kern_time.c revision 1.125.6.2 1 /* $NetBSD: kern_time.c,v 1.125.6.2 2007/08/16 11:03:35 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.125.6.2 2007/08/16 11:03:35 jmcneill Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #ifndef __HAVE_TIMECOUNTER
83 #include <sys/timevar.h>
84 #endif /* !__HAVE_TIMECOUNTER */
85 #include <sys/kauth.h>
86
87 #include <sys/mount.h>
88 #include <sys/syscallargs.h>
89
90 #include <uvm/uvm_extern.h>
91
92 #include <machine/cpu.h>
93
94 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 &pool_allocator_nointr, IPL_NONE);
96 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 &pool_allocator_nointr, IPL_NONE);
98
99 /* Time of day and interval timer support.
100 *
101 * These routines provide the kernel entry points to get and set
102 * the time-of-day and per-process interval timers. Subroutines
103 * here provide support for adding and subtracting timeval structures
104 * and decrementing interval timers, optionally reloading the interval
105 * timers when they expire.
106 */
107
108 /* This function is used by clock_settime and settimeofday */
109 int
110 settime(struct proc *p, struct timespec *ts)
111 {
112 struct timeval delta, tv;
113 #ifdef __HAVE_TIMECOUNTER
114 struct timeval now;
115 struct timespec ts1;
116 #endif /* !__HAVE_TIMECOUNTER */
117 struct cpu_info *ci;
118 int s1, s2;
119
120 /*
121 * Don't allow the time to be set forward so far it will wrap
122 * and become negative, thus allowing an attacker to bypass
123 * the next check below. The cutoff is 1 year before rollover
124 * occurs, so even if the attacker uses adjtime(2) to move
125 * the time past the cutoff, it will take a very long time
126 * to get to the wrap point.
127 *
128 * XXX: we check against INT_MAX since on 64-bit
129 * platforms, sizeof(int) != sizeof(long) and
130 * time_t is 32 bits even when atv.tv_sec is 64 bits.
131 */
132 if (ts->tv_sec > INT_MAX - 365*24*60*60) {
133 struct proc *pp;
134
135 mutex_enter(&proclist_lock);
136 pp = p->p_pptr;
137 mutex_enter(&pp->p_mutex);
138 log(LOG_WARNING, "pid %d (%s) "
139 "invoked by uid %d ppid %d (%s) "
140 "tried to set clock forward to %ld\n",
141 p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
142 pp->p_pid, pp->p_comm, (long)ts->tv_sec);
143 mutex_exit(&pp->p_mutex);
144 mutex_exit(&proclist_lock);
145 return (EPERM);
146 }
147 TIMESPEC_TO_TIMEVAL(&tv, ts);
148
149 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
150 s1 = splsoftclock();
151 s2 = splclock();
152 #ifdef __HAVE_TIMECOUNTER
153 microtime(&now);
154 timersub(&tv, &now, &delta);
155 #else /* !__HAVE_TIMECOUNTER */
156 timersub(&tv, &time, &delta);
157 #endif /* !__HAVE_TIMECOUNTER */
158 if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
159 kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
160 KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
161 splx(s1);
162 return (EPERM);
163 }
164 #ifdef notyet
165 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
166 splx(s1);
167 return (EPERM);
168 }
169 #endif
170
171 #ifdef __HAVE_TIMECOUNTER
172 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
173 tc_setclock(&ts1);
174 #else /* !__HAVE_TIMECOUNTER */
175 time = tv;
176 #endif /* !__HAVE_TIMECOUNTER */
177
178 splx(s2);
179
180 timeradd(&boottime, &delta, &boottime);
181
182 /*
183 * XXXSMP
184 * This is wrong. We should traverse a list of all
185 * CPUs and add the delta to the runtime of those
186 * CPUs which have a process on them.
