!= NULL) {
346 struct timespec rmtend;
347
348 getnanouptime(&rmtend);
349
350 timespecsub(&rmtend, rmt, rmt);
351 timespecsub(rqt, rmt, rmt);
352 if (rmt->tv_sec < 0)
353 timespecclear(rmt);
354 }
355
356 return error;
357 #else /* !__HAVE_TIMECOUNTER */
358 struct timeval atv, utv;
359 int error, s, timo;
360
361 TIMESPEC_TO_TIMEVAL(&atv, rqt);
362 if (itimerfix(&atv))
363 return (EINVAL);
364
365 s = splclock();
366 timeradd(&atv,&time,&atv);
367 timo = hzto(&atv);
368 /*
369 * Avoid inadvertantly sleeping forever
370 */
371 if (timo == 0)
372 timo = 1;
373 splx(s);
374
375 error = kpause("nanoslp", true, timo, NULL);
376 if (error == ERESTART)
377 error = EINTR;
378 if (error == EWOULDBLOCK)
379 error = 0;
380
381 if (rmt != NULL) {
382 s = splclock();
383 utv = time;
384 splx(s);
385
386 timersub(&atv, &utv, &utv);
387 if (utv.tv_sec < 0)
388 timerclear(&utv);
389
390 TIMEVAL_TO_TIMESPEC(&utv, rmt);
391 }
392
393 return error;
394 #endif /* !__HAVE_TIMECOUNTER */
395 }
396
397 /* ARGSUSED */
398 int
399 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
400 {
401 struct sys_gettimeofday_args /* {
402 syscallarg(struct timeval *) tp;
403 syscallarg(void *) tzp; really "struct timezone *"
404 } */ *uap = v;
405 struct timeval atv;
406 int error = 0;
407 struct timezone tzfake;
408
409 if (SCARG(uap, tp)) {
410 microtime(&atv);
411 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
412 if (error)
413 return (error);
414 }
415 if (SCARG(uap, tzp)) {
416 /*
417 * NetBSD has no kernel notion of time zone, so we just
418 * fake up a timezone struct and return it if demanded.
419 */
420 tzfake.tz_minuteswest = 0;
421 tzfake.tz_dsttime = 0;
422 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
423 }
424 return (error);
425 }
426
427 /* ARGSUSED */
428 int
429 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
430 {
431 struct sys_settimeofday_args /* {
432 syscallarg(const struct timeval *) tv;
433 syscallarg(const void *) tzp; really "const struct timezone *"
434 } */ *uap = v;
435
436 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
437 }
438
439 int
440 settimeofday1(const struct timeval *utv, bool userspace,
441 const void *utzp, struct lwp *l, bool check_kauth)
442 {
443 struct timeval atv;
444 struct timespec ts;
445 int error;
446
447 /* Verify all parameters before changing time. */
448
449 if (check_kauth) {
450 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
451 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
452 if (error != 0)
453 return (error);
454 }
455
456 /*
457 * NetBSD has no kernel notion of time zone, and only an
458 * obsolete program would try to set it, so we log a warning.
459 */
460 if (utzp)
461 log(LOG_WARNING, "pid %d attempted to set the "
462 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
463
464 if (utv == NULL)
465 return 0;
466
467 if (userspace) {
468 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
469 return error;
470 utv = &atv;
471 }
472
473 TIMEVAL_TO_TIMESPEC(utv, &ts);
474 return settime(l->l_proc, &ts);
475 }
476
477 #ifndef __HAVE_TIMECOUNTER
478 int tickdelta; /* current clock skew, us. per tick */
479 long timedelta; /* unapplied time correction, us. */
480 long bigadj = 1000000; /* use 10x skew above bigadj us. */
481 #endif
482
483 int time_adjusted; /* set if an adjustment is made */
484
485 /* ARGSUSED */
486 int
487 sys_adjtime(struct lwp *l, void *v, register_t *retval)
488 {
489 struct sys_adjtime_args /* {
490 syscallarg(const struct timeval *) delta;
491 syscallarg(struct timeval *) olddelta;
492 } */ *uap = v;
493 int error;
494
495 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
496 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
497 return (error);
498
499 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
500 }
501
502 int
503 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
504 {
505 struct timeval atv;
506 int error = 0;
507
508 #ifdef __HAVE_TIMECOUNTER
509 extern int64_t time_adjtime; /* in kern_ntptime.c */
510 #else /* !__HAVE_TIMECOUNTER */
511 long ndelta, ntickdelta, odelta;
512 int s;
513 #endif /* !__HAVE_TIMECOUNTER */
514
515 #ifdef __HAVE_TIMECOUNTER
516 if (olddelta) {
517 atv.tv_sec = time_adjtime / 1000000;
518 atv.tv_usec = time_adjtime % 1000000;
519 if (atv.tv_usec < 0) {
520 atv.tv_usec += 1000000;
521 atv.tv_sec--;
522 }
523 error = copyout(&atv, olddelta, sizeof(struct timeval));
524 if (error)
525 return (error);
526 }
527
528 if (delta) {
529 error = copyin(delta, &atv, sizeof(struct timeval));
530 if (error)
531 return (error);
532
533 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
534 atv.tv_usec;
535
536 if (time_adjtime)
537 /* We need to save the system time during shutdown */
538 time_adjusted |= 1;
539 }
540 #else /* !__HAVE_TIMECOUNTER */
541 error = copyin(delta, &atv, sizeof(struct timeval));
542 if (error)
543 return (error);
544
545 /*
546 * Compute the total correction and the rate at which to apply it.
