kern_time.c revision 1.125 1 /* $NetBSD: kern_time.c,v 1.125 2007/07/09 21:10:54 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.125 2007/07/09 21:10:54 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #ifndef __HAVE_TIMECOUNTER
83 #include <sys/timevar.h>
84 #endif /* !__HAVE_TIMECOUNTER */
85 #include <sys/kauth.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #include <machine/cpu.h>
93
94 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 &pool_allocator_nointr, IPL_NONE);
96 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 &pool_allocator_nointr, IPL_NONE);
98
99 #ifdef __HAVE_TIMECOUNTER
100 static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
101 #endif /* __HAVE_TIMECOUNTER */
102
103 /* Time of day and interval timer support.
104 *
105 * These routines provide the kernel entry points to get and set
106 * the time-of-day and per-process interval timers. Subroutines
107 * here provide support for adding and subtracting timeval structures
108 * and decrementing interval timers, optionally reloading the interval
109 * timers when they expire.
110 */
111
112 /* This function is used by clock_settime and settimeofday */
113 int
114 settime(struct proc *p, struct timespec *ts)
115 {
116 struct timeval delta, tv;
117 #ifdef __HAVE_TIMECOUNTER
118 struct timeval now;
119 struct timespec ts1;
120 #endif /* !__HAVE_TIMECOUNTER */
121 struct cpu_info *ci;
122 int s1, s2;
123
124 /*
125 * Don't allow the time to be set forward so far it will wrap
126 * and become negative, thus allowing an attacker to bypass
127 * the next check below. The cutoff is 1 year before rollover
128 * occurs, so even if the attacker uses adjtime(2) to move
129 * the time past the cutoff, it will take a very long time
130 * to get to the wrap point.
131 *
132 * XXX: we check against INT_MAX since on 64-bit
133 * platforms, sizeof(int) != sizeof(long) and
134 * time_t is 32 bits even when atv.tv_sec is 64 bits.
135 */
136 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
137 struct proc *pp;
138
139 mutex_enter(&proclist_lock);
140 pp = p->p_pptr;
141 mutex_enter(&pp->p_mutex);
142 log(LOG_WARNING, "pid %d (%s) "
143 "invoked by uid %d ppid %d (%s) "
144 "tried to set clock forward to %ld\n",
145 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 mutex_exit(&pp->p_mutex);
148 mutex_exit(&proclist_lock);
149 return (EPERM);
150 }
151 TIMESPEC_TO_TIMEVAL(&tv, ts);
152
153 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
154 s1 = splsoftclock();
155 s2 = splclock();
156 #ifdef __HAVE_TIMECOUNTER
157 microtime(&now);
158 timersub(&tv, &now, &delta);
159 #else /* !__HAVE_TIMECOUNTER */
160 timersub(&tv, &time, &delta);
161 #endif /* !__HAVE_TIMECOUNTER */
162 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
163 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
164 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
165 splx(s1);
166 return (EPERM);
167 }
168 #ifdef notyet
169 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
170 splx(s1);
171 return (EPERM);
172 }
173 #endif
174
175 #ifdef __HAVE_TIMECOUNTER
176 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
177 tc_setclock(&ts1);
178 #else /* !__HAVE_TIMECOUNTER */
179 time = tv;
180 #endif /* !__HAVE_TIMECOUNTER */
181
182 splx(s2);
183
184 timeradd(&boottime, &delta, &boottime);
185
186 /*
187 * XXXSMP
188 * This is wrong. We should traverse a list of all
189 * CPUs and add the delta to the runtime of those
190 * CPUs which have a process on them.
191 */
192 ci = curcpu();
193 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
194 &ci->ci_schedstate.spc_runtime);
195 splx(s1);
196 resettodr();
197 return (0);
198 }
199
200 /* ARGSUSED */
201 int
202 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
203 {
204 struct sys_clock_gettime_args /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(struct timespec *) tp;
207 } */ *uap = v;
208 clockid_t clock_id;
209 struct timespec ats;
210
211 clock_id = SCARG(uap, clock_id);
212 switch (clock_id) {
213 case CLOCK_REALTIME:
214 nanotime(&ats);
215 break;
216 case CLOCK_MONOTONIC:
217 nanouptime(&ats);
218 break;
219 default:
220 return (EINVAL);
221 }
222
223 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
224 }
225
226 /* ARGSUSED */
227 int
228 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
229 {
230 struct sys_clock_settime_args /* {
231 syscallarg(clockid_t) clock_id;
232 syscallarg(const struct timespec *) tp;
233 } */ *uap = v;
234 int error;
235
236 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
237 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
238 return (error);
239
240 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
241 }
242
243
244 int
245 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
246 {
247 struct timespec ats;
248 int error;
249
