kern_time.c revision 1.123 1 /* $NetBSD: kern_time.c,v 1.123 2007/05/13 19:51:35 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.123 2007/05/13 19:51:35 dsl Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #ifndef __HAVE_TIMECOUNTER
83 #include <sys/timevar.h>
84 #endif /* !__HAVE_TIMECOUNTER */
85 #include <sys/kauth.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #include <machine/cpu.h>
93
94 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 &pool_allocator_nointr, IPL_NONE);
96 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 &pool_allocator_nointr, IPL_NONE);
98
99 #ifdef __HAVE_TIMECOUNTER
100 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
101 #endif /* __HAVE_TIMECOUNTER */
102
103 /* Time of day and interval timer support.
104 *
105 * These routines provide the kernel entry points to get and set
106 * the time-of-day and per-process interval timers. Subroutines
107 * here provide support for adding and subtracting timeval structures
108 * and decrementing interval timers, optionally reloading the interval
109 * timers when they expire.
110 */
111
112 /* This function is used by clock_settime and settimeofday */
113 int
114 settime(struct proc *p, struct timespec *ts)
115 {
116 struct timeval delta, tv;
117 #ifdef __HAVE_TIMECOUNTER
118 struct timeval now;
119 struct timespec ts1;
120 #endif /* !__HAVE_TIMECOUNTER */
121 struct cpu_info *ci;
122 int s1, s2;
123
124 /*
125 * Don't allow the time to be set forward so far it will wrap
126 * and become negative, thus allowing an attacker to bypass
127 * the next check below. The cutoff is 1 year before rollover
128 * occurs, so even if the attacker uses adjtime(2) to move
129 * the time past the cutoff, it will take a very long time
130 * to get to the wrap point.
131 *
132 * XXX: we check against INT_MAX since on 64-bit
133 * platforms, sizeof(int) != sizeof(long) and
134 * time_t is 32 bits even when atv.tv_sec is 64 bits.
135 */
136 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
137 struct proc *pp;
138
139 mutex_enter(&proclist_lock);
140 pp = p->p_pptr;
141 mutex_enter(&pp->p_mutex);
142 log(LOG_WARNING, "pid %d (%s) "
143 "invoked by uid %d ppid %d (%s) "
144 "tried to set clock forward to %ld\n",
145 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 mutex_exit(&pp->p_mutex);
148 mutex_exit(&proclist_lock);
149 return (EPERM);
150 }
151 TIMESPEC_TO_TIMEVAL(&tv, ts);
152
153 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
154 s1 = splsoftclock();
155 s2 = splclock();
156 #ifdef __HAVE_TIMECOUNTER
157 microtime(&now);
158 timersub(&tv, &now, &delta);
159 #else /* !__HAVE_TIMECOUNTER */
160 timersub(&tv, &time, &delta);
161 #endif /* !__HAVE_TIMECOUNTER */
162 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
163 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
164 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
165 splx(s1);
166 return (EPERM);
167 }
168 #ifdef notyet
169 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
170 splx(s1);
171 return (EPERM);
172 }
173 #endif
174
175 #ifdef __HAVE_TIMECOUNTER
176 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
177 tc_setclock(&ts1);
178 #else /* !__HAVE_TIMECOUNTER */
179 time = tv;
180 #endif /* !__HAVE_TIMECOUNTER */
181
182 splx(s2);
183
184 timeradd(&boottime, &delta, &boottime);
185
186 /*
187 * XXXSMP
188 * This is wrong. We should traverse a list of all
189 * CPUs and add the delta to the runtime of those
190 * CPUs which have a process on them.
191 */
192 ci = curcpu();
193 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
194 &ci->ci_schedstate.spc_runtime);
195 splx(s1);
196 resettodr();
197 return (0);
198 }
199
200 /* ARGSUSED */
201 int
202 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
203 {
204 struct sys_clock_gettime_args /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(struct timespec *) tp;
207 } */ *uap = v;
208 clockid_t clock_id;
209 struct timespec ats;
210
211 clock_id = SCARG(uap, clock_id);
212 switch (clock_id) {
213 case CLOCK_REALTIME:
214 nanotime(&ats);
215 break;
216 case CLOCK_MONOTONIC:
217 nanouptime(&ats);
218 break;
219 default:
220 return (EINVAL);
221 }
222
223 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
224 }
225
226 /* ARGSUSED */
227 int
228 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
229 {
230 struct sys_clock_settime_args /* {
231 syscallarg(clockid_t) clock_id;
232 syscallarg(const struct timespec *) tp;
233 } */ *uap = v;
234 int error;
235
236 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
237 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
238 return (error);
239
240 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
241 }
242
243
244 int
245 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
246 {
247 struct timespec ats;
248 int error;
249