547 * Round the adjustment down to a whole multiple of the per-tick
548 * delta, so that after some number of incremental changes in
549 * hardclock(), tickdelta will become zero, lest the correction
550 * overshoot and start taking us away from the desired final time.
551 */
552 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
553 if (ndelta > bigadj || ndelta < -bigadj)
554 ntickdelta = 10 * tickadj;
555 else
556 ntickdelta = tickadj;
557 if (ndelta % ntickdelta)
558 ndelta = ndelta / ntickdelta * ntickdelta;
559
560 /*
561 * To make hardclock()'s job easier, make the per-tick delta negative
562 * if we want time to run slower; then hardclock can simply compute
563 * tick + tickdelta, and subtract tickdelta from timedelta.
564 */
565 if (ndelta < 0)
566 ntickdelta = -ntickdelta;
567 if (ndelta != 0)
568 /* We need to save the system clock time during shutdown */
569 time_adjusted |= 1;
570 s = splclock();
571 odelta = timedelta;
572 timedelta = ndelta;
573 tickdelta = ntickdelta;
574 splx(s);
575
576 if (olddelta) {
577 atv.tv_sec = odelta / 1000000;
578 atv.tv_usec = odelta % 1000000;
579 error = copyout(&atv, olddelta, sizeof(struct timeval));
580 }
581 #endif /* __HAVE_TIMECOUNTER */
582
583 return error;
584 }
585
586 /*
587 * Interval timer support. Both the BSD getitimer() family and the POSIX
588 * timer_*() family of routines are supported.
589 *
590 * All timers are kept in an array pointed to by p_timers, which is
591 * allocated on demand - many processes don't use timers at all. The
592 * first three elements in this array are reserved for the BSD timers:
593 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
594 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
595 * syscall.
596 *
597 * Realtime timers are kept in the ptimer structure as an absolute
598 * time; virtual time timers are kept as a linked list of deltas.
599 * Virtual time timers are processed in the hardclock() routine of
600 * kern_clock.c. The real time timer is processed by a callout
601 * routine, called from the softclock() routine. Since a callout may
602 * be delayed in real time due to interrupt processing in the system,
603 * it is possible for the real time timeout routine (realtimeexpire,
604 * given below), to be delayed in real time past when it is supposed
605 * to occur. It does not suffice, therefore, to reload the real timer
606 * .it_value from the real time timers .it_interval. Rather, we
607 * compute the next time in absolute time the timer should go off. */
608
609 /* Allocate a POSIX realtime timer. */
610 int
611 sys_timer_create(struct lwp *l, void *v, register_t *retval)
612 {
613 struct sys_timer_create_args /* {
614 syscallarg(clockid_t) clock_id;
615 syscallarg(struct sigevent *) evp;
616 syscallarg(timer_t *) timerid;
617 } */ *uap = v;
618
619 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
620 SCARG(uap, evp), copyin, l);
621 }
622
623 int
624 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
625 copyin_t fetch_event, struct lwp *l)
626 {
627 int error;
628 timer_t timerid;
629 struct ptimer *pt;
630 struct proc *p;
631
632 p = l->l_proc;
633
634 if (id < CLOCK_REALTIME ||
635 id > CLOCK_PROF)