187 */
188 ci = curcpu();
189 timeradd(&ci->ci_schedstate.spc_runtime, &delta,
190 &ci->ci_schedstate.spc_runtime);
191 splx(s1);
192 resettodr();
193 return (0);
194 }
195
196 /* ARGSUSED */
197 int
198 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
199 {
200 struct sys_clock_gettime_args /* {
201 syscallarg(clockid_t) clock_id;
202 syscallarg(struct timespec *) tp;
203 } */ *uap = v;
204 clockid_t clock_id;
205 struct timespec ats;
206
207 clock_id = SCARG(uap, clock_id);
208 switch (clock_id) {
209 case CLOCK_REALTIME:
210 nanotime(&ats);
211 break;
212 case CLOCK_MONOTONIC:
213 nanouptime(&ats);
214 break;
215 default:
216 return (EINVAL);
217 }
218
219 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
220 }
221
222 /* ARGSUSED */
223 int
224 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
225 {
226 struct sys_clock_settime_args /* {
227 syscallarg(clockid_t) clock_id;
228 syscallarg(const struct timespec *) tp;
229 } */ *uap = v;
230 int error;
231
232 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
233 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
234 return (error);
235
236 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
237 }
238
239
240 int
241 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
242 {
243 struct timespec ats;
244 int error;
245
246 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
247 return (error);
248
249 switch (clock_id) {
250 case CLOCK_REALTIME:
251 if ((error = settime(p, &ats)) != 0)
252 return (error);
253 break;
254 case CLOCK_MONOTONIC:
255 return (EINVAL); /* read-only clock */
256 default:
257 return (EINVAL);
258 }
259
260 return 0;
261 }
262
263 int
264 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
265 {
266 struct sys_clock_getres_args /* {
267 syscallarg(clockid_t) clock_id;
268 syscallarg(struct timespec *) tp;
269 } */ *uap = v;
270 clockid_t clock_id;
271 struct timespec ts;
272 int error = 0;
273
274 clock_id = SCARG(uap, clock_id);
275 switch (clock_id) {
276 case CLOCK_REALTIME:
277 case CLOCK_MONOTONIC:
278 ts.tv_sec = 0;
279 if (tc_getfrequency() > 1000000000)
280 ts.tv_nsec = 1;
281 else
282 ts.tv_nsec = 1000000000 / tc_getfrequency();
283 break;
284 default:
285 return (EINVAL);
286 }
287
288 if (SCARG(uap, tp))
289 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
290
291 return error;
292 }
293
294 /* ARGSUSED */
295 int
296 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
297 {
298 struct sys_nanosleep_args/* {
299 syscallarg(struct timespec *) rqtp;
300 syscallarg(struct timespec *) rmtp;
301 } */ *uap = v;
302 struct timespec rmt, rqt;
303 int error, error1;
304
305 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
306 if (error)
307 return (error);
308
309 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
310 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
311 return error;
312
313 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
314 return error1 ? error1 : error;
315 }
316
317 int
318 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
319 {
320 #ifdef __HAVE_TIMECOUNTER
321 int error, timo;
322
323 if (itimespecfix(rqt))
324 return (EINVAL);
325
326 timo = tstohz(rqt);
327 /*
328 * Avoid inadvertantly sleeping forever
329 */
330 if (timo == 0)
331 timo = 1;
332
333 if (rmt != NULL)
334 getnanouptime(rmt);
335
336 error = kpause("nanoslp", true, timo, NULL);
337 if (error == ERESTART)
338 error = EINTR;
339 if (error == EWOULDBLOCK)
340 error = 0;
341
342 if (rmt!= NULL) {
343 struct timespec rmtend;
344
345 getnanouptime(&rmtend);
346
347 timespecsub(&rmtend, rmt, rmt);
348 timespecsub(rqt, rmt, rmt);
349 if (rmt->tv_sec < 0)
350 timespecclear(rmt);
351 }
352
353 return error;
354 #else /* !__HAVE_TIMECOUNTER */
355 struct timeval atv, utv;
356 int error, s, timo;
357
358 TIMESPEC_TO_TIMEVAL(&atv, rqt);
359 if (itimerfix(&atv))
360 return (EINVAL);
361
362 s = splclock();
363 timeradd(&atv,&time,&atv);
364 timo = hzto(&atv);
365 /*
366 * Avoid inadvertantly sleeping forever
367 */
368 if (timo == 0)
369 timo = 1;
370 splx(s);
371
372 error = kpause("nanoslp", true, timo, NULL);
373 if (error == ERESTART)
374 error = EINTR;
375 if (error == EWOULDBLOCK)
376 error = 0;
377
378 if (rmt != NULL) {
379 s = splclock();
380 utv = time;
381 splx(s);
382
383 timersub(&atv, &utv, &utv);
384 if (utv.tv_sec < 0)
385 timerclear(&utv);
386
387 TIMEVAL_TO_TIMESPEC(&utv, rmt);
388 }
389
390 return error;
391 #endif /* !__HAVE_TIMECOUNTER */
392 }
393
394 /* ARGSUSED */
395 int
396 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
397 {
398 struct sys_gettimeofday_args /* {
399 syscallarg(struct timeval *) tp;
400 syscallarg(void *) tzp; really "struct timezone *"
401 } */ *uap = v;
402 struct timeval atv;
403 int error = 0;
404 struct timezone tzfake;
405
406 if (SCARG(uap, tp)) {
407 microtime(&atv);
408 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
409 if (error)
410 return (error);
411 }
412 if (SCARG(uap, tzp)) {
413 /*
414 * NetBSD has no kernel notion of time zone, so we just
415 * fake up a timezone struct and return it if demanded.
416 */
417 tzfake.tz_minuteswest = 0;
418 tzfake.tz_dsttime = 0;
419 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
420 }
421 return (error);
422 }
423
424 /* ARGSUSED */
425 int
426 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
427 {
428 struct sys_settimeofday_args /* {
429 syscallarg(const struct timeval *) tv;
430 syscallarg(const void *) tzp; really "const struct timezone *"
431 } */ *uap = v;
432
433 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
434 }
435
436 int
437 settimeofday1(const struct timeval *utv, bool userspace,
438 const void *utzp, struct lwp *l, bool check_kauth)
439 {
440 struct timeval atv;
441 struct timespec ts;
442 int error;
443
444 /* Verify all parameters before changing time. */
445
446 if (check_kauth) {
447 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
448 KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
449 if (error != 0)
450 return (error);
451 }
452
453 /*
454 * NetBSD has no kernel notion of time zone, and only an
455 * obsolete program would try to set it, so we log a warning.