250 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
251 return (error);
252
253 switch (clock_id) {
254 case CLOCK_REALTIME:
255 if ((error = settime(p, &ats)) != 0)
256 return (error);
257 break;
258 case CLOCK_MONOTONIC:
259 return (EINVAL); /* read-only clock */
260 default:
261 return (EINVAL);
262 }
263
264 return 0;
265 }
266
267 int
268 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
269 {
270 struct sys_clock_getres_args /* {
271 syscallarg(clockid_t) clock_id;
272 syscallarg(struct timespec *) tp;
273 } */ *uap = v;
274 clockid_t clock_id;
275 struct timespec ts;
276 int error = 0;
277
278 clock_id = SCARG(uap, clock_id);
279 switch (clock_id) {
280 case CLOCK_REALTIME:
281 case CLOCK_MONOTONIC:
282 ts.tv_sec = 0;
283 if (tc_getfrequency() > 1000000000)
284 ts.tv_nsec = 1;
285 else
286 ts.tv_nsec = 1000000000 / tc_getfrequency();
287 break;
288 default:
289 return (EINVAL);
290 }
291
292 if (SCARG(uap, tp))
293 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
294
295 return error;
296 }
297
298 /* ARGSUSED */
299 int
300 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
301 {
302 struct sys_nanosleep_args/* {
303 syscallarg(struct timespec *) rqtp;
304 syscallarg(struct timespec *) rmtp;
305 } */ *uap = v;
306 struct timespec rmt, rqt;
307 int error, error1;
308
309 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310 if (error)
311 return (error);
312
313 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
314 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
315 return error;
316
317 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
318 return error1 ? error1 : error;
319 }
320
321 int
322 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
323 {
324 #ifdef __HAVE_TIMECOUNTER
325 int error, timo;
326
327 if (itimespecfix(rqt))
328 return (EINVAL);
329
330 timo = tstohz(rqt);
331 /*
332 * Avoid inadvertantly sleeping forever
333 */
334 if (timo == 0)
335 timo = 1;
336
337 if (rmt != NULL)
338 getnanouptime(rmt);
339
340 error = kpause("nanoslp", true, timo, NULL);
341 if (error == ERESTART)
342 error = EINTR;
343 if (error == EWOULDBLOCK)
344 error = 0;
345
346 if (rmt!= NULL) {
347 struct timespec rmtend;
348
349 getnanouptime(&rmtend);
350
351 timespecsub(&rmtend, rmt, rmt);
352 timespecsub(rqt, rmt, rmt);
353 if (rmt->tv_sec < 0)
354 timespecclear(rmt);
355 }
356
357 return error;
358 #else /* !__HAVE_TIMECOUNTER */
359 struct timeval atv, utv;
360 int error, s, timo;
361
362 TIMESPEC_TO_TIMEVAL(&atv, rqt);
363 if (itimerfix(&atv))
364 return (EINVAL);
365
366 s = splclock();
367 timeradd(&atv,&time,&atv);
368 timo = hzto(&atv);
369 /*
370 * Avoid inadvertantly sleeping forever
371 */
372 if (timo == 0)
373 timo = 1;
374 splx(s);
375
376 error = kpause("nanoslp", true, timo, NULL);
377 if (error == ERESTART)
378 error = EINTR;
379 if (error == EWOULDBLOCK)
380 error = 0;
381
382 if (rmt != NULL) {
383 s = splclock();
384 utv = time;
385 splx(s);
386
387 timersub(&atv, &utv, &utv);
388 if (utv.tv_sec < 0)
389 timerclear(&utv);
390
391 TIMEVAL_TO_TIMESPEC(&utv, rmt);
392 }
393
394 return error;
395 #endif /* !__HAVE_TIMECOUNTER */
396 }
397
398 /* ARGSUSED */
399 int
400 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
401 {
402 struct sys_gettimeofday_args /* {
403 syscallarg(struct timeval *) tp;
404 syscallarg(void *) tzp; really "struct timezone *"
405 } */ *uap = v;
406 struct timeval atv;
407 int error = 0;
408 struct timezone tzfake;
409
410 if (SCARG(uap, tp)) {
411 microtime(&atv);
412 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
413 if (error)
414 return (error);
415 }
416 if (SCARG(uap, tzp)) {
417 /*
418 * NetBSD has no kernel notion of time zone, so we just
419 * fake up a timezone struct and return it if demanded.
420 */
421 tzfake.tz_minuteswest = 0;
422 tzfake.tz_dsttime = 0;
423 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
424 }
425 return (error);
426 }
427
428 /* ARGSUSED */
429 int
430 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
431 {
432 struct sys_settimeofday_args /* {
433 syscallarg(const struct timeval *) tv;
434 syscallarg(const void *) tzp; really "const struct timezone *"
435 } */ *uap = v;
436
437 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
438 }
439
440 int
441 settimeofday1(const struct timeval *utv, bool userspace,
442 const void *utzp, struct lwp *l, bool check_kauth)
443 {
444 struct timeval atv;
445 struct timespec ts;
446 int error;
447
448 /* Verify all parameters before changing time. */
449
450 if (check_kauth) {
451 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
452 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
453 if (error != 0)
454 return (error);
455 }
456
457 /*
458 * NetBSD has no kernel notion of time zone, and only an
459 * obsolete program would try to set it, so we log a warning.