636 return (EINVAL);
637
638 if (p->p_timers == NULL)
639 timers_alloc(p);
640
641 /* Find a free timer slot, skipping those reserved for setitimer(). */
642 for (timerid = 3; timerid < TIMER_MAX; timerid++)
643 if (p->p_timers->pts_timers[timerid] == NULL)
644 break;
645
646 if (timerid == TIMER_MAX)
647 return EAGAIN;
648
649 pt = pool_get(&ptimer_pool, PR_WAITOK);
650 if (evp) {
651 if (((error =
652 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
653 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
654 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
655 pool_put(&ptimer_pool, pt);
656 return (error ? error : EINVAL);
657 }
658 } else {
659 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
660 switch (id) {
661 case CLOCK_REALTIME:
662 pt->pt_ev.sigev_signo = SIGALRM;
663 break;
664 case CLOCK_VIRTUAL:
665 pt->pt_ev.sigev_signo = SIGVTALRM;
666 break;
667 case CLOCK_PROF:
668 pt->pt_ev.sigev_signo = SIGPROF;
669 break;
670 }
671 pt->pt_ev.sigev_value.sival_int = timerid;
672 }
673 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
674 pt->pt_info.ksi_errno = 0;
675 pt->pt_info.ksi_code = 0;
676 pt->pt_info.ksi_pid = p->p_pid;
677 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
678 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
679
680 pt->pt_type = id;
681 pt->pt_proc = p;
682 pt->pt_overruns = 0;
683 pt->pt_poverruns = 0;
684 pt->pt_entry = timerid;
685 timerclear(&pt->pt_time.it_value);
686 if (id == CLOCK_REALTIME)
687 callout_init(&pt->pt_ch);
688 else
689 pt->pt_active = 0;
690
691 p->p_timers->pts_timers[timerid] = pt;
692
693 return copyout(&timerid, tid, sizeof(timerid));
694 }
695
696 /* Delete a POSIX realtime timer */
697 int
698 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
699 {
700 struct sys_timer_delete_args /* {
701 syscallarg(timer_t) timerid;
702 } */ *uap = v;
703 struct proc *p = l->l_proc;
704 timer_t timerid;
705 struct ptimer *pt, *ptn;
706 int s;
707
708 timerid = SCARG(uap, timerid);
709
710 if ((p->p_timers == NULL) ||
711 (timerid < 2) || (timerid >= TIMER_MAX) ||
712 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
713 return (EINVAL);
714
715 if (pt->pt_type == CLOCK_REALTIME)
716 callout_stop(&pt->pt_ch);
717 else if (pt->pt_active) {
718 s = splclock();
719 ptn = LIST_NEXT(pt, pt_list);
720 LIST_REMOVE(pt, pt_list);
721 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
722 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
723 &ptn->pt_time.it_value);
724 splx(s);
725 }
726
727 p->p_timers->pts_timers[timerid] = NULL;
728 pool_put(&ptimer_pool, pt);
729
730 return (0);
731 }
732
733 /*
734 * Set up the given timer. The value in pt->pt_time.it_value is taken
735 * to be an absolute time for CLOCK_REALTIME timers and a relative
736 * time for virtual timers.
737 * Must be called at splclock().
738 */
739 void
740 timer_settime(struct ptimer *pt)
741 {
742 struct ptimer *ptn, *pptn;
743 struct ptlist *ptl;
744
745 if (pt->pt_type == CLOCK_REALTIME) {
746 callout_stop(&pt->pt_ch);
747 if (timerisset(&pt->pt_time.it_value)) {
748 /*
749 * Don't need to check hzto() return value, here.
750 * callout_reset() does it for us.