456 */
457 if (utzp)
458 log(LOG_WARNING, "pid %d attempted to set the "
459 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
460
461 if (utv == NULL)
462 return 0;
463
464 if (userspace) {
465 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
466 return error;
467 utv = &atv;
468 }
469
470 TIMEVAL_TO_TIMESPEC(utv, &ts);
471 return settime(l->l_proc, &ts);
472 }
473
474 #ifndef __HAVE_TIMECOUNTER
475 int tickdelta; /* current clock skew, us. per tick */
476 long timedelta; /* unapplied time correction, us. */
477 long bigadj = 1000000; /* use 10x skew above bigadj us. */
478 #endif
479
480 int time_adjusted; /* set if an adjustment is made */
481
482 /* ARGSUSED */
483 int
484 sys_adjtime(struct lwp *l, void *v, register_t *retval)
485 {
486 struct sys_adjtime_args /* {
487 syscallarg(const struct timeval *) delta;
488 syscallarg(struct timeval *) olddelta;
489 } */ *uap = v;
490 int error;
491
492 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
493 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
494 return (error);
495
496 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
497 }
498
499 int
500 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
501 {
502 struct timeval atv;
503 int error = 0;
504
505 #ifdef __HAVE_TIMECOUNTER
506 extern int64_t time_adjtime; /* in kern_ntptime.c */
507 #else /* !__HAVE_TIMECOUNTER */
508 long ndelta, ntickdelta, odelta;
509 int s;
510 #endif /* !__HAVE_TIMECOUNTER */
511
512 #ifdef __HAVE_TIMECOUNTER
513 if (olddelta) {
514 atv.tv_sec = time_adjtime / 1000000;
515 atv.tv_usec = time_adjtime % 1000000;
516 if (atv.tv_usec < 0) {
517 atv.tv_usec += 1000000;
518 atv.tv_sec--;
519 }
520 error = copyout(&atv, olddelta, sizeof(struct timeval));
521 if (error)
522 return (error);
523 }
524
525 if (delta) {
526 error = copyin(delta, &atv, sizeof(struct timeval));
527 if (error)
528 return (error);
529
530 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
531 atv.tv_usec;
532
533 if (time_adjtime)
534 /* We need to save the system time during shutdown */
535 time_adjusted |= 1;
536 }
537 #else /* !__HAVE_TIMECOUNTER */
538 error = copyin(delta, &atv, sizeof(struct timeval));
539 if (error)
540 return (error);
541
542 /*
543 * Compute the total correction and the rate at which to apply it.
544 * Round the adjustment down to a whole multiple of the per-tick
545 * delta, so that after some number of incremental changes in
546 * hardclock(), tickdelta will become zero, lest the correction
547 * overshoot and start taking us away from the desired final time.
548 */
549 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
550 if (ndelta > bigadj || ndelta < -bigadj)
551 ntickdelta = 10 * tickadj;
552 else
553 ntickdelta = tickadj;
554 if (ndelta % ntickdelta)
555 ndelta = ndelta / ntickdelta * ntickdelta;
556
557 /*
558 * To make hardclock()'s job easier, make the per-tick delta negative
559 * if we want time to run slower; then hardclock can simply compute
560 * tick + tickdelta, and subtract tickdelta from timedelta.
561 */
562 if (ndelta < 0)
563 ntickdelta = -ntickdelta;
564 if (ndelta != 0)
565 /* We need to save the system clock time during shutdown */
566 time_adjusted |= 1;
567 s = splclock();
568 odelta = timedelta;
569 timedelta = ndelta;
570 tickdelta = ntickdelta;
571 splx(s);
572
573 if (olddelta) {
574 atv.tv_sec = odelta / 1000000;
575 atv.tv_usec = odelta % 1000000;
576 error = copyout(&atv, olddelta, sizeof(struct timeval));
577 }
578 #endif /* __HAVE_TIMECOUNTER */
579
580 return error;
581 }
582
583 /*
584 * Interval timer support. Both the BSD getitimer() family and the POSIX
585 * timer_*() family of routines are supported.
586 *
587 * All timers are kept in an array pointed to by p_timers, which is
588 * allocated on demand - many processes don't use timers at all. The
589 * first three elements in this array are reserved for the BSD timers:
590 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
591 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
592 * syscall.
593 *
594 * Realtime timers are kept in the ptimer structure as an absolute
595 * time; virtual time timers are kept as a linked list of deltas.
