Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.131
      1 /*	$NetBSD: kern_time.c,v 1.131 2007/11/15 20:12:04 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.131 2007/11/15 20:12:04 ad Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #ifndef __HAVE_TIMECOUNTER
     83 #include <sys/timevar.h>
     84 #endif /* !__HAVE_TIMECOUNTER */
     85 #include <sys/kauth.h>
     86 
     87 #include <sys/mount.h>
     88 #include <sys/syscallargs.h>
     89 
     90 #include <uvm/uvm_extern.h>
     91 
     92 #include <sys/cpu.h>
     93 
     94 kmutex_t	time_lock;
     95 
     96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97     &pool_allocator_nointr, IPL_NONE);
     98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99     &pool_allocator_nointr, IPL_NONE);
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    109 }
    110 
    111 /* Time of day and interval timer support.
    112  *
    113  * These routines provide the kernel entry points to get and set
    114  * the time-of-day and per-process interval timers.  Subroutines
    115  * here provide support for adding and subtracting timeval structures
    116  * and decrementing interval timers, optionally reloading the interval
    117  * timers when they expire.
    118  */
    119 
    120 /* This function is used by clock_settime and settimeofday */
    121 int
    122 settime(struct proc *p, struct timespec *ts)
    123 {
    124 	struct timeval delta, tv;
    125 #ifdef __HAVE_TIMECOUNTER
    126 	struct timeval now;
    127 	struct timespec ts1;
    128 #endif /* !__HAVE_TIMECOUNTER */
    129 	lwp_t *l;
    130 	int s;
    131 
    132 	/*
    133 	 * Don't allow the time to be set forward so far it will wrap
    134 	 * and become negative, thus allowing an attacker to bypass
    135 	 * the next check below.  The cutoff is 1 year before rollover
    136 	 * occurs, so even if the attacker uses adjtime(2) to move
    137 	 * the time past the cutoff, it will take a very long time
    138 	 * to get to the wrap point.
    139 	 *
    140 	 * XXX: we check against INT_MAX since on 64-bit
    141 	 *	platforms, sizeof(int) != sizeof(long) and
    142 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    143 	 */
    144 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    145 		struct proc *pp;
    146 
    147 		mutex_enter(&proclist_lock);
    148 		pp = p->p_pptr;
    149 		mutex_enter(&pp->p_mutex);
    150 		log(LOG_WARNING, "pid %d (%s) "
    151 		    "invoked by uid %d ppid %d (%s) "
    152 		    "tried to set clock forward to %ld\n",
    153 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    154 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    155 		mutex_exit(&pp->p_mutex);
    156 		mutex_exit(&proclist_lock);
    157 		return (EPERM);
    158 	}
    159 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    160 
    161 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    162 	s = splclock();
    163 #ifdef __HAVE_TIMECOUNTER
    164 	microtime(&now);
    165 	timersub(&tv, &now, &delta);
    166 #else /* !__HAVE_TIMECOUNTER */
    167 	timersub(&tv, &time, &delta);
    168 #endif /* !__HAVE_TIMECOUNTER */
    169 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    170 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    171 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    172 		splx(s);
    173 		return (EPERM);
    174 	}
    175 #ifdef notyet
    176 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    177 		splx(s);
    178 		return (EPERM);
    179 	}
    180 #endif
    181 
    182 #ifdef __HAVE_TIMECOUNTER
    183 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    184 	tc_setclock(&ts1);
    185 #else /* !__HAVE_TIMECOUNTER */
    186 	time = tv;
    187 #endif /* !__HAVE_TIMECOUNTER */
    188 
    189 	timeradd(&boottime, &delta, &boottime);
    190 
    191 	/*
    192 	 * XXXSMP: There is a short race between setting the time above
    193 	 * and adjusting LWP's run times.  Fixing this properly means
    194 	 * pausing all CPUs while we adjust the clock.