751 */
752 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
753 realtimerexpire, pt);
754 }
755 } else {
756 if (pt->pt_active) {
757 ptn = LIST_NEXT(pt, pt_list);
758 LIST_REMOVE(pt, pt_list);
759 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
760 timeradd(&pt->pt_time.it_value,
761 &ptn->pt_time.it_value,
762 &ptn->pt_time.it_value);
763 }
764 if (timerisset(&pt->pt_time.it_value)) {
765 if (pt->pt_type == CLOCK_VIRTUAL)
766 ptl = &pt->pt_proc->p_timers->pts_virtual;
767 else
768 ptl = &pt->pt_proc->p_timers->pts_prof;
769
770 for (ptn = LIST_FIRST(ptl), pptn = NULL;
771 ptn && timercmp(&pt->pt_time.it_value,
772 &ptn->pt_time.it_value, >);
773 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
774 timersub(&pt->pt_time.it_value,
775 &ptn->pt_time.it_value,
776 &pt->pt_time.it_value);
777
778 if (pptn)
779 LIST_INSERT_AFTER(pptn, pt, pt_list);
780 else
781 LIST_INSERT_HEAD(ptl, pt, pt_list);
782
783 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
784 timersub(&ptn->pt_time.it_value,
785 &pt->pt_time.it_value,
786 &ptn->pt_time.it_value);
787
788 pt->pt_active = 1;
789 } else
790 pt->pt_active = 0;
791 }
792 }
793
794 void
795 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
796 {
797 #ifdef __HAVE_TIMECOUNTER
798 struct timeval now;
799 #endif
800 struct ptimer *ptn;
801
802 *aitv = pt->pt_time;
803 if (pt->pt_type == CLOCK_REALTIME) {
804 /*
805 * Convert from absolute to relative time in .it_value
806 * part of real time timer. If time for real time
807 * timer has passed return 0, else return difference
808 * between current time and time for the timer to go
809 * off.
810 */
811 if (timerisset(&aitv->it_value)) {
812 #ifdef __HAVE_TIMECOUNTER
813 getmicrotime(&now);
814 if (timercmp(&aitv->it_value, &now, <))
815 timerclear(&aitv->it_value);
816 else
817 timersub(&aitv->it_value, &now,
818 &aitv->it_value);
819 #else /* !__HAVE_TIMECOUNTER */
820 if (timercmp(&aitv->it_value, &time, <))
821 timerclear(&aitv->it_value);
822 else
823 timersub(&aitv->it_value, &time,
824 &aitv->it_value);
825 #endif /* !__HAVE_TIMECOUNTER */
826 }
827 } else if (pt->pt_active) {
828 if (pt->pt_type == CLOCK_VIRTUAL)
829 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
830 else
831 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
832 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
833 timeradd(&aitv->it_value,
834 &ptn->pt_time.it_value, &aitv->it_value);
835 KASSERT(ptn != NULL); /* pt should be findable on the list */
836 } else
837 timerclear(&aitv->it_value);
838 }
839
840
841
842 /* Set and arm a POSIX realtime timer */
843 int
844 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
845 {
846 struct sys_timer_settime_args /* {
847 syscallarg(timer_t) timerid;
848 syscallarg(int) flags;
849 syscallarg(const struct itimerspec *) value;
850 syscallarg(struct itimerspec *) ovalue;
851 } */ *uap = v;
852 int error;
853 struct itimerspec value, ovalue, *ovp = NULL;
854
855 if ((error = copyin(SCARG(uap, value), &value,
856 sizeof(struct itimerspec))) != 0)
857 return (error);
858
859 if (SCARG(uap, ovalue))
860 ovp = &ovalue;
861
862 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
863 SCARG(uap, flags), l->l_proc)) != 0)
864 return error;
865
866 if (ovp)
867 return copyout(&ovalue, SCARG(uap, ovalue),
868 sizeof(struct itimerspec));
869 return 0;
870 }
871
872 int
873 dotimer_settime(int timerid, struct itimerspec *value,
874 struct itimerspec *ovalue, int flags, struct proc *p)
875 {
876 #ifdef __HAVE_TIMECOUNTER
877 struct timeval now;
878 #endif
879 struct itimerval val, oval;
880 struct ptimer *pt;
881 int s;
882
883 if ((p->p_timers == NULL) ||
884 (timerid < 2) || (timerid >= TIMER_MAX) ||
885 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
886 return (EINVAL);
887
888 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
889 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
890 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
891 return (EINVAL);
892
893 oval = pt->pt_time;
894 pt->pt_time = val;
895
896 s = splclock();
897 /*
898 * If we've been passed a relative time for a realtime timer,
899 * convert it to absolute; if an absolute time for a virtual
900 * timer, convert it to relative and make sure we don't set it
901 * to zero, which would cancel the timer, or let it go
902 * negative, which would confuse the comparison tests.