460 */
461 if (utzp)
462 log(LOG_WARNING, "pid %d attempted to set the "
463 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
464
465 if (utv == NULL)
466 return 0;
467
468 if (userspace) {
469 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
470 return error;
471 utv = &atv;
472 }
473
474 TIMEVAL_TO_TIMESPEC(utv, &ts);
475 return settime(l->l_proc, &ts);
476 }
477
478 #ifndef __HAVE_TIMECOUNTER
479 int tickdelta; /* current clock skew, us. per tick */
480 long timedelta; /* unapplied time correction, us. */
481 long bigadj = 1000000; /* use 10x skew above bigadj us. */
482 #endif
483
484 int time_adjusted; /* set if an adjustment is made */
485
486 /* ARGSUSED */
487 int
488 sys_adjtime(struct lwp *l, void *v, register_t *retval)
489 {
490 struct sys_adjtime_args /* {
491 syscallarg(const struct timeval *) delta;
492 syscallarg(struct timeval *) olddelta;
493 } */ *uap = v;
494 int error;
495
496 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
497 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
498 return (error);
499
500 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
501 }
502
503 int
504 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
505 {
506 struct timeval atv;
507 int error = 0;
508
509 #ifdef __HAVE_TIMECOUNTER
510 extern int64_t time_adjtime; /* in kern_ntptime.c */
511 #else /* !__HAVE_TIMECOUNTER */
512 long ndelta, ntickdelta, odelta;
513 int s;
514 #endif /* !__HAVE_TIMECOUNTER */
515
516 #ifdef __HAVE_TIMECOUNTER
517 if (olddelta) {
518 atv.tv_sec = time_adjtime / 1000000;
519 atv.tv_usec = time_adjtime % 1000000;
520 if (atv.tv_usec < 0) {
521 atv.tv_usec += 1000000;
522 atv.tv_sec--;
523 }
524 error = copyout(&atv, olddelta, sizeof(struct timeval));
525 if (error)
526 return (error);
527 }
528
529 if (delta) {
530 error = copyin(delta, &atv, sizeof(struct timeval));
531 if (error)
532 return (error);
533
534 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
535 atv.tv_usec;
536
537 if (time_adjtime)
538 /* We need to save the system time during shutdown */
539 time_adjusted |= 1;
540 }
541 #else /* !__HAVE_TIMECOUNTER */
542 error = copyin(delta, &atv, sizeof(struct timeval));
543 if (error)
544 return (error);
545
546 /*
547 * Compute the total correction and the rate at which to apply it.
548 * Round the adjustment down to a whole multiple of the per-tick
549 * delta, so that after some number of incremental changes in
550 * hardclock(), tickdelta will become zero, lest the correction
551 * overshoot and start taking us away from the desired final time.
552 */
553 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
554 if (ndelta > bigadj || ndelta < -bigadj)
555 ntickdelta = 10 * tickadj;
556 else
557 ntickdelta = tickadj;
558 if (ndelta % ntickdelta)
559 ndelta = ndelta / ntickdelta * ntickdelta;
560
561 /*
562 * To make hardclock()'s job easier, make the per-tick delta negative
563 * if we want time to run slower; then hardclock can simply compute
564 * tick + tickdelta, and subtract tickdelta from timedelta.
565 */
566 if (ndelta < 0)
567 ntickdelta = -ntickdelta;
568 if (ndelta != 0)
569 /* We need to save the system clock time during shutdown */
570 time_adjusted |= 1;
571 s = splclock();
572 odelta = timedelta;
573 timedelta = ndelta;
574 tickdelta = ntickdelta;
575 splx(s);
576
577 if (olddelta) {
578 atv.tv_sec = odelta / 1000000;
579 atv.tv_usec = odelta % 1000000;
580 error = copyout(&atv, olddelta, sizeof(struct timeval));
581 }
582 #endif /* __HAVE_TIMECOUNTER */
583
584 return error;
585 }
586
587 /*
588 * Interval timer support. Both the BSD getitimer() family and the POSIX
589 * timer_*() family of routines are supported.
590 *
591 * All timers are kept in an array pointed to by p_timers, which is
592 * allocated on demand - many processes don't use timers at all. The
593 * first three elements in this array are reserved for the BSD timers:
594 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
595 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
596 * syscall.
597 *
598 * Realtime timers are kept in the ptimer structure as an absolute
599 * time; virtual time timers are kept as a linked list of deltas.