596 * Virtual time timers are processed in the hardclock() routine of
597 * kern_clock.c. The real time timer is processed by a callout
598 * routine, called from the softclock() routine. Since a callout may
599 * be delayed in real time due to interrupt processing in the system,
600 * it is possible for the real time timeout routine (realtimeexpire,
601 * given below), to be delayed in real time past when it is supposed
602 * to occur. It does not suffice, therefore, to reload the real timer
603 * .it_value from the real time timers .it_interval. Rather, we
604 * compute the next time in absolute time the timer should go off. */
605
606 /* Allocate a POSIX realtime timer. */
607 int
608 sys_timer_create(struct lwp *l, void *v, register_t *retval)
609 {
610 struct sys_timer_create_args /* {
611 syscallarg(clockid_t) clock_id;
612 syscallarg(struct sigevent *) evp;
613 syscallarg(timer_t *) timerid;
614 } */ *uap = v;
615
616 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
617 SCARG(uap, evp), copyin, l);
618 }
619
620 int
621 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
622 copyin_t fetch_event, struct lwp *l)
623 {
624 int error;
625 timer_t timerid;
626 struct ptimer *pt;
627 struct proc *p;
628
629 p = l->l_proc;
630
631 if (id < CLOCK_REALTIME ||
632 id > CLOCK_PROF)
633 return (EINVAL);
634
635 if (p->p_timers == NULL)
636 timers_alloc(p);
637
638 /* Find a free timer slot, skipping those reserved for setitimer(). */
639 for (timerid = 3; timerid < TIMER_MAX; timerid++)
640 if (p->p_timers->pts_timers[timerid] == NULL)
641 break;
642
643 if (timerid == TIMER_MAX)
644 return EAGAIN;
645
646 pt = pool_get(&ptimer_pool, PR_WAITOK);
647 if (evp) {
648 if (((error =
649 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
650 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
651 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
652 pool_put(&ptimer_pool, pt);
653 return (error ? error : EINVAL);
654 }
655 } else {
656 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
657 switch (id) {
658 case CLOCK_REALTIME:
659 pt->pt_ev.sigev_signo = SIGALRM;
660 break;
661 case CLOCK_VIRTUAL:
662 pt->pt_ev.sigev_signo = SIGVTALRM;
663 break;
664 case CLOCK_PROF:
665 pt->pt_ev.sigev_signo = SIGPROF;
666 break;
667 }
668 pt->pt_ev.sigev_value.sival_int = timerid;
669 }
670 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
671 pt->pt_info.ksi_errno = 0;
672 pt->pt_info.ksi_code = 0;
673 pt->pt_info.ksi_pid = p->p_pid;
674 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
675 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
676
677 pt->pt_type = id;
678 pt->pt_proc = p;
679 pt->pt_overruns = 0;
680 pt->pt_poverruns = 0;
681 pt->pt_entry = timerid;
682 timerclear(&pt->pt_time.it_value);
683 if (id == CLOCK_REALTIME)
684 callout_init(&pt->pt_ch, 0);
685 else
686 pt->pt_active = 0;
687
688 p->p_timers->pts_timers[timerid] = pt;
689
690 return copyout(&timerid, tid, sizeof(timerid));
691 }
692
693 /* Delete a POSIX realtime timer */
694 int
695 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
696 {
697 struct sys_timer_delete_args /* {
698 syscallarg(timer_t) timerid;
699 } */ *uap = v;
700 struct proc *p = l->l_proc;
701 timer_t timerid;
702 struct ptimer *pt, *ptn;
703 int s;
704
705 timerid = SCARG(uap, timerid);
706
707 if ((p->p_timers == NULL) ||
708 (timerid < 2) || (timerid >= TIMER_MAX) ||
709 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
710 return (EINVAL);
711
712 if (pt->pt_type == CLOCK_REALTIME) {
713 callout_stop(&pt->pt_ch);
714 callout_destroy(&pt->pt_ch);
715 } else if (pt->pt_active) {
716 s = splclock();
717 ptn = LIST_NEXT(pt, pt_list);
718 LIST_REMOVE(pt, pt_list);
719 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
720 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
721 &ptn->pt_time.it_value);
722 splx(s);
723 }
724
725 p->p_timers->pts_timers[timerid] = NULL;
726 pool_put(&ptimer_pool, pt);
727
728 return (0);
729 }
730
731 /*
732 * Set up the given timer. The value in pt->pt_time.it_value is taken
733 * to be an absolute time for CLOCK_REALTIME timers and a relative
734 * time for virtual timers.
735 * Must be called at splclock().
736 */
737 void
738 timer_settime(struct ptimer *pt)
739 {
740 struct ptimer *ptn, *pptn;
741 struct ptlist *ptl;
742
743 if (pt->pt_type == CLOCK_REALTIME) {
744 callout_stop(&pt->pt_ch);
745 if (timerisset(&pt->pt_time.it_value)) {
746 /*
747 * Don't need to check hzto() return value, here.
748 * callout_reset() does it for us.
749 */
750 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
751 realtimerexpire, pt);
752 }
753 } else {
754 if (pt->pt_active) {
755 ptn = LIST_NEXT(pt, pt_list);
756 LIST_REMOVE(pt, pt_list);
757 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
758 timeradd(&pt->pt_time.it_value,
759 &ptn->pt_time.it_value,
760 &ptn->pt_time.it_value);
761 }
762 if (timerisset(&pt->pt_time.it_value)) {
763 if (pt->pt_type == CLOCK_VIRTUAL)
764 ptl = &pt->pt_proc->p_timers->pts_virtual;
765 else
766 ptl = &pt->pt_proc->p_timers->pts_prof;
767
768 for (ptn = LIST_FIRST(ptl), pptn = NULL;
769 ptn && timercmp(&pt->pt_time.it_value,
770 &ptn->pt_time.it_value, >);
771 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
772 timersub(&pt->pt_time.it_value,
773 &ptn->pt_time.it_value,
774 &pt->pt_time.it_value);
775
776 if (pptn)
777 LIST_INSERT_AFTER(pptn, pt, pt_list);
778 else
779 LIST_INSERT_HEAD(ptl, pt, pt_list);
780
781 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
782 timersub(&ptn->pt_time.it_value,
783 &pt->pt_time.it_value,
784 &ptn->pt_time.it_value);
785
786 pt->pt_active = 1;
787 } else
788 pt->pt_active = 0;
789 }
790 }
791
792 void
793 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
794 {
795 #ifdef __HAVE_TIMECOUNTER
796 struct timeval now;
797 #endif
798 struct ptimer *ptn;
799
800 *aitv = pt->pt_time;
801 if (pt->pt_type == CLOCK_REALTIME) {
802 /*
803 * Convert from absolute to relative time in .it_value
804 * part of real time timer. If time for real time
805 * timer has passed return 0, else return difference
806 * between current time and time for the timer to go
807 * off.