903 */
904 if (timerisset(&pt->pt_time.it_value)) {
905 if (pt->pt_type == CLOCK_REALTIME) {
906 #ifdef __HAVE_TIMECOUNTER
907 if ((flags & TIMER_ABSTIME) == 0) {
908 getmicrotime(&now);
909 timeradd(&pt->pt_time.it_value, &now,
910 &pt->pt_time.it_value);
911 }
912 #else /* !__HAVE_TIMECOUNTER */
913 if ((flags & TIMER_ABSTIME) == 0)
914 timeradd(&pt->pt_time.it_value, &time,
915 &pt->pt_time.it_value);
916 #endif /* !__HAVE_TIMECOUNTER */
917 } else {
918 if ((flags & TIMER_ABSTIME) != 0) {
919 #ifdef __HAVE_TIMECOUNTER
920 getmicrotime(&now);
921 timersub(&pt->pt_time.it_value, &now,
922 &pt->pt_time.it_value);
923 #else /* !__HAVE_TIMECOUNTER */
924 timersub(&pt->pt_time.it_value, &time,
925 &pt->pt_time.it_value);
926 #endif /* !__HAVE_TIMECOUNTER */
927 if (!timerisset(&pt->pt_time.it_value) ||
928 pt->pt_time.it_value.tv_sec < 0) {
929 pt->pt_time.it_value.tv_sec = 0;
930 pt->pt_time.it_value.tv_usec = 1;
931 }
932 }
933 }
934 }
935
936 timer_settime(pt);
937 splx(s);
938
939 if (ovalue) {
940 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
941 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
942 }
943
944 return (0);
945 }
946
947 /* Return the time remaining until a POSIX timer fires. */
948 int
949 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
950 {
951 struct sys_timer_gettime_args /* {
952 syscallarg(timer_t) timerid;
953 syscallarg(struct itimerspec *) value;
954 } */ *uap = v;
955 struct itimerspec its;
956 int error;
957
958 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
959 &its)) != 0)
960 return error;
961
962 return copyout(&its, SCARG(uap, value), sizeof(its));
963 }
964
965 int
966 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
967 {
968 int s;
969 struct ptimer *pt;
970 struct itimerval aitv;
971
972 if ((p->p_timers == NULL) ||
973 (timerid < 2) || (timerid >= TIMER_MAX) ||
974 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
975 return (EINVAL);
976
977 s = splclock();
978 timer_gettime(pt, &aitv);
979 splx(s);
980
981 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
982 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
983
984 return 0;
985 }
986
987 /*
988 * Return the count of the number of times a periodic timer expired
989 * while a notification was already pending. The counter is reset when
990 * a timer expires and a notification can be posted.
991 */
992 int
993 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
994 {
995 struct sys_timer_getoverrun_args /* {
996 syscallarg(timer_t) timerid;
997 } */ *uap = v;
998 struct proc *p = l->l_proc;
999 int timerid;
1000 struct ptimer *pt;
1001
1002 timerid = SCARG(uap, timerid);
1003
1004 if ((p->p_timers == NULL) ||
1005 (timerid < 2) || (timerid >= TIMER_MAX) ||
1006 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1007 return (EINVAL);
1008
1009 *retval = pt->pt_poverruns;
1010
1011 return (0);
1012 }
1013
1014 /*
1015 * Real interval timer expired:
1016 * send process whose timer expired an alarm signal.
1017 * If time is not set up to reload, then just return.
1018 * Else compute next time timer should go off which is > current time.
1019 * This is where delay in processing this timeout causes multiple
1020 * SIGALRM calls to be compressed into one.
1021 */
1022 void
1023 realtimerexpire(void *arg)
1024 {
1025 #ifdef __HAVE_TIMECOUNTER
1026 struct timeval now;
1027 #endif
1028 struct ptimer *pt;
1029 int s;
1030
1031 pt = (struct ptimer *)arg;
1032
1033 itimerfire(pt);
1034
1035 if (!timerisset(&pt->pt_time.it_interval)) {
1036 timerclear(&pt->pt_time.it_value);
1037 return;
1038 }
1039 #ifdef __HAVE_TIMECOUNTER
1040 for (;;) {
1041 s = splclock(); /* XXX need spl now? */
1042 timeradd(&pt->pt_time.it_value,
1043 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1044 getmicrotime(&now);
1045 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1046 /*
1047 * Don't need to check hzto() return value, here.
1048 * callout_reset() does it for us.
1049 */
1050 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1051 realtimerexpire, pt);
1052 splx(s);
1053 return;
1054 }
1055 splx(s);
1056 pt->pt_overruns++;
1057 }
1058 #else /* !__HAVE_TIMECOUNTER */
1059 for (;;) {
1060 s = splclock();
1061 timeradd(&pt->pt_time.it_value,
1062 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1063 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1064 /*
1065 * Don't need to check hzto() return value, here.