    195 	 */
    196 	mutex_enter(&proclist_lock);
    197 	LIST_FOREACH(l, &alllwp, l_list) {
    198 		lwp_lock(l);
    199 		timeradd(&l->l_stime, &delta, &l->l_stime);
    200 		lwp_unlock(l);
    201 	}
    202 	mutex_exit(&proclist_lock);
    203 	resettodr();
    204 	splx(s);
    205 
    206 	return (0);
    207 }
    208 
    209 /* ARGSUSED */
    210 int
    211 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    212 {
    213 	struct sys_clock_gettime_args /* {
    214 		syscallarg(clockid_t) clock_id;
    215 		syscallarg(struct timespec *) tp;
    216 	} */ *uap = v;
    217 	clockid_t clock_id;
    218 	struct timespec ats;
    219 
    220 	clock_id = SCARG(uap, clock_id);
    221 	switch (clock_id) {
    222 	case CLOCK_REALTIME:
    223 		nanotime(&ats);
    224 		break;
    225 	case CLOCK_MONOTONIC:
    226 		nanouptime(&ats);
    227 		break;
    228 	default:
    229 		return (EINVAL);
    230 	}
    231 
    232 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    233 }
    234 
    235 /* ARGSUSED */
    236 int
    237 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    238 {
    239 	struct sys_clock_settime_args /* {
    240 		syscallarg(clockid_t) clock_id;
    241 		syscallarg(const struct timespec *) tp;
    242 	} */ *uap = v;
    243 	int error;
    244 
    245 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    246 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    247 		return (error);
    248 
    249 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    250 }
    251 
    252 
    253 int
    254 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    255 {
    256 	struct timespec ats;
    257 	int error;
    258 
    259 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    260 		return (error);
    261 
    262 	switch (clock_id) {
    263 	case CLOCK_REALTIME:
    264 		if ((error = settime(p, &ats)) != 0)
    265 			return (error);
    266 		break;
    267 	case CLOCK_MONOTONIC:
    268 		return (EINVAL);	/* read-only clock */
    269 	default:
    270 		return (EINVAL);
    271 	}
    272 
    273 	return 0;
    274 }
    275 
    276 int
    277 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    278 {
    279 	struct sys_clock_getres_args /* {
    280 		syscallarg(clockid_t) clock_id;
    281 		syscallarg(struct timespec *) tp;
    282 	} */ *uap = v;
    283 	clockid_t clock_id;
    284 	struct timespec ts;
    285 	int error = 0;
    286 
    287 	clock_id = SCARG(uap, clock_id);
    288 	switch (clock_id) {
    289 	case CLOCK_REALTIME:
    290 	case CLOCK_MONOTONIC:
    291 		ts.tv_sec = 0;
    292 		if (tc_getfrequency() > 1000000000)
    293 			ts.tv_nsec = 1;
    294 		else
    295 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    296 		break;
    297 	default:
    298 		return (EINVAL);
    299 	}
    300 
    301 	if (SCARG(uap, tp))
    302 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    303 
    304 	return error;
    305 }
    306 
    307 /* ARGSUSED */
    308 int
    309 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    310 {
    311 	struct sys_nanosleep_args/* {
    312 		syscallarg(struct timespec *) rqtp;
    313 		syscallarg(struct timespec *) rmtp;
    314 	} */ *uap = v;
    315 	struct timespec rmt, rqt;
    316 	int error, error1;
    317 
    318 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    319 	if (error)
    320 		return (error);
    321 
    322 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    323 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    324 		return error;
    325 
    326 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    327 	return error1 ? error1 : error;
    328 }
    329 
    330 int
    331 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    332 {
    333 #ifdef __HAVE_TIMECOUNTER
    334 	int error, timo;
    335 
    336 	if (itimespecfix(rqt))
    337 		return (EINVAL);
    338 
    339 	timo = tstohz(rqt);
    340 	/*
    341 	 * Avoid inadvertantly sleeping forever
    342 	 */
    343 	if (timo == 0)
    344 		timo = 1;
    345 
    346 	if (rmt != NULL)
    347 		getnanouptime(rmt);
    348 
    349 	error = kpause("nanoslp", true, timo, NULL);
    350 	if (error == ERESTART)
    351 		error = EINTR;
    352 	if (error == EWOULDBLOCK)
    353 		error = 0;
    354 
    355 	if (rmt!= NULL) {
    356 		struct timespec rmtend;
    357 
    358 		getnanouptime(&rmtend);
    359 
    360 		timespecsub(&rmtend, rmt, rmt);
    361 		timespecsub(rqt, rmt, rmt);
    362 		if (rmt->tv_sec < 0)
    363 			timespecclear(rmt);
    364 	}
    365 
    366 	return error;
    367 #else /* !__HAVE_TIMECOUNTER */
    368 	struct timeval atv, utv;
    369 	int error, s, timo;
    370 
    371 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
    372 	if (itimerfix(&atv))
    373 		return (EINVAL);
    374 
    375 	s = splclock();
    376 	timeradd(&atv,&time,&atv);
    377 	timo = hzto(&atv);
    378 	/*
    379 	 * Avoid inadvertantly sleeping forever
    380 	 */
    381 	if (timo == 0)
    382 		timo = 1;
    383 	splx(s);
    384 
    385 	error = kpause("nanoslp", true, timo, NULL);
    386 	if (error == ERESTART)