250 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
251 return (error);
252
253 switch (clock_id) {
254 case CLOCK_REALTIME:
255 if ((error = settime(p, &ats)) != 0)
256 return (error);
257 break;
258 case CLOCK_MONOTONIC:
259 return (EINVAL); /* read-only clock */
260 default:
261 return (EINVAL);
262 }
263
264 return 0;
265 }
266
267 int
268 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
269 {
270 struct sys_clock_getres_args /* {
271 syscallarg(clockid_t) clock_id;
272 syscallarg(struct timespec *) tp;
273 } */ *uap = v;
274 clockid_t clock_id;
275 struct timespec ts;
276 int error = 0;
277
278 clock_id = SCARG(uap, clock_id);
279 switch (clock_id) {
280 case CLOCK_REALTIME:
281 case CLOCK_MONOTONIC:
282 ts.tv_sec = 0;
283 if (tc_getfrequency() > 1000000000)
284 ts.tv_nsec = 1;
285 else
286 ts.tv_nsec = 1000000000 / tc_getfrequency();
287 break;
288 default:
289 return (EINVAL);
290 }
291
292 if (SCARG(uap, tp))
293 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
294
295 return error;
296 }
297
298 /* ARGSUSED */
299 int
300 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
301 {
302 struct sys_nanosleep_args/* {
303 syscallarg(struct timespec *) rqtp;
304 syscallarg(struct timespec *) rmtp;
305 } */ *uap = v;
306 struct timespec rmt, rqt;
307 int error, error1;
308
309 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310 if (error)
311 return (error);
312
313 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
314 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
315 return error;
316
317 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
318 return error1 ? error1 : error;
319 }
320
321 int
322 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
323 {
324 #ifdef __HAVE_TIMECOUNTER
325 int error, timo;
326
327 if (itimespecfix(rqt))
328 return (EINVAL);
329
330 timo = tstohz(rqt);
331 /*
332 * Avoid inadvertantly sleeping forever
333 */
334 if (timo == 0)
335 timo = 1;
336
337 if (rmt != NULL)
338 getnanouptime(rmt);
339
340 error = kpause("nanoslp", true, timo, NULL);
341 if (error == ERESTART)
342 error = EINTR;
343 if (error == EWOULDBLOCK)
344 error = 0;
345
346 if (rmt!= NULL) {
347 struct timespec rmtend;
348
349 getnanouptime(&rmtend);
350
351 timespecsub(&rmtend, rmt, rmt);
352 timespecsub(rqt, rmt, rmt);
353 if (rmt->tv_sec < 0)
354 timespecclear(rmt);
355 }
356
357 return error;
358 #else /* !__HAVE_TIMECOUNTER */
359 struct timeval atv, utv;
360 int error, s, timo;
361
362 TIMESPEC_TO_TIMEVAL(&atv, rqt);
363 if (itimerfix(&atv))
364 return (EINVAL);
365
366 s = splclock();
367 timeradd(&atv,&time,&atv);
368 timo = hzto(&atv);
369 /*
370 * Avoid inadvertantly sleeping forever
371 */
372 if (timo == 0)
373 timo = 1;
374 splx(s);
375
376 error = kpause("nanoslp", true, timo, NULL);
377 if (error == ERESTART)
378 error = EINTR;
379 if (error == EWOULDBLOCK)
380 error = 0;
381
382 if (rmt != NULL) {
383 s = splclock();
384 utv = time;
385 splx(s);
386
387 timersub(&atv, &utv, &utv);
388 if (utv.tv_sec < 0)
389 timerclear(&utv);
390
391 TIMEVAL_TO_TIMESPEC(&utv, rmt);
392 }
393
394 return error;
395 #endif /* !__HAVE_TIMECOUNTER */
396 }
397
398 /* ARGSUSED */
399 int
400 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
401 {
402 struct sys_gettimeofday_args /* {
403 syscallarg(struct timeval *) tp;
404 syscallarg(void *) tzp; really "struct timezone *"
405 } */ *uap = v;
406 struct timeval atv;
407 int error = 0;
408 struct timezone tzfake;
409
410 if (SCARG(uap, tp)) {
411 microtime(&atv);
412 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
413 if (error)
414 return (error);
415 }
416 if (SCARG(uap, tzp)) {
417 /*
418 * NetBSD has no kernel notion of time zone, so we just
419 * fake up a timezone struct and return it if demanded.
420 */
421 tzfake.tz_minuteswest = 0;
422 tzfake.tz_dsttime = 0;
423 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
424 }
425 return (error);
426 }
427
428 /* ARGSUSED */
429 int
430 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
431 {
432 struct sys_settimeofday_args /* {
433 syscallarg(const struct timeval *) tv;
434 syscallarg(const void *) tzp; really "const struct timezone *"
435 } */ *uap = v;
436
437 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
438 }
439
440 int
441 settimeofday1(const struct timeval *utv, bool userspace,
442 const void *utzp, struct lwp *l, bool check_kauth)
443 {
444 struct timeval atv;
445 struct timespec ts;
446 int error;
447
448 /* Verify all parameters before changing time. */
449
450 if (check_kauth) {
451 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
452 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
453 if (error != 0)
454 return (error);
455 }
456
457 /*
458 * NetBSD has no kernel notion of time zone, and only an
459 * obsolete program would try to set it, so we log a warning.