1066 * callout_reset() does it for us.
1067 */
1068 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1069 realtimerexpire, pt);
1070 splx(s);
1071 return;
1072 }
1073 splx(s);
1074 pt->pt_overruns++;
1075 }
1076 #endif /* !__HAVE_TIMECOUNTER */
1077 }
1078
1079 /* BSD routine to get the value of an interval timer. */
1080 /* ARGSUSED */
1081 int
1082 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1083 {
1084 struct sys_getitimer_args /* {
1085 syscallarg(int) which;
1086 syscallarg(struct itimerval *) itv;
1087 } */ *uap = v;
1088 struct proc *p = l->l_proc;
1089 struct itimerval aitv;
1090 int error;
1091
1092 error = dogetitimer(p, SCARG(uap, which), &aitv);
1093 if (error)
1094 return error;
1095 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1096 }
1097
1098 int
1099 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1100 {
1101 int s;
1102
1103 if ((u_int)which > ITIMER_PROF)
1104 return (EINVAL);
1105
1106 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1107 timerclear(&itvp->it_value);
1108 timerclear(&itvp->it_interval);
1109 } else {
1110 s = splclock();
1111 timer_gettime(p->p_timers->pts_timers[which], itvp);
1112 splx(s);
1113 }
1114
1115 return 0;
1116 }
1117
1118 /* BSD routine to set/arm an interval timer. */
1119 /* ARGSUSED */
1120 int
1121 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1122 {
1123 struct sys_setitimer_args /* {
1124 syscallarg(int) which;
1125 syscallarg(const struct itimerval *) itv;
1126 syscallarg(struct itimerval *) oitv;
1127 } */ *uap = v;
1128 struct proc *p = l->l_proc;
1129 int which = SCARG(uap, which);
1130 struct sys_getitimer_args getargs;
1131 const struct itimerval *itvp;
1132 struct itimerval aitv;
1133 int error;
1134
1135 if ((u_int)which > ITIMER_PROF)
1136 return (EINVAL);
1137 itvp = SCARG(uap, itv);
1138 if (itvp &&
1139 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1140 return (error);
1141 if (SCARG(uap, oitv) != NULL) {
1142 SCARG(&getargs, which) = which;
1143 SCARG(&getargs, itv) = SCARG(uap, oitv);
1144 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1145 return (error);
1146 }
1147 if (itvp == 0)
1148 return (0);
1149
1150 return dosetitimer(p, which, &aitv);
1151 }
1152
1153 int
1154 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1155 {
1156 #ifdef __HAVE_TIMECOUNTER
1157 struct timeval now;
1158 #endif
1159 struct ptimer *pt;
1160 int s;
1161
1162 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1163 return (EINVAL);
1164
1165 /*
1166 * Don't bother allocating data structures if the process just
1167 * wants to clear the timer.
1168 */
1169 if (!timerisset(&itvp->it_value) &&
1170 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1171 return (0);
1172
1173 if (p->p_timers == NULL)
1174 timers_alloc(p);
1175 if (p->p_timers->pts_timers[which] == NULL) {
1176 pt = pool_get(&ptimer_pool, PR_WAITOK);
1177 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1178 pt->pt_ev.sigev_value.sival_int = which;
1179 pt->pt_overruns = 0;
1180 pt->pt_proc = p;
1181 pt->pt_type = which;
1182 pt->pt_entry = which;
1183 switch (which) {
1184 case ITIMER_REAL:
1185 callout_init(&pt->pt_ch);
1186 pt->pt_ev.sigev_signo = SIGALRM;
1187 break;
1188 case ITIMER_VIRTUAL:
1189 pt->pt_active = 0;
1190 pt->pt_ev.sigev_signo = SIGVTALRM;
1191 break;
1192 case ITIMER_PROF:
1193 pt->pt_active = 0;
1194 pt->pt_ev.sigev_signo = SIGPROF;
1195 break;
1196 }
1197 } else
1198 pt = p->p_timers->pts_timers[which];
1199
1200 pt->pt_time = *itvp;
1201 p->p_timers->pts_timers[which] = pt;
1202
1203 s = splclock();
1204 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1205 /* Convert to absolute time */
1206 #ifdef __HAVE_TIMECOUNTER
1207 /* XXX need to wrap in splclock for timecounters case? */
1208 getmicrotime(&now);
1209 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1210 #else /* !__HAVE_TIMECOUNTER */
1211 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1212 #endif /* !__HAVE_TIMECOUNTER */
1213 }
1214 timer_settime(pt);
1215 splx(s);
1216
1217 return (0);
1218 }
1219
1220 /* Utility routines to manage the array of pointers to timers. */
1221 void
1222 timers_alloc(struct proc *p)
1223 {
1224 int i;
1225 struct ptimers *pts;
1226
1227 pts = pool_get(&ptimers_pool, PR_WAITOK);
1228 LIST_INIT(&pts->pts_virtual);
1229 LIST_INIT(&pts->pts_prof);
1230 for (i = 0; i < TIMER_MAX; i++)
1231 pts->pts_timers[i] = NULL;
1232 pts->pts_fired = 0;
1233 p->p_timers = pts;
1234 }
1235
1236 /*
1237 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1238 * then clean up all timers and free all the data structures. If
1239 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1240 * by timer_create(), not the BSD setitimer() timers, and only free the
1241 * structure if none of those remain.