600 * Virtual time timers are processed in the hardclock() routine of
601 * kern_clock.c. The real time timer is processed by a callout
602 * routine, called from the softclock() routine. Since a callout may
603 * be delayed in real time due to interrupt processing in the system,
604 * it is possible for the real time timeout routine (realtimeexpire,
605 * given below), to be delayed in real time past when it is supposed
606 * to occur. It does not suffice, therefore, to reload the real timer
607 * .it_value from the real time timers .it_interval. Rather, we
608 * compute the next time in absolute time the timer should go off. */
609
610 /* Allocate a POSIX realtime timer. */
611 int
612 sys_timer_create(struct lwp *l, void *v, register_t *retval)
613 {
614 struct sys_timer_create_args /* {
615 syscallarg(clockid_t) clock_id;
616 syscallarg(struct sigevent *) evp;
617 syscallarg(timer_t *) timerid;
618 } */ *uap = v;
619
620 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
621 SCARG(uap, evp), copyin, l);
622 }
623
624 int
625 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
626 copyin_t fetch_event, struct lwp *l)
627 {
628 int error;
629 timer_t timerid;
630 struct ptimer *pt;
631 struct proc *p;
632
633 p = l->l_proc;
634
635 if (id < CLOCK_REALTIME ||
636 id > CLOCK_PROF)
637 return (EINVAL);
638
639 if (p->p_timers == NULL)
640 timers_alloc(p);
641
642 /* Find a free timer slot, skipping those reserved for setitimer(). */
643 for (timerid = 3; timerid < TIMER_MAX; timerid++)
644 if (p->p_timers->pts_timers[timerid] == NULL)
645 break;
646
647 if (timerid == TIMER_MAX)
648 return EAGAIN;
649
650 pt = pool_get(&ptimer_pool, PR_WAITOK);
651 if (evp) {
652 if (((error =
653 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
654 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
655 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
656 pool_put(&ptimer_pool, pt);
657 return (error ? error : EINVAL);
658 }
659 } else {
660 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
661 switch (id) {
662 case CLOCK_REALTIME:
663 pt->pt_ev.sigev_signo = SIGALRM;
664 break;
665 case CLOCK_VIRTUAL:
666 pt->pt_ev.sigev_signo = SIGVTALRM;
667 break;
668 case CLOCK_PROF:
669 pt->pt_ev.sigev_signo = SIGPROF;
670 break;
671 }
672 pt->pt_ev.sigev_value.sival_int = timerid;
673 }
674 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
675 pt->pt_info.ksi_errno = 0;
676 pt->pt_info.ksi_code = 0;
677 pt->pt_info.ksi_pid = p->p_pid;
678 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
679 pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
680
681 pt->pt_type = id;
682 pt->pt_proc = p;
683 pt->pt_overruns = 0;
684 pt->pt_poverruns = 0;
685 pt->pt_entry = timerid;
686 timerclear(&pt->pt_time.it_value);
687 if (id == CLOCK_REALTIME)
688 callout_init(&pt->pt_ch);
689 else
690 pt->pt_active = 0;
691
692 p->p_timers->pts_timers[timerid] = pt;
693
694 return copyout(&timerid, tid, sizeof(timerid));
695 }
696
697 /* Delete a POSIX realtime timer */
698 int
699 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
700 {
701 struct sys_timer_delete_args /* {
702 syscallarg(timer_t) timerid;
703 } */ *uap = v;
704 struct proc *p = l->l_proc;
705 timer_t timerid;
706 struct ptimer *pt, *ptn;
707 int s;
708
709 timerid = SCARG(uap, timerid);
710
711 if ((p->p_timers == NULL) ||
712 (timerid < 2) || (timerid >= TIMER_MAX) ||
713 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
714 return (EINVAL);
715
716 if (pt->pt_type == CLOCK_REALTIME)
717 callout_stop(&pt->pt_ch);
718 else if (pt->pt_active) {
719 s = splclock();
720 ptn = LIST_NEXT(pt, pt_list);
721 LIST_REMOVE(pt, pt_list);
722 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
723 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
724 &ptn->pt_time.it_value);
725 splx(s);
726 }
727
728 p->p_timers->pts_timers[timerid] = NULL;
729 pool_put(&ptimer_pool, pt);
730
731 return (0);
732 }
733
734 /*
735 * Set up the given timer. The value in pt->pt_time.it_value is taken
736 * to be an absolute time for CLOCK_REALTIME timers and a relative
737 * time for virtual timers.
738 * Must be called at splclock().
739 */
740 void
741 timer_settime(struct ptimer *pt)
742 {
743 struct ptimer *ptn, *pptn;
744 struct ptlist *ptl;
745
746 if (pt->pt_type == CLOCK_REALTIME) {
747 callout_stop(&pt->pt_ch);
748 if (timerisset(&pt->pt_time.it_value)) {
749 /*
750 * Don't need to check hzto() return value, here.
751 * callout_reset() does it for us.
752 */
753 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
754 realtimerexpire, pt);
755 }
756 } else {
757 if (pt->pt_active) {
758 ptn = LIST_NEXT(pt, pt_list);
759 LIST_REMOVE(pt, pt_list);
760 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
761 timeradd(&pt->pt_time.it_value,
762 &ptn->pt_time.it_value,
763 &ptn->pt_time.it_value);
764 }
765 if (timerisset(&pt->pt_time.it_value)) {
766 if (pt->pt_type == CLOCK_VIRTUAL)
767 ptl = &pt->pt_proc->p_timers->pts_virtual;
768 else
769 ptl = &pt->pt_proc->p_timers->pts_prof;
770
771 for (ptn = LIST_FIRST(ptl), pptn = NULL;
772 ptn && timercmp(&pt->pt_time.it_value,
773 &ptn->pt_time.it_value, >);
774 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
775 timersub(&pt->pt_time.it_value,
776 &ptn->pt_time.it_value,
777 &pt->pt_time.it_value);
778
779 if (pptn)
780 LIST_INSERT_AFTER(pptn, pt, pt_list);
781 else
782 LIST_INSERT_HEAD(ptl, pt, pt_list);
783
784 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
785 timersub(&ptn->pt_time.it_value,
786 &pt->pt_time.it_value,
787 &ptn->pt_time.it_value);
788
789 pt->pt_active = 1;
790 } else
791 pt->pt_active = 0;
792 }
793 }
794
795 void
796 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
797 {
798 #ifdef __HAVE_TIMECOUNTER
799 struct timeval now;
800 #endif
801 struct ptimer *ptn;
802
803 *aitv = pt->pt_time;
804 if (pt->pt_type == CLOCK_REALTIME) {
805 /*
806 * Convert from absolute to relative time in .it_value
807 * part of real time timer. If time for real time
808 * timer has passed return 0, else return difference
809 * between current time and time for the timer to go
810 * off.