460 */
461 if (utzp)
462 log(LOG_WARNING, "pid %d attempted to set the "
463 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
464
465 if (utv == NULL)
466 return 0;
467
468 if (userspace) {
469 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
470 return error;
471 utv = &atv;
472 }
473
474 TIMEVAL_TO_TIMESPEC(utv, &ts);
475 return settime(l->l_proc, &ts);
476 }
477
478 #ifndef __HAVE_TIMECOUNTER
479 int tickdelta; /* current clock skew, us. per tick */
480 long timedelta; /* unapplied time correction, us. */
481 long bigadj = 1000000; /* use 10x skew above bigadj us. */
482 #endif
483
484 int time_adjusted; /* set if an adjustment is made */
485
486 /* ARGSUSED */
487 int
488 sys_adjtime(struct lwp *l, void *v, register_t *retval)
489 {
490 struct sys_adjtime_args /* {
491 syscallarg(const struct timeval *) delta;
492 syscallarg(struct timeval *) olddelta;
493 } */ *uap = v;
494 int error;
495
496 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
497 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
498 return (error);
499
500 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
501 }
502
503 int
504 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
505 {
506 struct timeval atv;
507 int error = 0;
508
509 #ifdef __HAVE_TIMECOUNTER
510 extern int64_t time_adjtime; /* in kern_ntptime.c */
511 #else /* !__HAVE_TIMECOUNTER */
512 long ndelta, ntickdelta, odelta;
513 int s;
514 #endif /* !__HAVE_TIMECOUNTER */
515
516 #ifdef __HAVE_TIMECOUNTER
517 if (olddelta) {
518 atv.tv_sec = time_adjtime / 1000000;
519 atv.tv_usec = time_adjtime % 1000000;
520 if (atv.tv_usec < 0) {
521 atv.tv_usec += 1000000;
522 atv.tv_sec--;
523 }
524 error = copyout(&atv, olddelta, sizeof(struct timeval));
525 if (error)
526 return (error);
527 }
528
529 if (delta) {
530 error = copyin(delta, &atv, sizeof(struct timeval));
531 if (error)
532 return (error);
533
534 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
535 atv.tv_usec;
536
537 if (time_adjtime)
538 /* We need to save the system time during shutdown */
539 time_adjusted |= 1;
540 }
541 #else /* !__HAVE_TIMECOUNTER */
542 error = copyin(delta, &atv, sizeof(struct timeval));
543 if (error)
544 return (error);
545
546 /*
547 * Compute the total correction and the rate at which to apply it.
548 * Round the adjustment down to a whole multiple of the per-tick
549 * delta, so that after some number of incremental changes in
550 * hardclock(), tickdelta will become zero, lest the correction
551 * overshoot and start taking us away from the desired final time.
552 */
553 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
554 if (ndelta > bigadj || ndelta < -bigadj)
555 ntickdelta = 10 * tickadj;
556 else
557 ntickdelta = tickadj;
558 if (ndelta % ntickdelta)
559 ndelta = ndelta / ntickdelta * ntickdelta;
560
561 /*
562 * To make hardclock()'s job easier, make the per-tick delta negative
563 * if we want time to run slower; then hardclock can simply compute
564 * tick + tickdelta, and subtract tickdelta from timedelta.
565 */
566 if (ndelta < 0)
567 ntickdelta = -ntickdelta;
568 if (ndelta != 0)
569 /* We need to save the system clock time during shutdown */
570 time_adjusted |= 1;
571 s = splclock();
572 odelta = timedelta;
573 timedelta = ndelta;
574 tickdelta = ntickdelta;
575 splx(s);
576
577 if (olddelta) {
578 atv.tv_sec = odelta / 1000000;
579 atv.tv_usec = odelta % 1000000;
580 error = copyout(&atv, olddelta, sizeof(struct timeval));
581 }
582 #endif /* __HAVE_TIMECOUNTER */
583
584 return error;
585 }
586
587 /*
588 * Interval timer support. Both the BSD getitimer() family and the POSIX
589 * timer_*() family of routines are supported.
590 *
591 * All timers are kept in an array pointed to by p_timers, which is
592 * allocated on demand - many processes don't use timers at all. The
593 * first three elements in this array are reserved for the BSD timers:
594 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
595 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
596 * syscall.
597 *
598 * Realtime timers are kept in the ptimer structure as an absolute
599 * time; virtual time timers are kept as a linked list of deltas.