    387 		error = EINTR;
    388 	if (error == EWOULDBLOCK)
    389 		error = 0;
    390 
    391 	if (rmt != NULL) {
    392 		s = splclock();
    393 		utv = time;
    394 		splx(s);
    395 
    396 		timersub(&atv, &utv, &utv);
    397 		if (utv.tv_sec < 0)
    398 			timerclear(&utv);
    399 
    400 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
    401 	}
    402 
    403 	return error;
    404 #endif /* !__HAVE_TIMECOUNTER */
    405 }
    406 
    407 /* ARGSUSED */
    408 int
    409 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    410 {
    411 	struct sys_gettimeofday_args /* {
    412 		syscallarg(struct timeval *) tp;
    413 		syscallarg(void *) tzp;		really "struct timezone *"
    414 	} */ *uap = v;
    415 	struct timeval atv;
    416 	int error = 0;
    417 	struct timezone tzfake;
    418 
    419 	if (SCARG(uap, tp)) {
    420 		microtime(&atv);
    421 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    422 		if (error)
    423 			return (error);
    424 	}
    425 	if (SCARG(uap, tzp)) {
    426 		/*
    427 		 * NetBSD has no kernel notion of time zone, so we just
    428 		 * fake up a timezone struct and return it if demanded.
    429 		 */
    430 		tzfake.tz_minuteswest = 0;
    431 		tzfake.tz_dsttime = 0;
    432 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    433 	}
    434 	return (error);
    435 }
    436 
    437 /* ARGSUSED */
    438 int
    439 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    440 {
    441 	struct sys_settimeofday_args /* {
    442 		syscallarg(const struct timeval *) tv;
    443 		syscallarg(const void *) tzp;	really "const struct timezone *"
    444 	} */ *uap = v;
    445 
    446 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    447 }
    448 
    449 int
    450 settimeofday1(const struct timeval *utv, bool userspace,
    451     const void *utzp, struct lwp *l, bool check_kauth)
    452 {
    453 	struct timeval atv;
    454 	struct timespec ts;
    455 	int error;
    456 
    457 	/* Verify all parameters before changing time. */
    458 
    459 	if (check_kauth) {
    460 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    461 		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
    462 		if (error != 0)
    463 			return (error);
    464 	}
    465 
    466 	/*
    467 	 * NetBSD has no kernel notion of time zone, and only an
    468 	 * obsolete program would try to set it, so we log a warning.
    469 	 */
    470 	if (utzp)
    471 		log(LOG_WARNING, "pid %d attempted to set the "
    472 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    473 
    474 	if (utv == NULL)
    475 		return 0;
    476 
    477 	if (userspace) {
    478 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    479 			return error;
    480 		utv = &atv;
    481 	}
    482 
    483 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    484 	return settime(l->l_proc, &ts);
    485 }
    486 
    487 #ifndef __HAVE_TIMECOUNTER
    488 int	tickdelta;			/* current clock skew, us. per tick */
    489 long	timedelta;			/* unapplied time correction, us. */
    490 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    491 #endif
    492 
    493 int	time_adjusted;			/* set if an adjustment is made */
    494 
    495 /* ARGSUSED */
    496 int
    497 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    498 {
    499 	struct sys_adjtime_args /* {
    500 		syscallarg(const struct timeval *) delta;
    501 		syscallarg(struct timeval *) olddelta;
    502 	} */ *uap = v;
    503 	int error;
    504 
    505 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    506 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    507 		return (error);
    508 
    509 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    510 }
    511 
    512 int
    513 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    514 {
    515 	struct timeval atv;
    516 	int error = 0;
    517 
    518 #ifdef __HAVE_TIMECOUNTER
    519 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    520 #else /* !__HAVE_TIMECOUNTER */
    521 	long ndelta, ntickdelta, odelta;
    522 	int s;
    523 #endif /* !__HAVE_TIMECOUNTER */
    524 
    525 #ifdef __HAVE_TIMECOUNTER
    526 	if (olddelta) {
    527 		atv.tv_sec = time_adjtime / 1000000;
    528 		atv.tv_usec = time_adjtime % 1000000;
    529 		if (atv.tv_usec < 0) {
    530 			atv.tv_usec += 1000000;
    531 			atv.tv_sec--;
    532 		}
    533 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    534 		if (error)
    535 			return (error);
    536 	}
    537 
    538 	if (delta) {
    539 		error = copyin(delta, &atv, sizeof(struct timeval));
    540 		if (error)
    541 			return (error);
    542 
    543 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    544 			atv.tv_usec;
    545 
    546 		if (time_adjtime)
    547 			/* We need to save the system time during shutdown */
    548 			time_adjusted |= 1;
    549 	}
    550 #else /* !__HAVE_TIMECOUNTER */
    551 	error = copyin(delta, &atv, sizeof(struct timeval));
    552 	if (error)
    553 		return (error);
    554 
    555 	/*
    556 	 * Compute the total correction and the rate at which to apply it.