811 */
812 if (timerisset(&aitv->it_value)) {
813 #ifdef __HAVE_TIMECOUNTER
814 getmicrotime(&now);
815 if (timercmp(&aitv->it_value, &now, <))
816 timerclear(&aitv->it_value);
817 else
818 timersub(&aitv->it_value, &now,
819 &aitv->it_value);
820 #else /* !__HAVE_TIMECOUNTER */
821 if (timercmp(&aitv->it_value, &time, <))
822 timerclear(&aitv->it_value);
823 else
824 timersub(&aitv->it_value, &time,
825 &aitv->it_value);
826 #endif /* !__HAVE_TIMECOUNTER */
827 }
828 } else if (pt->pt_active) {
829 if (pt->pt_type == CLOCK_VIRTUAL)
830 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
831 else
832 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
833 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
834 timeradd(&aitv->it_value,
835 &ptn->pt_time.it_value, &aitv->it_value);
836 KASSERT(ptn != NULL); /* pt should be findable on the list */
837 } else
838 timerclear(&aitv->it_value);
839 }
840
841
842
843 /* Set and arm a POSIX realtime timer */
844 int
845 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
846 {
847 struct sys_timer_settime_args /* {
848 syscallarg(timer_t) timerid;
849 syscallarg(int) flags;
850 syscallarg(const struct itimerspec *) value;
851 syscallarg(struct itimerspec *) ovalue;
852 } */ *uap = v;
853 int error;
854 struct itimerspec value, ovalue, *ovp = NULL;
855
856 if ((error = copyin(SCARG(uap, value), &value,
857 sizeof(struct itimerspec))) != 0)
858 return (error);
859
860 if (SCARG(uap, ovalue))
861 ovp = &ovalue;
862
863 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
864 SCARG(uap, flags), l->l_proc)) != 0)
865 return error;
866
867 if (ovp)
868 return copyout(&ovalue, SCARG(uap, ovalue),
869 sizeof(struct itimerspec));
870 return 0;
871 }
872
873 int
874 dotimer_settime(int timerid, struct itimerspec *value,
875 struct itimerspec *ovalue, int flags, struct proc *p)
876 {
877 #ifdef __HAVE_TIMECOUNTER
878 struct timeval now;
879 #endif
880 struct itimerval val, oval;
881 struct ptimer *pt;
882 int s;
883
884 if ((p->p_timers == NULL) ||
885 (timerid < 2) || (timerid >= TIMER_MAX) ||
886 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
887 return (EINVAL);
888
889 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
890 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
891 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
892 return (EINVAL);
893
894 oval = pt->pt_time;
895 pt->pt_time = val;
896
897 s = splclock();
898 /*
899 * If we've been passed a relative time for a realtime timer,
900 * convert it to absolute; if an absolute time for a virtual
901 * timer, convert it to relative and make sure we don't set it
902 * to zero, which would cancel the timer, or let it go
903 * negative, which would confuse the comparison tests.
904 */
905 if (timerisset(&pt->pt_time.it_value)) {
906 if (pt->pt_type == CLOCK_REALTIME) {
907 #ifdef __HAVE_TIMECOUNTER
908 if ((flags & TIMER_ABSTIME) == 0) {
909 getmicrotime(&now);
910 timeradd(&pt->pt_time.it_value, &now,
911 &pt->pt_time.it_value);
912 }
913 #else /* !__HAVE_TIMECOUNTER */
914 if ((flags & TIMER_ABSTIME) == 0)
915 timeradd(&pt->pt_time.it_value, &time,
916 &pt->pt_time.it_value);
917 #endif /* !__HAVE_TIMECOUNTER */
918 } else {
919 if ((flags & TIMER_ABSTIME) != 0) {
920 #ifdef __HAVE_TIMECOUNTER
921 getmicrotime(&now);
922 timersub(&pt->pt_time.it_value, &now,
923 &pt->pt_time.it_value);
924 #else /* !__HAVE_TIMECOUNTER */
925 timersub(&pt->pt_time.it_value, &time,
926 &pt->pt_time.it_value);
927 #endif /* !__HAVE_TIMECOUNTER */
928 if (!timerisset(&pt->pt_time.it_value) ||
929 pt->pt_time.it_value.tv_sec < 0) {
930 pt->pt_time.it_value.tv_sec = 0;
931 pt->pt_time.it_value.tv_usec = 1;
932 }
933 }
934 }
935 }
936
937 timer_settime(pt);
938 splx(s);
939
940 if (ovalue) {
941 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
942 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
943 }
944
945 return (0);
946 }
947
948 /* Return the time remaining until a POSIX timer fires. */
949 int
950 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
951 {
952 struct sys_timer_gettime_args /* {
953 syscallarg(timer_t) timerid;
954 syscallarg(struct itimerspec *) value;
955 } */ *uap = v;
956 struct itimerspec its;
957 int error;
958
959 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
960 &its)) != 0)
961 return error;
962
963 return copyout(&its, SCARG(uap, value), sizeof(its));
964 }
965
966 int
967 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
968 {
969 int s;
970 struct ptimer *pt;
971 struct itimerval aitv;
972
973 if ((p->p_timers == NULL) ||
974 (timerid < 2) || (timerid >= TIMER_MAX) ||
975 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
976 return (EINVAL);
977
978 s = splclock();
979 timer_gettime(pt, &aitv);
980 splx(s);
981
982 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
983 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
984
985 return 0;
986 }
987
988 /*
989 * Return the count of the number of times a periodic timer expired
990 * while a notification was already pending. The counter is reset when
991 * a timer expires and a notification can be posted.