808 */
809 if (timerisset(&aitv->it_value)) {
810 #ifdef __HAVE_TIMECOUNTER
811 getmicrotime(&now);
812 if (timercmp(&aitv->it_value, &now, <))
813 timerclear(&aitv->it_value);
814 else
815 timersub(&aitv->it_value, &now,
816 &aitv->it_value);
817 #else /* !__HAVE_TIMECOUNTER */
818 if (timercmp(&aitv->it_value, &time, <))
819 timerclear(&aitv->it_value);
820 else
821 timersub(&aitv->it_value, &time,
822 &aitv->it_value);
823 #endif /* !__HAVE_TIMECOUNTER */
824 }
825 } else if (pt->pt_active) {
826 if (pt->pt_type == CLOCK_VIRTUAL)
827 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
828 else
829 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
830 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
831 timeradd(&aitv->it_value,
832 &ptn->pt_time.it_value, &aitv->it_value);
833 KASSERT(ptn != NULL); /* pt should be findable on the list */
834 } else
835 timerclear(&aitv->it_value);
836 }
837
838
839
840 /* Set and arm a POSIX realtime timer */
841 int
842 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
843 {
844 struct sys_timer_settime_args /* {
845 syscallarg(timer_t) timerid;
846 syscallarg(int) flags;
847 syscallarg(const struct itimerspec *) value;
848 syscallarg(struct itimerspec *) ovalue;
849 } */ *uap = v;
850 int error;
851 struct itimerspec value, ovalue, *ovp = NULL;
852
853 if ((error = copyin(SCARG(uap, value), &value,
854 sizeof(struct itimerspec))) != 0)
855 return (error);
856
857 if (SCARG(uap, ovalue))
858 ovp = &ovalue;
859
860 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
861 SCARG(uap, flags), l->l_proc)) != 0)
862 return error;
863
864 if (ovp)
865 return copyout(&ovalue, SCARG(uap, ovalue),
866 sizeof(struct itimerspec));
867 return 0;
868 }
869
870 int
871 dotimer_settime(int timerid, struct itimerspec *value,
872 struct itimerspec *ovalue, int flags, struct proc *p)
873 {
874 #ifdef __HAVE_TIMECOUNTER
875 struct timeval now;
876 #endif
877 struct itimerval val, oval;
878 struct ptimer *pt;
879 int s;
880
881 if ((p->p_timers == NULL) ||
882 (timerid < 2) || (timerid >= TIMER_MAX) ||
883 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
884 return (EINVAL);
885
886 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
887 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
888 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
889 return (EINVAL);
890
891 oval = pt->pt_time;
892 pt->pt_time = val;
893
894 s = splclock();
895 /*
896 * If we've been passed a relative time for a realtime timer,
897 * convert it to absolute; if an absolute time for a virtual
898 * timer, convert it to relative and make sure we don't set it
899 * to zero, which would cancel the timer, or let it go
900 * negative, which would confuse the comparison tests.
901 */
902 if (timerisset(&pt->pt_time.it_value)) {
903 if (pt->pt_type == CLOCK_REALTIME) {
904 #ifdef __HAVE_TIMECOUNTER
905 if ((flags & TIMER_ABSTIME) == 0) {
906 getmicrotime(&now);
907 timeradd(&pt->pt_time.it_value, &now,
908 &pt->pt_time.it_value);
909 }
910 #else /* !__HAVE_TIMECOUNTER */
911 if ((flags & TIMER_ABSTIME) == 0)
912 timeradd(&pt->pt_time.it_value, &time,
913 &pt->pt_time.it_value);
914 #endif /* !__HAVE_TIMECOUNTER */
915 } else {
916 if ((flags & TIMER_ABSTIME) != 0) {
917 #ifdef __HAVE_TIMECOUNTER
918 getmicrotime(&now);
919 timersub(&pt->pt_time.it_value, &now,
920 &pt->pt_time.it_value);
921 #else /* !__HAVE_TIMECOUNTER */
922 timersub(&pt->pt_time.it_value, &time,
923 &pt->pt_time.it_value);
924 #endif /* !__HAVE_TIMECOUNTER */
925 if (!timerisset(&pt->pt_time.it_value) ||
926 pt->pt_time.it_value.tv_sec < 0) {
927 pt->pt_time.it_value.tv_sec = 0;
928 pt->pt_time.it_value.tv_usec = 1;
929 }
930 }
931 }
932 }
933
934 timer_settime(pt);
935 splx(s);
936
937 if (ovalue) {
938 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
939 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
940 }
941
942 return (0);
943 }
944
945 /* Return the time remaining until a POSIX timer fires. */
946 int
947 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
948 {
949 struct sys_timer_gettime_args /* {
950 syscallarg(timer_t) timerid;
951 syscallarg(struct itimerspec *) value;
952 } */ *uap = v;
953 struct itimerspec its;
954 int error;
955
956 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
957 &its)) != 0)
958 return error;
959
960 return copyout(&its, SCARG(uap, value), sizeof(its));
961 }
962
963 int
964 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
965 {
966 int s;
967 struct ptimer *pt;
968 struct itimerval aitv;
969
970 if ((p->p_timers == NULL) ||
971 (timerid < 2) || (timerid >= TIMER_MAX) ||
972 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
973 return (EINVAL);
974
975 s = splclock();
976 timer_gettime(pt, &aitv);
977 splx(s);
978
979 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
980 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
981
982 return 0;
983 }
984
985 /*
986 * Return the count of the number of times a periodic timer expired
987 * while a notification was already pending. The counter is reset when
988 * a timer expires and a notification can be posted.