    557 	 * Round the adjustment down to a whole multiple of the per-tick
    558 	 * delta, so that after some number of incremental changes in
    559 	 * hardclock(), tickdelta will become zero, lest the correction
    560 	 * overshoot and start taking us away from the desired final time.
    561 	 */
    562 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    563 	if (ndelta > bigadj || ndelta < -bigadj)
    564 		ntickdelta = 10 * tickadj;
    565 	else
    566 		ntickdelta = tickadj;
    567 	if (ndelta % ntickdelta)
    568 		ndelta = ndelta / ntickdelta * ntickdelta;
    569 
    570 	/*
    571 	 * To make hardclock()'s job easier, make the per-tick delta negative
    572 	 * if we want time to run slower; then hardclock can simply compute
    573 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    574 	 */
    575 	if (ndelta < 0)
    576 		ntickdelta = -ntickdelta;
    577 	if (ndelta != 0)
    578 		/* We need to save the system clock time during shutdown */
    579 		time_adjusted |= 1;
    580 	s = splclock();
    581 	odelta = timedelta;
    582 	timedelta = ndelta;
    583 	tickdelta = ntickdelta;
    584 	splx(s);
    585 
    586 	if (olddelta) {
    587 		atv.tv_sec = odelta / 1000000;
    588 		atv.tv_usec = odelta % 1000000;
    589 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    590 	}
    591 #endif /* __HAVE_TIMECOUNTER */
    592 
    593 	return error;
    594 }
    595 
    596 /*
    597  * Interval timer support. Both the BSD getitimer() family and the POSIX
    598  * timer_*() family of routines are supported.
    599  *
    600  * All timers are kept in an array pointed to by p_timers, which is
    601  * allocated on demand - many processes don't use timers at all. The
    602  * first three elements in this array are reserved for the BSD timers:
    603  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    604  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    605  * syscall.
    606  *
    607  * Realtime timers are kept in the ptimer structure as an absolute
    608  * time; virtual time timers are kept as a linked list of deltas.