600 * Virtual time timers are processed in the hardclock() routine of
601 * kern_clock.c. The real time timer is processed by a callout
602 * routine, called from the softclock() routine. Since a callout may
603 * be delayed in real time due to interrupt processing in the system,
604 * it is possible for the real time timeout routine (realtimeexpire,
605 * given below), to be delayed in real time past when it is supposed
606 * to occur. It does not suffice, therefore, to reload the real timer
607 * .it_value from the real time timers .it_interval. Rather, we
608 * compute the next time in absolute time the timer should go off. */
609
610 /* Allocate a POSIX realtime timer. */
611 int
612 sys_timer_create(struct lwp *l, void *v, register_t *retval)
613 {
614 struct sys_timer_create_args /* {
615 syscallarg(clockid_t) clock_id;
616 syscallarg(struct sigevent *) evp;
617 syscallarg(timer_t *) timerid;
618 } */ *uap = v;
619
620 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
621 SCARG(uap, evp), copyin, l);
622 }
623
624 int
625 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
626 copyin_t fetch_event, struct lwp *l)
627 {
628 int error;
629 timer_t timerid;
630 struct ptimer *pt;
631 struct proc *p;
632
633 p = l->l_proc;
634
635 if (id < CLOCK_REALTIME ||
636 id > CLOCK_PROF)
637 return (EINVAL);
638
639 if (p->p_timers == NULL)
640 timers_alloc(p);
641
642 /* Find a free timer slot, skipping those reserved for setitimer(). */
643 for (timerid = 3; timerid < TIMER_MAX; timerid++)
644 if (p->p_timers->pts_timers[timerid] == NULL)
645 break;
646
647 if (timerid == TIMER_MAX)
648 return EAGAIN;
649
650 pt = pool_get(&ptimer_pool, PR_WAITOK);
651 if (evp) {
652 if (((error =
653 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
654 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
655 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
656 pool_put(&ptimer_pool, pt);
657 return (error ? error : EINVAL);
658 }
659 } else {
660 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
661 switch (id) {
662 case CLOCK_REALTIME:
663 pt->pt_ev.sigev_signo = SIGALRM;
664 break;
665 case CLOCK_VIRTUAL:
666 pt->pt_ev.sigev_signo = SIGVTALRM;
667 break;
668 case CLOCK_PROF:
669 pt->pt_ev.sigev_signo = SIGPROF;
670 break;
671 }
672 pt->pt_ev.sigev_value.sival_int = timerid;
673 }
674 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
675 pt->pt_info.ksi_errno = 0;
676 pt->pt_info.ksi_code = 0;
677 pt->pt_info.ksi_pid = p->p_pid;
678 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
679 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
680
681 pt->pt_type = id;
682 pt->pt_proc = p;
683 pt->pt_overruns = 0;
684 pt->pt_poverruns = 0;
685 pt->pt_entry = timerid;
686 timerclear(&pt->pt_time.it_value);
687 if (id == CLOCK_REALTIME)
688 callout_init(&pt->pt_ch, 0);
689 else
690 pt->pt_active = 0;
691
692 p->p_timers->pts_timers[timerid] = pt;
693
694 return copyout(&timerid, tid, sizeof(timerid));
695 }
696
697 /* Delete a POSIX realtime timer */
698 int
699 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
700 {
701 struct sys_timer_delete_args /* {
702 syscallarg(timer_t) timerid;
703 } */ *uap = v;
704 struct proc *p = l->l_proc;
705 timer_t timerid;
706 struct ptimer *pt, *ptn;
707 int s;
708
709 timerid = SCARG(uap, timerid);
710
711 if ((p->p_timers == NULL) ||
712 (timerid < 2) || (timerid >= TIMER_MAX) ||
713 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
714 return (EINVAL);
715
716 if (pt->pt_type == CLOCK_REALTIME) {
717 callout_stop(&pt->pt_ch);
718 callout_destroy(&pt->pt_ch);
719 } else if (pt->pt_active) {
720 s = splclock();
721 ptn = LIST_NEXT(pt, pt_list);
722 LIST_REMOVE(pt, pt_list);
723 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
724 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
725 &ptn->pt_time.it_value);
726 splx(s);
727 }
728
729 p->p_timers->pts_timers[timerid] = NULL;
730 pool_put(&ptimer_pool, pt);
731
732 return (0);
733 }
734
735 /*
736 * Set up the given timer. The value in pt->pt_time.it_value is taken
737 * to be an absolute time for CLOCK_REALTIME timers and a relative
738 * time for virtual timers.
739 * Must be called at splclock().
740 */
741 void
742 timer_settime(struct ptimer *pt)
743 {
744 struct ptimer *ptn, *pptn;
745 struct ptlist *ptl;
746
747 if (pt->pt_type == CLOCK_REALTIME) {
748 callout_stop(&pt->pt_ch);
749 if (timerisset(&pt->pt_time.it_value)) {
750 /*
751 * Don't need to check hzto() return value, here.
752 * callout_reset() does it for us.
753 */
754 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
755 realtimerexpire, pt);
756 }
757 } else {
758 if (pt->pt_active) {
759 ptn = LIST_NEXT(pt, pt_list);
760 LIST_REMOVE(pt, pt_list);
761 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
762 timeradd(&pt->pt_time.it_value,
763 &ptn->pt_time.it_value,
764 &ptn->pt_time.it_value);
765 }
766 if (timerisset(&pt->pt_time.it_value)) {
767 if (pt->pt_type == CLOCK_VIRTUAL)
768 ptl = &pt->pt_proc->p_timers->pts_virtual;
769 else
770 ptl = &pt->pt_proc->p_timers->pts_prof;
771
772 for (ptn = LIST_FIRST(ptl), pptn = NULL;
773 ptn && timercmp(&pt->pt_time.it_value,
774 &ptn->pt_time.it_value, >);
775 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
776 timersub(&pt->pt_time.it_value,
777 &ptn->pt_time.it_value,
778 &pt->pt_time.it_value);
779
780 if (pptn)
781 LIST_INSERT_AFTER(pptn, pt, pt_list);
782 else
783 LIST_INSERT_HEAD(ptl, pt, pt_list);
784
785 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
786 timersub(&ptn->pt_time.it_value,
787 &pt->pt_time.it_value,
788 &ptn->pt_time.it_value);
789
790 pt->pt_active = 1;
791 } else
792 pt->pt_active = 0;
793 }
794 }
795
796 void
797 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
798 {
799 #ifdef __HAVE_TIMECOUNTER
800 struct timeval now;
801 #endif
802 struct ptimer *ptn;
803
804 *aitv = pt->pt_time;
805 if (pt->pt_type == CLOCK_REALTIME) {
806 /*
807 * Convert from absolute to relative time in .it_value
808 * part of real time timer. If time for real time
809 * timer has passed return 0, else return difference
810 * between current time and time for the timer to go
811 * off.