989 */
990 int
991 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
992 {
993 struct sys_timer_getoverrun_args /* {
994 syscallarg(timer_t) timerid;
995 } */ *uap = v;
996 struct proc *p = l->l_proc;
997 int timerid;
998 struct ptimer *pt;
999
1000 timerid = SCARG(uap, timerid);
1001
1002 if ((p->p_timers == NULL) ||
1003 (timerid < 2) || (timerid >= TIMER_MAX) ||
1004 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1005 return (EINVAL);
1006
1007 *retval = pt->pt_poverruns;
1008
1009 return (0);
1010 }
1011
1012 /*
1013 * Real interval timer expired:
1014 * send process whose timer expired an alarm signal.
1015 * If time is not set up to reload, then just return.
1016 * Else compute next time timer should go off which is > current time.
1017 * This is where delay in processing this timeout causes multiple
1018 * SIGALRM calls to be compressed into one.
1019 */
1020 void
1021 realtimerexpire(void *arg)
1022 {
1023 #ifdef __HAVE_TIMECOUNTER
1024 struct timeval now;
1025 #endif
1026 struct ptimer *pt;
1027 int s;
1028
1029 pt = (struct ptimer *)arg;
1030
1031 itimerfire(pt);
1032
1033 if (!timerisset(&pt->pt_time.it_interval)) {
1034 timerclear(&pt->pt_time.it_value);
1035 return;
1036 }
1037 #ifdef __HAVE_TIMECOUNTER
1038 for (;;) {
1039 s = splclock(); /* XXX need spl now? */
1040 timeradd(&pt->pt_time.it_value,
1041 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1042 getmicrotime(&now);
1043 if (timercmp(&pt->pt_time.it_value, &now, >)) {
1044 /*
1045 * Don't need to check hzto() return value, here.
1046 * callout_reset() does it for us.
1047 */
1048 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1049 realtimerexpire, pt);
1050 splx(s);
1051 return;
1052 }
1053 splx(s);
1054 pt->pt_overruns++;
1055 }
1056 #else /* !__HAVE_TIMECOUNTER */
1057 for (;;) {
1058 s = splclock();
1059 timeradd(&pt->pt_time.it_value,
1060 &pt->pt_time.it_interval, &pt->pt_time.it_value);
1061 if (timercmp(&pt->pt_time.it_value, &time, >)) {
1062 /*
1063 * Don't need to check hzto() return value, here.
1064 * callout_reset() does it for us.
1065 */
1066 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1067 realtimerexpire, pt);
1068 splx(s);
1069 return;
1070 }
1071 splx(s);
1072 pt->pt_overruns++;
1073 }
1074 #endif /* !__HAVE_TIMECOUNTER */
1075 }
1076
1077 /* BSD routine to get the value of an interval timer. */
1078 /* ARGSUSED */
1079 int
1080 sys_getitimer(struct lwp *l, void *v, register_t *retval)
1081 {
1082 struct sys_getitimer_args /* {
1083 syscallarg(int) which;
1084 syscallarg(struct itimerval *) itv;
1085 } */ *uap = v;
1086 struct proc *p = l->l_proc;
1087 struct itimerval aitv;
1088 int error;
1089
1090 error = dogetitimer(p, SCARG(uap, which), &aitv);
1091 if (error)
1092 return error;
1093 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1094 }
1095
1096 int
1097 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1098 {
1099 int s;
1100
1101 if ((u_int)which > ITIMER_PROF)
1102 return (EINVAL);
1103
1104 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1105 timerclear(&itvp->it_value);
1106 timerclear(&itvp->it_interval);
1107 } else {
1108 s = splclock();
1109 timer_gettime(p->p_timers->pts_timers[which], itvp);
1110 splx(s);
1111 }
1112
1113 return 0;
1114 }
1115
1116 /* BSD routine to set/arm an interval timer. */
1117 /* ARGSUSED */
1118 int
1119 sys_setitimer(struct lwp *l, void *v, register_t *retval)
1120 {
1121 struct sys_setitimer_args /* {
1122 syscallarg(int) which;
1123 syscallarg(const struct itimerval *) itv;
1124 syscallarg(struct itimerval *) oitv;
1125 } */ *uap = v;
1126 struct proc *p = l->l_proc;
1127 int which = SCARG(uap, which);
1128 struct sys_getitimer_args getargs;
1129 const struct itimerval *itvp;
1130 struct itimerval aitv;
1131 int error;
1132
1133 if ((u_int)which > ITIMER_PROF)
1134 return (EINVAL);
1135 itvp = SCARG(uap, itv);
1136 if (itvp &&
1137 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1138 return (error);
1139 if (SCARG(uap, oitv) != NULL) {
1140 SCARG(&getargs, which) = which;
1141 SCARG(&getargs, itv) = SCARG(uap, oitv);
1142 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1143 return (error);
1144 }
1145 if (itvp == 0)
1146 return (0);
1147
1148 return dosetitimer(p, which, &aitv);
1149 }
1150
1151 int
1152 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1153 {
1154 #ifdef __HAVE_TIMECOUNTER
1155 struct timeval now;
1156 #endif
1157 struct ptimer *pt;
1158 int s;
1159
1160 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1161 return (EINVAL);
1162
1163 /*
1164 * Don't bother allocating data structures if the process just
1165 * wants to clear the timer.