    609  * Virtual time timers are processed in the hardclock() routine of
    610  * kern_clock.c.  The real time timer is processed by a callout
    611  * routine, called from the softclock() routine.  Since a callout may
    612  * be delayed in real time due to interrupt processing in the system,
    613  * it is possible for the real time timeout routine (realtimeexpire,
    614  * given below), to be delayed in real time past when it is supposed
    615  * to occur.  It does not suffice, therefore, to reload the real timer
    616  * .it_value from the real time timers .it_interval.  Rather, we
    617  * compute the next time in absolute time the timer should go off.  */
    618 
    619 /* Allocate a POSIX realtime timer. */
    620 int
    621 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    622 {
    623 	struct sys_timer_create_args /* {
    624 		syscallarg(clockid_t) clock_id;
    625 		syscallarg(struct sigevent *) evp;
    626 		syscallarg(timer_t *) timerid;
    627 	} */ *uap = v;
    628 
    629 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    630 	    SCARG(uap, evp), copyin, l);
    631 }
    632 
    633 int
    634 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    635     copyin_t fetch_event, struct lwp *l)
    636 {
    637 	int error;
    638 	timer_t timerid;
    639 	struct ptimer *pt;
    640 	struct proc *p;
    641 
    642 	p = l->l_proc;
    643 
    644 	if (id < CLOCK_REALTIME ||
    645 	    id > CLOCK_PROF)
    646 		return (EINVAL);
    647 
    648 	if (p->p_timers == NULL)
    649 		timers_alloc(p);
    650 
    651 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    652 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    653 		if (p->p_timers->pts_timers[timerid] == NULL)
    654 			break;
    655 
    656 	if (timerid == TIMER_MAX)
    657 		return EAGAIN;
    658 
    659 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    660 	if (evp) {
    661 		if (((error =
    662 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    663 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    664 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    665 			pool_put(&ptimer_pool, pt);
    666 			return (error ? error : EINVAL);
    667 		}
    668 	} else {
    669 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    670 		switch (id) {
    671 		case CLOCK_REALTIME:
    672 			pt->pt_ev.sigev_signo = SIGALRM;
    673 			break;
    674 		case CLOCK_VIRTUAL:
    675 			pt->pt_ev.sigev_signo = SIGVTALRM;
    676 			break;
    677 		case CLOCK_PROF:
    678 			pt->pt_ev.sigev_signo = SIGPROF;
    679 			break;
    680 		}
    681 		pt->pt_ev.sigev_value.sival_int = timerid;
    682 	}
    683 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    684 	pt->pt_info.ksi_errno = 0;
    685 	pt->pt_info.ksi_code = 0;
    686 	pt->pt_info.ksi_pid = p->p_pid;
    687 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    688 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    689 
    690 	pt->pt_type = id;
    691 	pt->pt_proc = p;
    692 	pt->pt_overruns = 0;
    693 	pt->pt_poverruns = 0;
    694 	pt->pt_entry = timerid;
    695 	timerclear(&pt->pt_time.it_value);
    696 	if (id == CLOCK_REALTIME)
    697 		callout_init(&pt->pt_ch, 0);
    698 	else
    699 		pt->pt_active = 0;
    700 
    701 	p->p_timers->pts_timers[timerid] = pt;
    702 
    703 	return copyout(&timerid, tid, sizeof(timerid));
    704 }
    705 
    706 /* Delete a POSIX realtime timer */
    707 int
    708 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    709 {
    710 	struct sys_timer_delete_args /*  {
    711 		syscallarg(timer_t) timerid;
    712 	} */ *uap = v;
    713 	struct proc *p = l->l_proc;
    714 	timer_t timerid;
    715 	struct ptimer *pt, *ptn;
    716 	int s;
    717 
    718 	timerid = SCARG(uap, timerid);
    719 
    720 	if ((p->p_timers == NULL) ||
    721 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    722 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    723 		return (EINVAL);
    724 
    725 	if (pt->pt_type == CLOCK_REALTIME) {
    726 		callout_stop(&pt->pt_ch);
    727 		callout_destroy(&pt->pt_ch);
    728 	} else if (pt->pt_active) {
    729 		s = splclock();
    730 		ptn = LIST_NEXT(pt, pt_list);
    731 		LIST_REMOVE(pt, pt_list);
    732 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    733 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    734 			    &ptn->pt_time.it_value);
    735 		splx(s);
    736 	}
    737 
    738 	p->p_timers->pts_timers[timerid] = NULL;
    739 	pool_put(&ptimer_pool, pt);
    740 
    741 	return (0);
    742 }
    743 
    744 /*
    745  * Set up the given timer. The value in pt->pt_time.it_value is taken
    746  * to be an absolute time for CLOCK_REALTIME timers and a relative
    747  * time for virtual timers.
    748  * Must be called at splclock().
    749  */
    750 void
    751 timer_settime(struct ptimer *pt)
    752 {
    753 	struct ptimer *ptn, *pptn;
    754 	struct ptlist *ptl;
    755 
    756 	if (pt->pt_type == CLOCK_REALTIME) {
    757 		callout_stop(&pt->pt_ch);
    758 		if (timerisset(&pt->pt_time.it_value)) {
    759 			/*
    760 			 * Don't need to check hzto() return value, here.
    761 			 * callout_reset() does it for us.