812 */
813 if (timerisset(&aitv->it_value)) {
814 #ifdef __HAVE_TIMECOUNTER
815 getmicrotime(&now);
816 if (timercmp(&aitv->it_value, &now, <))
817 timerclear(&aitv->it_value);
818 else
819 timersub(&aitv->it_value, &now,
820 &aitv->it_value);
821 #else /* !__HAVE_TIMECOUNTER */
822 if (timercmp(&aitv->it_value, &time, <))
823 timerclear(&aitv->it_value);
824 else
825 timersub(&aitv->it_value, &time,
826 &aitv->it_value);
827 #endif /* !__HAVE_TIMECOUNTER */
828 }
829 } else if (pt->pt_active) {
830 if (pt->pt_type == CLOCK_VIRTUAL)
831 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
832 else
833 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
834 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
835 timeradd(&aitv->it_value,
836 &ptn->pt_time.it_value, &aitv->it_value);
837 KASSERT(ptn != NULL); /* pt should be findable on the list */
838 } else
839 timerclear(&aitv->it_value);
840 }
841
842
843
844 /* Set and arm a POSIX realtime timer */
845 int
846 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
847 {
848 struct sys_timer_settime_args /* {
849 syscallarg(timer_t) timerid;
850 syscallarg(int) flags;
851 syscallarg(const struct itimerspec *) value;
852 syscallarg(struct itimerspec *) ovalue;
853 } */ *uap = v;
854 int error;
855 struct itimerspec value, ovalue, *ovp = NULL;
856
857 if ((error = copyin(SCARG(uap, value), &value,
858 sizeof(struct itimerspec))) != 0)
859 return (error);
860
861 if (SCARG(uap, ovalue))
862 ovp = &ovalue;
863
864 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
865 SCARG(uap, flags), l->l_proc)) != 0)
866 return error;
867
868 if (ovp)
869 return copyout(&ovalue, SCARG(uap, ovalue),
870 sizeof(struct itimerspec));
871 return 0;
872 }
873
874 int
875 dotimer_settime(int timerid, struct itimerspec *value,
876 struct itimerspec *ovalue, int flags, struct proc *p)
877 {
878 #ifdef __HAVE_TIMECOUNTER
879 struct timeval now;
880 #endif
881 struct itimerval val, oval;
882 struct ptimer *pt;
883 int s;
884
885 if ((p->p_timers == NULL) ||
886 (timerid < 2) || (timerid >= TIMER_MAX) ||
887 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
888 return (EINVAL);
889
890 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
891 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
892 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
893 return (EINVAL);
894
895 oval = pt->pt_time;
896 pt->pt_time = val;
897
898 s = splclock();
899 /*
900 * If we've been passed a relative time for a realtime timer,
901 * convert it to absolute; if an absolute time for a virtual
902 * timer, convert it to relative and make sure we don't set it
903 * to zero, which would cancel the timer, or let it go
904 * negative, which would confuse the comparison tests.
905 */
906 if (timerisset(&pt->pt_time.it_value)) {
907 if (pt->pt_type == CLOCK_REALTIME) {
908 #ifdef __HAVE_TIMECOUNTER
909 if ((flags & TIMER_ABSTIME) == 0) {
910 getmicrotime(&now);
911 timeradd(&pt->pt_time.it_value, &now,
912 &pt->pt_time.it_value);
913 }
914 #else /* !__HAVE_TIMECOUNTER */
915 if ((flags & TIMER_ABSTIME) == 0)
916 timeradd(&pt->pt_time.it_value, &time,
917 &pt->pt_time.it_value);
918 #endif /* !__HAVE_TIMECOUNTER */
919 } else {
920 if ((flags & TIMER_ABSTIME) != 0) {
921 #ifdef __HAVE_TIMECOUNTER
922 getmicrotime(&now);
923 timersub(&pt->pt_time.it_value, &now,
924 &pt->pt_time.it_value);
925 #else /* !__HAVE_TIMECOUNTER */
926 timersub(&pt->pt_time.it_value, &time,
927 &pt->pt_time.it_value);
928 #endif /* !__HAVE_TIMECOUNTER */
929 if (!timerisset(&pt->pt_time.it_value) ||
930 pt->pt_time.it_value.tv_sec < 0) {
931 pt->pt_time.it_value.tv_sec = 0;
932 pt->pt_time.it_value.tv_usec = 1;
933 }
934 }
935 }
936 }
937
938 timer_settime(pt);
939 splx(s);
940
941 if (ovalue) {
942 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
943 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
944 }
945
946 return (0);
947 }
948
949 /* Return the time remaining until a POSIX timer fires. */
950 int
951 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
952 {
953 struct sys_timer_gettime_args /* {
954 syscallarg(timer_t) timerid;
955 syscallarg(struct itimerspec *) value;
956 } */ *uap = v;
957 struct itimerspec its;
958 int error;
959
960 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
961 &its)) != 0)
962 return error;
963
964 return copyout(&its, SCARG(uap, value), sizeof(its));
965 }
966
967 int
968 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
969 {
970 int s;
971 struct ptimer *pt;
972 struct itimerval aitv;
973
974 if ((p->p_timers == NULL) ||
975 (timerid < 2) || (timerid >= TIMER_MAX) ||
976 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
977 return (EINVAL);
978
979 s = splclock();
980 timer_gettime(pt, &aitv);
981 splx(s);
982
983 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
984 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
985
986 return 0;
987 }
988
989 /*
990 * Return the count of the number of times a periodic timer expired
991 * while a notification was already pending. The counter is reset when
992 * a timer expires and a notification can be posted.