992 */
993 int
994 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
995 {
996 struct sys_timer_getoverrun_args /* {
997 syscallarg(timer_t) timerid;
998 } */ *uap = v;
999 struct proc *p = l->l_proc;
1000 int timerid;
1001 struct ptimer *pt;
1002
1003 timerid = SCARG(uap, timerid);
1004
1005 if ((p->p_timers == NULL) ||
1006 (timerid < 2) || (timerid >= TIMER_MAX) ||
1007 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1008 return (EINVAL);
1009
1010 *retval = pt->pt_poverruns;
1011
1012 return (0);
1013 }
1014
1015 /*
1016 * Real interval timer expired:
1017 * send process whose timer expired an alarm signal.
1018 * If time is not set up to reload, then just return.
1019 * Else compute next time timer should go off which is > current time.
1020 * This is where delay in processing this timeout causes multiple
1021 * SIGALRM calls to be compressed into one.
1022 */
1023 void
1024 realtimerexpire(void *arg)
1025 {
1026 #ifdef __HAVE_TIMECOUNTER
1027 struct timeval now;
1028 #endif
1029 struct ptimer *pt;
1030 int s;
1031
1032 pt = (struct ptimer *)arg;
1033
1034 itimerfire(pt);
1035
1036 if (!timerisset(&pt->pt_time.it_interval)) {
1037 timerclear(&pt->pt_time.it_value);
1038 return;
1039 }
1040 #ifdef __HAVE_TIMECOUNTER
1041 for (;;) {
1042 s = splclock(); /* XXX need spl now? */
1043 timeradd(&pt->pt_time.it_value,
1044 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1045 getmicrotime(&now);
1046 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1047 /*
1048 * Don't need to check hzto() return value, here.
1049 * callout_reset() does it for us.
1050 */
1051 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1052 realtimerexpire, pt);
1053 splx(s);
1054 return;
1055 }
1056 splx(s);
1057 pt->pt_overruns++;
1058 }
1059 #else /* !__HAVE_TIMECOUNTER */
1060 for (;;) {
1061 s = splclock();
1062 timeradd(&pt->pt_time.it_value,
1063 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1064 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1065 /*
1066 * Don't need to check hzto() return value, here.
1067 * callout_reset() does it for us.
1068 */
1069 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1070 realtimerexpire, pt);
1071 splx(s);
1072 return;
1073 }
1074 splx(s);
1075 pt->pt_overruns++;
1076 }
1077 #endif /* !__HAVE_TIMECOUNTER */
1078 }
1079
1080 /* BSD routine to get the value of an interval timer. */
1081 /* ARGSUSED */
1082 int
1083 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1084 {
1085 struct sys_getitimer_args /* {
1086 syscallarg(int) which;
1087 syscallarg(struct itimerval *) itv;
1088 } */ *uap = v;
1089 struct proc *p = l->l_proc;
1090 struct itimerval aitv;
1091 int error;
1092
1093 error = dogetitimer(p, SCARG(uap, which), &aitv);
1094 if (error)
1095 return error;
1096 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1097 }
1098
1099 int
1100 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1101 {
1102 int s;
1103
1104 if ((u_int)which > ITIMER_PROF)
1105 return (EINVAL);
1106
1107 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1108 timerclear(&itvp->it_value);
1109 timerclear(&itvp->it_interval);
1110 } else {
1111 s = splclock();
1112 timer_gettime(p->p_timers->pts_timers[which], itvp);
1113 splx(s);
1114 }
1115
1116 return 0;
1117 }
1118
1119 /* BSD routine to set/arm an interval timer. */
1120 /* ARGSUSED */
1121 int
1122 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1123 {
1124 struct sys_setitimer_args /* {
1125 syscallarg(int) which;
1126 syscallarg(const struct itimerval *) itv;
1127 syscallarg(struct itimerval *) oitv;
1128 } */ *uap = v;
1129 struct proc *p = l->l_proc;
1130 int which = SCARG(uap, which);
1131 struct sys_getitimer_args getargs;
1132 const struct itimerval *itvp;
1133 struct itimerval aitv;
1134 int error;
1135
1136 if ((u_int)which > ITIMER_PROF)
1137 return (EINVAL);
1138 itvp = SCARG(uap, itv);
1139 if (itvp &&
1140 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1141 return (error);
1142 if (SCARG(uap, oitv) != NULL) {
1143 SCARG(&getargs, which) = which;
1144 SCARG(&getargs, itv) = SCARG(uap, oitv);
1145 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1146 return (error);
1147 }
1148 if (itvp == 0)
1149 return (0);
1150
1151 return dosetitimer(p, which, &aitv);
1152 }
1153
1154 int
1155 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1156 {
1157 #ifdef __HAVE_TIMECOUNTER
1158 struct timeval now;
1159 #endif
1160 struct ptimer *pt;
1161 int s;
1162
1163 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1164 return (EINVAL);
1165
1166 /*
1167 * Don't bother allocating data structures if the process just
1168 * wants to clear the timer.