    762 			 */
    763 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    764 			    realtimerexpire, pt);
    765 		}
    766 	} else {
    767 		if (pt->pt_active) {
    768 			ptn = LIST_NEXT(pt, pt_list);
    769 			LIST_REMOVE(pt, pt_list);
    770 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    771 				timeradd(&pt->pt_time.it_value,
    772 				    &ptn->pt_time.it_value,
    773 				    &ptn->pt_time.it_value);
    774 		}
    775 		if (timerisset(&pt->pt_time.it_value)) {
    776 			if (pt->pt_type == CLOCK_VIRTUAL)
    777 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    778 			else
    779 				ptl = &pt->pt_proc->p_timers->pts_prof;
    780 
    781 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    782 			     ptn && timercmp(&pt->pt_time.it_value,
    783 				 &ptn->pt_time.it_value, >);
    784 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    785 				timersub(&pt->pt_time.it_value,
    786 				    &ptn->pt_time.it_value,
    787 				    &pt->pt_time.it_value);
    788 
    789 			if (pptn)
    790 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    791 			else
    792 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    793 
    794 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    795 				timersub(&ptn->pt_time.it_value,
    796 				    &pt->pt_time.it_value,
    797 				    &ptn->pt_time.it_value);
    798 
    799 			pt->pt_active = 1;
    800 		} else
    801 			pt->pt_active = 0;
    802 	}
    803 }
    804 
    805 void
    806 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    807 {
    808 #ifdef __HAVE_TIMECOUNTER
    809 	struct timeval now;
    810 #endif
    811 	struct ptimer *ptn;
    812 
    813 	*aitv = pt->pt_time;
    814 	if (pt->pt_type == CLOCK_REALTIME) {
    815 		/*
    816 		 * Convert from absolute to relative time in .it_value
    817 		 * part of real time timer.  If time for real time
    818 		 * timer has passed return 0, else return difference
    819 		 * between current time and time for the timer to go
    820 		 * off.
    821 		 */
    822 		if (timerisset(&aitv->it_value)) {
    823 #ifdef __HAVE_TIMECOUNTER
    824 			getmicrotime(&now);
    825 			if (timercmp(&aitv->it_value, &now, <))
    826 				timerclear(&aitv->it_value);
    827 			else
    828 				timersub(&aitv->it_value, &now,
    829 				    &aitv->it_value);
    830 #else /* !__HAVE_TIMECOUNTER */
    831 			if (timercmp(&aitv->it_value, &time, <))
    832 				timerclear(&aitv->it_value);
    833 			else
    834 				timersub(&aitv->it_value, &time,
    835 				    &aitv->it_value);
    836 #endif /* !__HAVE_TIMECOUNTER */
    837 		}
    838 	} else if (pt->pt_active) {
    839 		if (pt->pt_type == CLOCK_VIRTUAL)
    840 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    841 		else
    842 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    843 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    844 			timeradd(&aitv->it_value,
    845 			    &ptn->pt_time.it_value, &aitv->it_value);
    846 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    847 	} else
    848 		timerclear(&aitv->it_value);
    849 }
    850 
    851 
    852 
    853 /* Set and arm a POSIX realtime timer */
    854 int
    855 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    856 {
    857 	struct sys_timer_settime_args /* {
    858 		syscallarg(timer_t) timerid;
    859 		syscallarg(int) flags;
    860 		syscallarg(const struct itimerspec *) value;
    861 		syscallarg(struct itimerspec *) ovalue;
    862 	} */ *uap = v;
    863 	int error;
    864 	struct itimerspec value, ovalue, *ovp = NULL;
    865 
    866 	if ((error = copyin(SCARG(uap, value), &value,
    867 	    sizeof(struct itimerspec))) != 0)
    868 		return (error);
    869 
    870 	if (SCARG(uap, ovalue))
    871 		ovp = &ovalue;
    872 
    873 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    874 	    SCARG(uap, flags), l->l_proc)) != 0)
    875 		return error;
    876 
    877 	if (ovp)
    878 		return copyout(&ovalue, SCARG(uap, ovalue),
    879 		    sizeof(struct itimerspec));
    880 	return 0;
    881 }
    882 
    883 int
    884 dotimer_settime(int timerid, struct itimerspec *value,
    885     struct itimerspec *ovalue, int flags, struct proc *p)
    886 {
    887 #ifdef __HAVE_TIMECOUNTER
    888 	struct timeval now;
    889 #endif
    890 	struct itimerval val, oval;
    891 	struct ptimer *pt;
    892 	int s;
    893 
    894 	if ((p->p_timers == NULL) ||
    895 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    896 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    897 		return (EINVAL);
    898 
    899 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    900 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    901 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    902 		return (EINVAL);
    903 
    904 	oval = pt->pt_time;
    905 	pt->pt_time = val;
    906 
    907 	s = splclock();
    908 	/*
    909 	 * If we've been passed a relative time for a realtime timer,
    910 	 * convert it to absolute; if an absolute time for a virtual
    911 	 * timer, convert it to relative and make sure we don't set it
    912 	 * to zero, which would cancel the timer, or let it go
    913 	 * negative, which would confuse the comparison tests.