993 */
994 int
995 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
996 {
997 struct sys_timer_getoverrun_args /* {
998 syscallarg(timer_t) timerid;
999 } */ *uap = v;
1000 struct proc *p = l->l_proc;
1001 int timerid;
1002 struct ptimer *pt;
1003
1004 timerid = SCARG(uap, timerid);
1005
1006 if ((p->p_timers == NULL) ||
1007 (timerid < 2) || (timerid >= TIMER_MAX) ||
1008 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1009 return (EINVAL);
1010
1011 *retval = pt->pt_poverruns;
1012
1013 return (0);
1014 }
1015
1016 /*
1017 * Real interval timer expired:
1018 * send process whose timer expired an alarm signal.
1019 * If time is not set up to reload, then just return.
1020 * Else compute next time timer should go off which is > current time.
1021 * This is where delay in processing this timeout causes multiple
1022 * SIGALRM calls to be compressed into one.
1023 */
1024 void
1025 realtimerexpire(void *arg)
1026 {
1027 #ifdef __HAVE_TIMECOUNTER
1028 struct timeval now;
1029 #endif
1030 struct ptimer *pt;
1031 int s;
1032
1033 pt = (struct ptimer *)arg;
1034
1035 itimerfire(pt);
1036
1037 if (!timerisset(&pt->pt_time.it_interval)) {
1038 timerclear(&pt->pt_time.it_value);
1039 return;
1040 }
1041 #ifdef __HAVE_TIMECOUNTER
1042 for (;;) {
1043 s = splclock(); /* XXX need spl now? */
1044 timeradd(&pt->pt_time.it_value,
1045 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1046 getmicrotime(&now);
1047 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1048 /*
1049 * Don't need to check hzto() return value, here.
1050 * callout_reset() does it for us.
1051 */
1052 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1053 realtimerexpire, pt);
1054 splx(s);
1055 return;
1056 }
1057 splx(s);
1058 pt->pt_overruns++;
1059 }
1060 #else /* !__HAVE_TIMECOUNTER */
1061 for (;;) {
1062 s = splclock();
1063 timeradd(&pt->pt_time.it_value,
1064 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1065 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1066 /*
1067 * Don't need to check hzto() return value, here.
1068 * callout_reset() does it for us.
1069 */
1070 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1071 realtimerexpire, pt);
1072 splx(s);
1073 return;
1074 }
1075 splx(s);
1076 pt->pt_overruns++;
1077 }
1078 #endif /* !__HAVE_TIMECOUNTER */
1079 }
1080
1081 /* BSD routine to get the value of an interval timer. */
1082 /* ARGSUSED */
1083 int
1084 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1085 {
1086 struct sys_getitimer_args /* {
1087 syscallarg(int) which;
1088 syscallarg(struct itimerval *) itv;
1089 } */ *uap = v;
1090 struct proc *p = l->l_proc;
1091 struct itimerval aitv;
1092 int error;
1093
1094 error = dogetitimer(p, SCARG(uap, which), &aitv);
1095 if (error)
1096 return error;
1097 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1098 }
1099
1100 int
1101 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1102 {
1103 int s;
1104
1105 if ((u_int)which > ITIMER_PROF)
1106 return (EINVAL);
1107
1108 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1109 timerclear(&itvp->it_value);
1110 timerclear(&itvp->it_interval);
1111 } else {
1112 s = splclock();
1113 timer_gettime(p->p_timers->pts_timers[which], itvp);
1114 splx(s);
1115 }
1116
1117 return 0;
1118 }
1119
1120 /* BSD routine to set/arm an interval timer. */
1121 /* ARGSUSED */
1122 int
1123 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1124 {
1125 struct sys_setitimer_args /* {
1126 syscallarg(int) which;
1127 syscallarg(const struct itimerval *) itv;
1128 syscallarg(struct itimerval *) oitv;
1129 } */ *uap = v;
1130 struct proc *p = l->l_proc;
1131 int which = SCARG(uap, which);
1132 struct sys_getitimer_args getargs;
1133 const struct itimerval *itvp;
1134 struct itimerval aitv;
1135 int error;
1136
1137 if ((u_int)which > ITIMER_PROF)
1138 return (EINVAL);
1139 itvp = SCARG(uap, itv);
1140 if (itvp &&
1141 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1142 return (error);
1143 if (SCARG(uap, oitv) != NULL) {
1144 SCARG(&getargs, which) = which;
1145 SCARG(&getargs, itv) = SCARG(uap, oitv);
1146 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1147 return (error);
1148 }
1149 if (itvp == 0)
1150 return (0);
1151
1152 return dosetitimer(p, which, &aitv);
1153 }
1154
1155 int
1156 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1157 {
1158 #ifdef __HAVE_TIMECOUNTER
1159 struct timeval now;
1160 #endif
1161 struct ptimer *pt;
1162 int s;
1163
1164 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1165 return (EINVAL);
1166
1167 /*
1168 * Don't bother allocating data structures if the process just
1169 * wants to clear the timer.