1166 */
1167 if (!timerisset(&itvp->it_value) &&
1168 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1169 return (0);
1170
1171 if (p->p_timers == NULL)
1172 timers_alloc(p);
1173 if (p->p_timers->pts_timers[which] == NULL) {
1174 pt = pool_get(&ptimer_pool, PR_WAITOK);
1175 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1176 pt->pt_ev.sigev_value.sival_int = which;
1177 pt->pt_overruns = 0;
1178 pt->pt_proc = p;
1179 pt->pt_type = which;
1180 pt->pt_entry = which;
1181 switch (which) {
1182 case ITIMER_REAL:
1183 callout_init(&pt->pt_ch, 0);
1184 pt->pt_ev.sigev_signo = SIGALRM;
1185 break;
1186 case ITIMER_VIRTUAL:
1187 pt->pt_active = 0;
1188 pt->pt_ev.sigev_signo = SIGVTALRM;
1189 break;
1190 case ITIMER_PROF:
1191 pt->pt_active = 0;
1192 pt->pt_ev.sigev_signo = SIGPROF;
1193 break;
1194 }
1195 } else
1196 pt = p->p_timers->pts_timers[which];
1197
1198 pt->pt_time = *itvp;
1199 p->p_timers->pts_timers[which] = pt;
1200
1201 s = splclock();
1202 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1203 /* Convert to absolute time */
1204 #ifdef __HAVE_TIMECOUNTER
1205 /* XXX need to wrap in splclock for timecounters case? */
1206 getmicrotime(&now);
1207 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1208 #else /* !__HAVE_TIMECOUNTER */
1209 timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1210 #endif /* !__HAVE_TIMECOUNTER */
1211 }
1212 timer_settime(pt);
1213 splx(s);
1214
1215 return (0);
1216 }
1217
1218 /* Utility routines to manage the array of pointers to timers. */
1219 void
1220 timers_alloc(struct proc *p)
1221 {
1222 int i;
1223 struct ptimers *pts;
1224
1225 pts = pool_get(&ptimers_pool, PR_WAITOK);
1226 LIST_INIT(&pts->pts_virtual);
1227 LIST_INIT(&pts->pts_prof);
1228 for (i = 0; i < TIMER_MAX; i++)
1229 pts->pts_timers[i] = NULL;
1230 pts->pts_fired = 0;
1231 p->p_timers = pts;
1232 }
1233
1234 /*
1235 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1236 * then clean up all timers and free all the data structures. If
1237 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1238 * by timer_create(), not the BSD setitimer() timers, and only free the
1239 * structure if none of those remain.
1240 */
1241 void
1242 timers_free(struct proc *p, int which)
1243 {
1244 int i, s;
1245 struct ptimers *pts;
1246 struct ptimer *pt, *ptn;
1247 struct timeval tv;
1248
1249 if (p->p_timers) {
1250 pts = p->p_timers;
1251 if (which == TIMERS_ALL)
1252 i = 0;
1253 else {
1254 s = splclock();
1255 timerclear(&tv);
1256 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1257 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1258 ptn = LIST_NEXT(ptn, pt_list))
1259 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1260 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1261 if (ptn) {
1262 timeradd(&tv, &ptn->pt_time.it_value,
1263 &ptn->pt_time.it_value);
1264 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1265 ptn, pt_list);
1266 }
1267
1268 timerclear(&tv);
1269 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1270 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1271 ptn = LIST_NEXT(ptn, pt_list))
1272 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1273 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1274 if (ptn) {
1275 timeradd(&tv, &ptn->pt_time.it_value,
1276 &ptn->pt_time.it_value);
1277 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1278 pt_list);
1279 }
1280 splx(s);
1281 i = 3;
1282 }
1283 for ( ; i < TIMER_MAX; i++)
1284 if ((pt = pts->pts_timers[i]) != NULL) {
1285 if (pt->pt_type == CLOCK_REALTIME) {
1286 callout_stop(&pt->pt_ch);
1287 callout_destroy(&pt->pt_ch);
1288 }
1289 pts->pts_timers[i] = NULL;
1290 pool_put(&ptimer_pool, pt);
1291 }
1292 if ((pts->pts_timers[0] == NULL) &&
1293 (pts->pts_timers[1] == NULL) &&
1294 (pts->pts_timers[2] == NULL)) {
1295 p->p_timers = NULL;
1296 pool_put(&ptimers_pool, pts);
1297 }
1298 }
1299 }
1300
1301 /*
1302 * Decrement an interval timer by a specified number
1303 * of microseconds, which must be less than a second,
1304 * i.e. < 1000000. If the timer expires, then reload
1305 * it. In this case, carry over (usec - old value) to
1306 * reduce the value reloaded into the timer so that
1307 * the timer does not drift. This routine assumes
1308 * that it is called in a context where the timers
1309 * on which it is operating cannot change in value.