1242 */
1243 void
1244 timers_free(struct proc *p, int which)
1245 {
1246 int i, s;
1247 struct ptimers *pts;
1248 struct ptimer *pt, *ptn;
1249 struct timeval tv;
1250
1251 if (p->p_timers) {
1252 pts = p->p_timers;
1253 if (which == TIMERS_ALL)
1254 i = 0;
1255 else {
1256 s = splclock();
1257 timerclear(&tv);
1258 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1259 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1260 ptn = LIST_NEXT(ptn, pt_list))
1261 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1262 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1263 if (ptn) {
1264 timeradd(&tv, &ptn->pt_time.it_value,
1265 &ptn->pt_time.it_value);
1266 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1267 ptn, pt_list);
1268 }
1269
1270 timerclear(&tv);
1271 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1272 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1273 ptn = LIST_NEXT(ptn, pt_list))
1274 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1275 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1276 if (ptn) {
1277 timeradd(&tv, &ptn->pt_time.it_value,
1278 &ptn->pt_time.it_value);
1279 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1280 pt_list);
1281 }
1282 splx(s);
1283 i = 3;
1284 }
1285 for ( ; i < TIMER_MAX; i++)
1286 if ((pt = pts->pts_timers[i]) != NULL) {
1287 if (pt->pt_type == CLOCK_REALTIME)
1288 callout_stop(&pt->pt_ch);
1289 pts->pts_timers[i] = NULL;
1290 pool_put(&ptimer_pool, pt);
1291 }
1292 if ((pts->pts_timers[0] == NULL) &&
1293 (pts->pts_timers[1] == NULL) &&
1294 (pts->pts_timers[2] == NULL)) {
1295 p->p_timers = NULL;
1296 pool_put(&ptimers_pool, pts);
1297 }
1298 }
1299 }
1300
1301 /*
1302 * Check that a proposed value to load into the .it_value or
1303 * .it_interval part of an interval timer is acceptable, and
1304 * fix it to have at least minimal value (i.e. if it is less
1305 * than the resolution of the clock, round it up.)
1306 */
1307 int
1308 itimerfix(struct timeval *tv)
1309 {
1310
1311 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1312 return (EINVAL);
1313 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1314 tv->tv_usec = tick;
1315 return (0);
1316 }
1317
1318 #ifdef __HAVE_TIMECOUNTER
1319 int
1320 itimespecfix(struct timespec *ts)
1321 {
1322
1323 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1324 return (EINVAL);
1325 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1326 ts->tv_nsec = tick * 1000;
1327 return (0);
1328 }
1329 #endif /* __HAVE_TIMECOUNTER */
1330
1331 /*
1332 * Decrement an interval timer by a specified number
1333 * of microseconds, which must be less than a second,
1334 * i.e. < 1000000. If the timer expires, then reload
1335 * it. In this case, carry over (usec - old value) to
1336 * reduce the value reloaded into the timer so that
1337 * the timer does not drift. This routine assumes
1338 * that it is called in a context where the timers
1339 * on which it is operating cannot change in value.