1170 */
1171 if (!timerisset(&itvp->it_value) &&
1172 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1173 return (0);
1174
1175 if (p->p_timers == NULL)
1176 timers_alloc(p);
1177 if (p->p_timers->pts_timers[which] == NULL) {
1178 pt = pool_get(&ptimer_pool, PR_WAITOK);
1179 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1180 pt->pt_ev.sigev_value.sival_int = which;
1181 pt->pt_overruns = 0;
1182 pt->pt_proc = p;
1183 pt->pt_type = which;
1184 pt->pt_entry = which;
1185 switch (which) {
1186 case ITIMER_REAL:
1187 callout_init(&pt->pt_ch, 0);
1188 pt->pt_ev.sigev_signo = SIGALRM;
1189 break;
1190 case ITIMER_VIRTUAL:
1191 pt->pt_active = 0;
1192 pt->pt_ev.sigev_signo = SIGVTALRM;
1193 break;
1194 case ITIMER_PROF:
1195 pt->pt_active = 0;
1196 pt->pt_ev.sigev_signo = SIGPROF;
1197 break;
1198 }
1199 } else
1200 pt = p->p_timers->pts_timers[which];
1201
1202 pt->pt_time = *itvp;
1203 p->p_timers->pts_timers[which] = pt;
1204
1205 s = splclock();
1206 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1207 /* Convert to absolute time */
1208 #ifdef __HAVE_TIMECOUNTER
1209 /* XXX need to wrap in splclock for timecounters case? */
1210 getmicrotime(&now);
1211 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1212 #else /* !__HAVE_TIMECOUNTER */
1213 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1214 #endif /* !__HAVE_TIMECOUNTER */
1215 }
1216 timer_settime(pt);
1217 splx(s);
1218
1219 return (0);
1220 }
1221
1222 /* Utility routines to manage the array of pointers to timers. */
1223 void
1224 timers_alloc(struct proc *p)
1225 {
1226 int i;
1227 struct ptimers *pts;
1228
1229 pts = pool_get(&ptimers_pool, PR_WAITOK);
1230 LIST_INIT(&pts->pts_virtual);
1231 LIST_INIT(&pts->pts_prof);
1232 for (i = 0; i < TIMER_MAX; i++)
1233 pts->pts_timers[i] = NULL;
1234 pts->pts_fired = 0;
1235 p->p_timers = pts;
1236 }
1237
1238 /*
1239 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1240 * then clean up all timers and free all the data structures. If
1241 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1242 * by timer_create(), not the BSD setitimer() timers, and only free the
1243 * structure if none of those remain.
1244 */
1245 void
1246 timers_free(struct proc *p, int which)
1247 {
1248 int i, s;
1249 struct ptimers *pts;
1250 struct ptimer *pt, *ptn;
1251 struct timeval tv;
1252
1253 if (p->p_timers) {
1254 pts = p->p_timers;
1255 if (which == TIMERS_ALL)
1256 i = 0;
1257 else {
1258 s = splclock();
1259 timerclear(&tv);
1260 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1261 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1262 ptn = LIST_NEXT(ptn, pt_list))
1263 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1264 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1265 if (ptn) {
1266 timeradd(&tv, &ptn->pt_time.it_value,
1267 &ptn->pt_time.it_value);
1268 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1269 ptn, pt_list);
1270 }
1271
1272 timerclear(&tv);
1273 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1274 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1275 ptn = LIST_NEXT(ptn, pt_list))
1276 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1277 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1278 if (ptn) {
1279 timeradd(&tv, &ptn->pt_time.it_value,
1280 &ptn->pt_time.it_value);
1281 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1282 pt_list);
1283 }
1284 splx(s);
1285 i = 3;
1286 }
1287 for ( ; i < TIMER_MAX; i++)
1288 if ((pt = pts->pts_timers[i]) != NULL) {
1289 if (pt->pt_type == CLOCK_REALTIME) {
1290 callout_stop(&pt->pt_ch);
1291 callout_destroy(&pt->pt_ch);
1292 }
1293 pts->pts_timers[i] = NULL;
1294 pool_put(&ptimer_pool, pt);
1295 }
1296 if ((pts->pts_timers[0] == NULL) &&
1297 (pts->pts_timers[1] == NULL) &&
1298 (pts->pts_timers[2] == NULL)) {
1299 p->p_timers = NULL;
1300 pool_put(&ptimers_pool, pts);
1301 }
1302 }
1303 }
1304
1305 /*
1306 * Check that a proposed value to load into the .it_value or
1307 * .it_interval part of an interval timer is acceptable, and
1308 * fix it to have at least minimal value (i.e. if it is less
1309 * than the resolution of the clock, round it up.)
1310 */
1311 int
1312 itimerfix(struct timeval *tv)
1313 {
1314
1315 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1316 return (EINVAL);
1317 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1318 tv->tv_usec = tick;
1319 return (0);
1320 }
1321
1322 #ifdef __HAVE_TIMECOUNTER
1323 int
1324 itimespecfix(struct timespec *ts)
1325 {
1326
1327 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1328 return (EINVAL);
1329 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1330 ts->tv_nsec = tick * 1000;
1331 return (0);
1332 }
1333 #endif /* __HAVE_TIMECOUNTER */
1334
1335 /*
1336 * Decrement an interval timer by a specified number
1337 * of microseconds, which must be less than a second,
1338 * i.e. < 1000000. If the timer expires, then reload
1339 * it. In this case, carry over (usec - old value) to
1340 * reduce the value reloaded into the timer so that
1341 * the timer does not drift. This routine assumes
1342 * that it is called in a context where the timers
1343 * on which it is operating cannot change in value.