1310 */
1311 int
1312 itimerdecr(struct ptimer *pt, int usec)
1313 {
1314 struct itimerval *itp;
1315
1316 itp = &pt->pt_time;
1317 if (itp->it_value.tv_usec < usec) {
1318 if (itp->it_value.tv_sec == 0) {
1319 /* expired, and already in next interval */
1320 usec -= itp->it_value.tv_usec;
1321 goto expire;
1322 }
1323 itp->it_value.tv_usec += 1000000;
1324 itp->it_value.tv_sec--;
1325 }
1326 itp->it_value.tv_usec -= usec;
1327 usec = 0;
1328 if (timerisset(&itp->it_value))
1329 return (1);
1330 /* expired, exactly at end of interval */
1331 expire:
1332 if (timerisset(&itp->it_interval)) {
1333 itp->it_value = itp->it_interval;
1334 itp->it_value.tv_usec -= usec;
1335 if (itp->it_value.tv_usec < 0) {
1336 itp->it_value.tv_usec += 1000000;
1337 itp->it_value.tv_sec--;
1338 }
1339 timer_settime(pt);
1340 } else
1341 itp->it_value.tv_usec = 0; /* sec is already 0 */
1342 return (0);
1343 }
1344
1345 void
1346 itimerfire(struct ptimer *pt)
1347 {
1348 struct proc *p = pt->pt_proc;
1349
1350 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1351 /*
1352 * No RT signal infrastructure exists at this time;
1353 * just post the signal number and throw away the
1354 * value.
1355 */
1356 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1357 pt->pt_overruns++;
1358 else {
1359 ksiginfo_t ksi;
1360 KSI_INIT(&ksi);
1361 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1362 ksi.ksi_code = SI_TIMER;
1363 ksi.ksi_value = pt->pt_ev.sigev_value;
1364 pt->pt_poverruns = pt->pt_overruns;
1365 pt->pt_overruns = 0;
1366 mutex_enter(&proclist_mutex);
1367 kpsignal(p, &ksi, NULL);
1368 mutex_exit(&proclist_mutex);
1369 }
1370 }
1371 }
1372
1373 /*
1374 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1375 * for usage and rationale.
1376 */
1377 int
1378 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1379 {
1380 struct timeval tv, delta;
1381 int rv = 0;
1382 #ifndef __HAVE_TIMECOUNTER
1383 int s;
1384 #endif
1385
1386 #ifdef __HAVE_TIMECOUNTER
1387 getmicrouptime(&tv);
1388 #else /* !__HAVE_TIMECOUNTER */
1389 s = splclock();
1390 tv = mono_time;
1391 splx(s);
1392 #endif /* !__HAVE_TIMECOUNTER */
1393 timersub(&tv, lasttime, &delta);
1394
1395 /*
1396 * check for 0,0 is so that the message will be seen at least once,
1397 * even if interval is huge.
1398 */
1399 if (timercmp(&delta, mininterval, >=) ||
1400 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1401 *lasttime = tv;
1402 rv = 1;
1403 }
1404
1405 return (rv);
1406 }
1407
1408 /*
1409 * ppsratecheck(): packets (or events) per second limitation.
1410 */
1411 int
1412 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1413 {
1414 struct timeval tv, delta;
1415 int rv;
1416 #ifndef __HAVE_TIMECOUNTER
1417 int s;
1418 #endif
1419
1420 #ifdef __HAVE_TIMECOUNTER
1421 getmicrouptime(&tv);
1422 #else /* !__HAVE_TIMECOUNTER */
1423 s = splclock();
1424 tv = mono_time;
1425 splx(s);
1426 #endif /* !__HAVE_TIMECOUNTER */
1427 timersub(&tv, lasttime, &delta);
1428
1429 /*
1430 * check for 0,0 is so that the message will be seen at least once.
1431 * if more than one second have passed since the last update of
1432 * lasttime, reset the counter.
1433 *
1434 * we do increment *curpps even in *curpps < maxpps case, as some may
1435 * try to use *curpps for stat purposes as well.
1436 */
1437 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1438 delta.tv_sec >= 1) {
1439 *lasttime = tv;
1440 *curpps = 0;
1441 }
1442 if (maxpps < 0)
1443 rv = 1;
1444 else if (*curpps < maxpps)
1445 rv = 1;
1446 else
1447 rv = 0;
1448
1449 #if 1 /*DIAGNOSTIC?*/
1450 /* be careful about wrap-around */
1451 if (*curpps + 1 > *curpps)
1452 *curpps = *curpps + 1;
1453 #else
1454 /*
1455 * assume that there's not too many calls to this function.
1456 * not sure if the assumption holds, as it depends on *caller's*
1457 * behavior, not the behavior of this function.
1458 * IMHO it is wrong to make assumption on the caller's behavior,
1459 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1460 */
1461 *curpps = *curpps + 1;
1462 #endif
1463
1464 return (rv);
1465 }
1466