1169 */
1170 if (!timerisset(&itvp->it_value) &&
1171 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1172 return (0);
1173
1174 if (p->p_timers == NULL)
1175 timers_alloc(p);
1176 if (p->p_timers->pts_timers[which] == NULL) {
1177 pt = pool_get(&ptimer_pool, PR_WAITOK);
1178 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1179 pt->pt_ev.sigev_value.sival_int = which;
1180 pt->pt_overruns = 0;
1181 pt->pt_proc = p;
1182 pt->pt_type = which;
1183 pt->pt_entry = which;
1184 switch (which) {
1185 case ITIMER_REAL:
1186 callout_init(&pt->pt_ch);
1187 pt->pt_ev.sigev_signo = SIGALRM;
1188 break;
1189 case ITIMER_VIRTUAL:
1190 pt->pt_active = 0;
1191 pt->pt_ev.sigev_signo = SIGVTALRM;
1192 break;
1193 case ITIMER_PROF:
1194 pt->pt_active = 0;
1195 pt->pt_ev.sigev_signo = SIGPROF;
1196 break;
1197 }
1198 } else
1199 pt = p->p_timers->pts_timers[which];
1200
1201 pt->pt_time = *itvp;
1202 p->p_timers->pts_timers[which] = pt;
1203
1204 s = splclock();
1205 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1206 /* Convert to absolute time */
1207 #ifdef __HAVE_TIMECOUNTER
1208 /* XXX need to wrap in splclock for timecounters case? */
1209 getmicrotime(&now);
1210 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1211 #else /* !__HAVE_TIMECOUNTER */
1212 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1213 #endif /* !__HAVE_TIMECOUNTER */
1214 }
1215 timer_settime(pt);
1216 splx(s);
1217
1218 return (0);
1219 }
1220
1221 /* Utility routines to manage the array of pointers to timers. */
1222 void
1223 timers_alloc(struct proc *p)
1224 {
1225 int i;
1226 struct ptimers *pts;
1227
1228 pts = pool_get(&ptimers_pool, PR_WAITOK);
1229 LIST_INIT(&pts->pts_virtual);
1230 LIST_INIT(&pts->pts_prof);
1231 for (i = 0; i < TIMER_MAX; i++)
1232 pts->pts_timers[i] = NULL;
1233 pts->pts_fired = 0;
1234 p->p_timers = pts;
1235 }
1236
1237 /*
1238 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1239 * then clean up all timers and free all the data structures. If
1240 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1241 * by timer_create(), not the BSD setitimer() timers, and only free the
1242 * structure if none of those remain.
1243 */
1244 void
1245 timers_free(struct proc *p, int which)
1246 {
1247 int i, s;
1248 struct ptimers *pts;
1249 struct ptimer *pt, *ptn;
1250 struct timeval tv;
1251
1252 if (p->p_timers) {
1253 pts = p->p_timers;
1254 if (which == TIMERS_ALL)
1255 i = 0;
1256 else {
1257 s = splclock();
1258 timerclear(&tv);
1259 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1260 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1261 ptn = LIST_NEXT(ptn, pt_list))
1262 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1263 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1264 if (ptn) {
1265 timeradd(&tv, &ptn->pt_time.it_value,
1266 &ptn->pt_time.it_value);
1267 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1268 ptn, pt_list);
1269 }
1270
1271 timerclear(&tv);
1272 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1273 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1274 ptn = LIST_NEXT(ptn, pt_list))
1275 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1276 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1277 if (ptn) {
1278 timeradd(&tv, &ptn->pt_time.it_value,
1279 &ptn->pt_time.it_value);
1280 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1281 pt_list);
1282 }
1283 splx(s);
1284 i = 3;
1285 }
1286 for ( ; i < TIMER_MAX; i++)
1287 if ((pt = pts->pts_timers[i]) != NULL) {
1288 if (pt->pt_type == CLOCK_REALTIME)
1289 callout_stop(&pt->pt_ch);
1290 pts->pts_timers[i] = NULL;
1291 pool_put(&ptimer_pool, pt);
1292 }
1293 if ((pts->pts_timers[0] == NULL) &&
1294 (pts->pts_timers[1] == NULL) &&
1295 (pts->pts_timers[2] == NULL)) {
1296 p->p_timers = NULL;
1297 pool_put(&ptimers_pool, pts);
1298 }
1299 }
1300 }
1301
1302 /*
1303 * Check that a proposed value to load into the .it_value or
1304 * .it_interval part of an interval timer is acceptable, and
1305 * fix it to have at least minimal value (i.e. if it is less
1306 * than the resolution of the clock, round it up.)
1307 */
1308 int
1309 itimerfix(struct timeval *tv)
1310 {
1311
1312 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1313 return (EINVAL);
1314 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1315 tv->tv_usec = tick;
1316 return (0);
1317 }
1318
1319 #ifdef __HAVE_TIMECOUNTER
1320 int
1321 itimespecfix(struct timespec *ts)
1322 {
1323
1324 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1325 return (EINVAL);
1326 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1327 ts->tv_nsec = tick * 1000;
1328 return (0);
1329 }
1330 #endif /* __HAVE_TIMECOUNTER */
1331
1332 /*
1333 * Decrement an interval timer by a specified number
1334 * of microseconds, which must be less than a second,
1335 * i.e. < 1000000. If the timer expires, then reload
1336 * it. In this case, carry over (usec - old value) to
1337 * reduce the value reloaded into the timer so that
1338 * the timer does not drift. This routine assumes
1339 * that it is called in a context where the timers
1340 * on which it is operating cannot change in value.