1344 */
1345 int
1346 itimerdecr(struct ptimer *pt, int usec)
1347 {
1348 struct itimerval *itp;
1349
1350 itp = &pt->pt_time;
1351 if (itp->it_value.tv_usec < usec) {
1352 if (itp->it_value.tv_sec == 0) {
1353 /* expired, and already in next interval */
1354 usec -= itp->it_value.tv_usec;
1355 goto expire;
1356 }
1357 itp->it_value.tv_usec += 1000000;
1358 itp->it_value.tv_sec--;
1359 }
1360 itp->it_value.tv_usec -= usec;
1361 usec = 0;
1362 if (timerisset(&itp->it_value))
1363 return (1);
1364 /* expired, exactly at end of interval */
1365 expire:
1366 if (timerisset(&itp->it_interval)) {
1367 itp->it_value = itp->it_interval;
1368 itp->it_value.tv_usec -= usec;
1369 if (itp->it_value.tv_usec < 0) {
1370 itp->it_value.tv_usec += 1000000;
1371 itp->it_value.tv_sec--;
1372 }
1373 timer_settime(pt);
1374 } else
1375 itp->it_value.tv_usec = 0; /* sec is already 0 */
1376 return (0);
1377 }
1378
1379 void
1380 itimerfire(struct ptimer *pt)
1381 {
1382 struct proc *p = pt->pt_proc;
1383
1384 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1385 /*
1386 * No RT signal infrastructure exists at this time;
1387 * just post the signal number and throw away the
1388 * value.
1389 */
1390 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1391 pt->pt_overruns++;
1392 else {
1393 ksiginfo_t ksi;
1394 KSI_INIT(&ksi);
1395 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1396 ksi.ksi_code = SI_TIMER;
1397 ksi.ksi_value = pt->pt_ev.sigev_value;
1398 pt->pt_poverruns = pt->pt_overruns;
1399 pt->pt_overruns = 0;
1400 mutex_enter(&proclist_mutex);
1401 kpsignal(p, &ksi, NULL);
1402 mutex_exit(&proclist_mutex);
1403 }
1404 }
1405 }
1406
1407 /*
1408 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1409 * for usage and rationale.
1410 */
1411 int
1412 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1413 {
1414 struct timeval tv, delta;
1415 int rv = 0;
1416 #ifndef __HAVE_TIMECOUNTER
1417 int s;
1418 #endif
1419
1420 #ifdef __HAVE_TIMECOUNTER
1421 getmicrouptime(&tv);
1422 #else /* !__HAVE_TIMECOUNTER */
1423 s = splclock();
1424 tv = mono_time;
1425 splx(s);
1426 #endif /* !__HAVE_TIMECOUNTER */
1427 timersub(&tv, lasttime, &delta);
1428
1429 /*
1430 * check for 0,0 is so that the message will be seen at least once,
1431 * even if interval is huge.
1432 */
1433 if (timercmp(&delta, mininterval, >=) ||
1434 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1435 *lasttime = tv;
1436 rv = 1;
1437 }
1438
1439 return (rv);
1440 }
1441
1442 /*
1443 * ppsratecheck(): packets (or events) per second limitation.
1444 */
1445 int
1446 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1447 {
1448 struct timeval tv, delta;
1449 int rv;
1450 #ifndef __HAVE_TIMECOUNTER
1451 int s;
1452 #endif
1453
1454 #ifdef __HAVE_TIMECOUNTER
1455 getmicrouptime(&tv);
1456 #else /* !__HAVE_TIMECOUNTER */
1457 s = splclock();
1458 tv = mono_time;
1459 splx(s);
1460 #endif /* !__HAVE_TIMECOUNTER */
1461 timersub(&tv, lasttime, &delta);
1462
1463 /*
1464 * check for 0,0 is so that the message will be seen at least once.
1465 * if more than one second have passed since the last update of
1466 * lasttime, reset the counter.
1467 *
1468 * we do increment *curpps even in *curpps < maxpps case, as some may
1469 * try to use *curpps for stat purposes as well.
1470 */
1471 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1472 delta.tv_sec >= 1) {
1473 *lasttime = tv;
1474 *curpps = 0;
1475 }
1476 if (maxpps < 0)
1477 rv = 1;
1478 else if (*curpps < maxpps)
1479 rv = 1;
1480 else
1481 rv = 0;
1482
1483 #if 1 /*DIAGNOSTIC?*/
1484 /* be careful about wrap-around */
1485 if (*curpps + 1 > *curpps)
1486 *curpps = *curpps + 1;
1487 #else
1488 /*
1489 * assume that there's not too many calls to this function.
1490 * not sure if the assumption holds, as it depends on *caller's*
1491 * behavior, not the behavior of this function.
1492 * IMHO it is wrong to make assumption on the caller's behavior,
1493 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1494 */
1495 *curpps = *curpps + 1;
1496 #endif
1497
1498 return (rv);
1499 }
1500