1340 */
1341 int
1342 itimerdecr(struct ptimer *pt, int usec)
1343 {
1344 struct itimerval *itp;
1345
1346 itp = &pt->pt_time;
1347 if (itp->it_value.tv_usec < usec) {
1348 if (itp->it_value.tv_sec == 0) {
1349 /* expired, and already in next interval */
1350 usec -= itp->it_value.tv_usec;
1351 goto expire;
1352 }
1353 itp->it_value.tv_usec += 1000000;
1354 itp->it_value.tv_sec--;
1355 }
1356 itp->it_value.tv_usec -= usec;
1357 usec = 0;
1358 if (timerisset(&itp->it_value))
1359 return (1);
1360 /* expired, exactly at end of interval */
1361 expire:
1362 if (timerisset(&itp->it_interval)) {
1363 itp->it_value = itp->it_interval;
1364 itp->it_value.tv_usec -= usec;
1365 if (itp->it_value.tv_usec < 0) {
1366 itp->it_value.tv_usec += 1000000;
1367 itp->it_value.tv_sec--;
1368 }
1369 timer_settime(pt);
1370 } else
1371 itp->it_value.tv_usec = 0; /* sec is already 0 */
1372 return (0);
1373 }
1374
1375 void
1376 itimerfire(struct ptimer *pt)
1377 {
1378 struct proc *p = pt->pt_proc;
1379
1380 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1381 /*
1382 * No RT signal infrastructure exists at this time;
1383 * just post the signal number and throw away the
1384 * value.
1385 */
1386 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1387 pt->pt_overruns++;
1388 else {
1389 ksiginfo_t ksi;
1390 KSI_INIT(&ksi);
1391 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1392 ksi.ksi_code = SI_TIMER;
1393 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1394 pt->pt_poverruns = pt->pt_overruns;
1395 pt->pt_overruns = 0;
1396 mutex_enter(&proclist_mutex);
1397 kpsignal(p, &ksi, NULL);
1398 mutex_exit(&proclist_mutex);
1399 }
1400 }
1401 }
1402
1403 /*
1404 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1405 * for usage and rationale.
1406 */
1407 int
1408 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1409 {
1410 struct timeval tv, delta;
1411 int rv = 0;
1412 #ifndef __HAVE_TIMECOUNTER
1413 int s;
1414 #endif
1415
1416 #ifdef __HAVE_TIMECOUNTER
1417 getmicrouptime(&tv);
1418 #else /* !__HAVE_TIMECOUNTER */
1419 s = splclock();
1420 tv = mono_time;
1421 splx(s);
1422 #endif /* !__HAVE_TIMECOUNTER */
1423 timersub(&tv, lasttime, &delta);
1424
1425 /*
1426 * check for 0,0 is so that the message will be seen at least once,
1427 * even if interval is huge.
1428 */
1429 if (timercmp(&delta, mininterval, >=) ||
1430 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1431 *lasttime = tv;
1432 rv = 1;
1433 }
1434
1435 return (rv);
1436 }
1437
1438 /*
1439 * ppsratecheck(): packets (or events) per second limitation.
1440 */
1441 int
1442 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1443 {
1444 struct timeval tv, delta;
1445 int rv;
1446 #ifndef __HAVE_TIMECOUNTER
1447 int s;
1448 #endif
1449
1450 #ifdef __HAVE_TIMECOUNTER
1451 getmicrouptime(&tv);
1452 #else /* !__HAVE_TIMECOUNTER */
1453 s = splclock();
1454 tv = mono_time;
1455 splx(s);
1456 #endif /* !__HAVE_TIMECOUNTER */
1457 timersub(&tv, lasttime, &delta);
1458
1459 /*
1460 * check for 0,0 is so that the message will be seen at least once.
1461 * if more than one second have passed since the last update of
1462 * lasttime, reset the counter.
1463 *
1464 * we do increment *curpps even in *curpps < maxpps case, as some may
1465 * try to use *curpps for stat purposes as well.
1466 */
1467 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1468 delta.tv_sec >= 1) {
1469 *lasttime = tv;
1470 *curpps = 0;
1471 }
1472 if (maxpps < 0)
1473 rv = 1;
1474 else if (*curpps < maxpps)
1475 rv = 1;
1476 else
1477 rv = 0;
1478
1479 #if 1 /*DIAGNOSTIC?*/
1480 /* be careful about wrap-around */
1481 if (*curpps + 1 > *curpps)
1482 *curpps = *curpps + 1;
1483 #else
1484 /*
1485 * assume that there's not too many calls to this function.
1486 * not sure if the assumption holds, as it depends on *caller's*
1487 * behavior, not the behavior of this function.
1488 * IMHO it is wrong to make assumption on the caller's behavior,
1489 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1490 */
1491 *curpps = *curpps + 1;
1492 #endif
1493
1494 return (rv);
1495 }
1496