    914 	 */
    915 	if (timerisset(&pt->pt_time.it_value)) {
    916 		if (pt->pt_type == CLOCK_REALTIME) {
    917 #ifdef __HAVE_TIMECOUNTER
    918 			if ((flags & TIMER_ABSTIME) == 0) {
    919 				getmicrotime(&now);
    920 				timeradd(&pt->pt_time.it_value, &now,
    921 				    &pt->pt_time.it_value);
    922 			}
    923 #else /* !__HAVE_TIMECOUNTER */
    924 			if ((flags & TIMER_ABSTIME) == 0)
    925 				timeradd(&pt->pt_time.it_value, &time,
    926 				    &pt->pt_time.it_value);
    927 #endif /* !__HAVE_TIMECOUNTER */
    928 		} else {
    929 			if ((flags & TIMER_ABSTIME) != 0) {
    930 #ifdef __HAVE_TIMECOUNTER
    931 				getmicrotime(&now);
    932 				timersub(&pt->pt_time.it_value, &now,
    933 				    &pt->pt_time.it_value);
    934 #else /* !__HAVE_TIMECOUNTER */
    935 				timersub(&pt->pt_time.it_value, &time,
    936 				    &pt->pt_time.it_value);
    937 #endif /* !__HAVE_TIMECOUNTER */
    938 				if (!timerisset(&pt->pt_time.it_value) ||
    939 				    pt->pt_time.it_value.tv_sec < 0) {
    940 					pt->pt_time.it_value.tv_sec = 0;
    941 					pt->pt_time.it_value.tv_usec = 1;
    942 				}
    943 			}
    944 		}
    945 	}
    946 
    947 	timer_settime(pt);
    948 	splx(s);
    949 
    950 	if (ovalue) {
    951 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    952 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    953 	}
    954 
    955 	return (0);
    956 }
    957 
    958 /* Return the time remaining until a POSIX timer fires. */
    959 int
    960 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    961 {
    962 	struct sys_timer_gettime_args /* {
    963 		syscallarg(timer_t) timerid;
    964 		syscallarg(struct itimerspec *) value;
    965 	} */ *uap = v;
    966 	struct itimerspec its;
    967 	int error;
    968 
    969 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    970 	    &its)) != 0)
    971 		return error;
    972 
    973 	return copyout(&its, SCARG(uap, value), sizeof(its));
    974 }
    975 
    976 int
    977 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    978 {
    979 	int s;
    980 	struct ptimer *pt;
    981 	struct itimerval aitv;
    982 
    983 	if ((p->p_timers == NULL) ||
    984 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    985 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    986 		return (EINVAL);
    987 
    988 	s = splclock();
    989 	timer_gettime(pt, &aitv);
    990 	splx(s);
    991 
    992 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    993 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    994 
    995 	return 0;
    996 }
    997 
    998 /*
    999  * Return the count of the number of times a periodic timer expired
   1000  * while a notification was already pending. The counter is reset when
   1001  * a timer expires and a notification can be posted.
   1002  */
   1003 int
   1004 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1005 {
   1006 	struct sys_timer_getoverrun_args /* {
   1007 		syscallarg(timer_t) timerid;
   1008 	} */ *uap = v;
   1009 	struct proc *p = l->l_proc;
   1010 	int timerid;
   1011 	struct ptimer *pt;
   1012 
   1013 	timerid = SCARG(uap, timerid);
   1014 
   1015 	if ((p->p_timers == NULL) ||
   1016 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1017 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1018 		return (EINVAL);
   1019 
   1020 	*retval = pt->pt_poverruns;
   1021 
   1022 	return (0);
   1023 }
   1024 
   1025 /*
   1026  * Real interval timer expired:
   1027  * send process whose timer expired an alarm signal.