1341 */
1342 int
1343 itimerdecr(struct ptimer *pt, int usec)
1344 {
1345 struct itimerval *itp;
1346
1347 itp = &pt->pt_time;
1348 if (itp->it_value.tv_usec < usec) {
1349 if (itp->it_value.tv_sec == 0) {
1350 /* expired, and already in next interval */
1351 usec -= itp->it_value.tv_usec;
1352 goto expire;
1353 }
1354 itp->it_value.tv_usec += 1000000;
1355 itp->it_value.tv_sec--;
1356 }
1357 itp->it_value.tv_usec -= usec;
1358 usec = 0;
1359 if (timerisset(&itp->it_value))
1360 return (1);
1361 /* expired, exactly at end of interval */
1362 expire:
1363 if (timerisset(&itp->it_interval)) {
1364 itp->it_value = itp->it_interval;
1365 itp->it_value.tv_usec -= usec;
1366 if (itp->it_value.tv_usec < 0) {
1367 itp->it_value.tv_usec += 1000000;
1368 itp->it_value.tv_sec--;
1369 }
1370 timer_settime(pt);
1371 } else
1372 itp->it_value.tv_usec = 0; /* sec is already 0 */
1373 return (0);
1374 }
1375
1376 void
1377 itimerfire(struct ptimer *pt)
1378 {
1379 struct proc *p = pt->pt_proc;
1380
1381 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1382 /*
1383 * No RT signal infrastructure exists at this time;
1384 * just post the signal number and throw away the
1385 * value.
1386 */
1387 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1388 pt->pt_overruns++;
1389 else {
1390 ksiginfo_t ksi;
1391 KSI_INIT(&ksi);
1392 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1393 ksi.ksi_code = SI_TIMER;
1394 ksi.ksi_sigval = pt->pt_ev.sigev_value;
1395 pt->pt_poverruns = pt->pt_overruns;
1396 pt->pt_overruns = 0;
1397 mutex_enter(&proclist_mutex);
1398 kpsignal(p, &ksi, NULL);
1399 mutex_exit(&proclist_mutex);
1400 }
1401 }
1402 }
1403
1404 /*
1405 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1406 * for usage and rationale.
1407 */
1408 int
1409 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1410 {
1411 struct timeval tv, delta;
1412 int rv = 0;
1413 #ifndef __HAVE_TIMECOUNTER
1414 int s;
1415 #endif
1416
1417 #ifdef __HAVE_TIMECOUNTER
1418 getmicrouptime(&tv);
1419 #else /* !__HAVE_TIMECOUNTER */
1420 s = splclock();
1421 tv = mono_time;
1422 splx(s);
1423 #endif /* !__HAVE_TIMECOUNTER */
1424 timersub(&tv, lasttime, &delta);
1425
1426 /*
1427 * check for 0,0 is so that the message will be seen at least once,
1428 * even if interval is huge.
1429 */
1430 if (timercmp(&delta, mininterval, >=) ||
1431 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1432 *lasttime = tv;
1433 rv = 1;
1434 }
1435
1436 return (rv);
1437 }
1438
1439 /*
1440 * ppsratecheck(): packets (or events) per second limitation.
1441 */
1442 int
1443 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1444 {
1445 struct timeval tv, delta;
1446 int rv;
1447 #ifndef __HAVE_TIMECOUNTER
1448 int s;
1449 #endif
1450
1451 #ifdef __HAVE_TIMECOUNTER
1452 getmicrouptime(&tv);
1453 #else /* !__HAVE_TIMECOUNTER */
1454 s = splclock();
1455 tv = mono_time;
1456 splx(s);
1457 #endif /* !__HAVE_TIMECOUNTER */
1458 timersub(&tv, lasttime, &delta);
1459
1460 /*
1461 * check for 0,0 is so that the message will be seen at least once.
1462 * if more than one second have passed since the last update of
1463 * lasttime, reset the counter.
1464 *
1465 * we do increment *curpps even in *curpps < maxpps case, as some may
1466 * try to use *curpps for stat purposes as well.
1467 */
1468 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1469 delta.tv_sec >= 1) {
1470 *lasttime = tv;
1471 *curpps = 0;
1472 }
1473 if (maxpps < 0)
1474 rv = 1;
1475 else if (*curpps < maxpps)
1476 rv = 1;
1477 else
1478 rv = 0;
1479
1480 #if 1 /*DIAGNOSTIC?*/
1481 /* be careful about wrap-around */
1482 if (*curpps + 1 > *curpps)
1483 *curpps = *curpps + 1;
1484 #else
1485 /*
1486 * assume that there's not too many calls to this function.
1487 * not sure if the assumption holds, as it depends on *caller's*
1488 * behavior, not the behavior of this function.
1489 * IMHO it is wrong to make assumption on the caller's behavior,
1490 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1491 */
1492 *curpps = *curpps + 1;
1493 #endif
1494
1495 return (rv);
1496 }
1497