   1028  * If time is not set up to reload, then just return.
   1029  * Else compute next time timer should go off which is > current time.
   1030  * This is where delay in processing this timeout causes multiple
   1031  * SIGALRM calls to be compressed into one.
   1032  */
   1033 void
   1034 realtimerexpire(void *arg)
   1035 {
   1036 #ifdef __HAVE_TIMECOUNTER
   1037 	struct timeval now;
   1038 #endif
   1039 	struct ptimer *pt;
   1040 	int s;
   1041 
   1042 	pt = (struct ptimer *)arg;
   1043 
   1044 	itimerfire(pt);
   1045 
   1046 	if (!timerisset(&pt->pt_time.it_interval)) {
   1047 		timerclear(&pt->pt_time.it_value);
   1048 		return;
   1049 	}
   1050 #ifdef __HAVE_TIMECOUNTER
   1051 	for (;;) {
   1052 		s = splclock();	/* XXX need spl now? */
   1053 		timeradd(&pt->pt_time.it_value,
   1054 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1055 		getmicrotime(&now);
   1056 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1057 			/*
   1058 			 * Don't need to check hzto() return value, here.
   1059 			 * callout_reset() does it for us.
   1060 			 */
   1061 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1062 			    realtimerexpire, pt);
   1063 			splx(s);
   1064 			return;
   1065 		}
   1066 		splx(s);
   1067 		pt->pt_overruns++;
   1068 	}
   1069 #else /* !__HAVE_TIMECOUNTER */
   1070 	for (;;) {
   1071 		s = splclock();
   1072 		timeradd(&pt->pt_time.it_value,
   1073 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1074 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1075 			/*
   1076 			 * Don't need to check hzto() return value, here.
   1077 			 * callout_reset() does it for us.
   1078 			 */
   1079 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1080 			    realtimerexpire, pt);
   1081 			splx(s);
   1082 			return;
   1083 		}
   1084 		splx(s);
   1085 		pt->pt_overruns++;
   1086 	}
   1087 #endif /* !__HAVE_TIMECOUNTER */
   1088 }
   1089 
   1090 /* BSD routine to get the value of an interval timer. */
   1091 /* ARGSUSED */
   1092 int
   1093 sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1094 {
   1095 	struct sys_getitimer_args /* {
   1096 		syscallarg(int) which;
   1097 		syscallarg(struct itimerval *) itv;
   1098 	} */ *uap = v;
   1099 	struct proc *p = l->l_proc;
   1100 	struct itimerval aitv;
   1101 	int error;
   1102 
   1103 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1104 	if (error)
   1105 		return error;
   1106 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1107 }
   1108 
   1109 int
   1110 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1111 {
   1112 	int s;
   1113 
   1114 	if ((u_int)which > ITIMER_PROF)
   1115 		return (EINVAL);
   1116 
   1117 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1118 		timerclear(&itvp->it_value);
   1119 		timerclear(&itvp->it_interval);
   1120 	} else {
   1121 		s = splclock();
   1122 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1123 		splx(s);
   1124 	}
   1125 
   1126 	return 0;
   1127 }
   1128 
   1129 /* BSD routine to set/arm an interval timer. */
   1130 /* ARGSUSED */
   1131 int
   1132 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1133 {
   1134 	struct sys_setitimer_args /* {
   1135 		syscallarg(int) which;
   1136 		syscallarg(const struct itimerval *) itv;
   1137 		syscallarg(struct itimerval *) oitv;
   1138 	} */ *uap = v;
   1139 	struct proc *p = l->l_proc;
   1140 	int which = SCARG(uap, which);
   1141 	struct sys_getitimer_args getargs;
   1142 	const struct itimerval *itvp;
   1143 	struct itimerval aitv;
   1144 	int error;
   1145 
   1146 	if ((u_int)which > ITIMER_PROF)
   1147 		return (EINVAL);
   1148 	itvp = SCARG(uap, itv);
   1149 	if (itvp &&
   1150 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1151 		return (error);
   1152 	if (SCARG(uap, oitv) != NULL) {
   1153 		SCARG(&getargs, which) = which;
   1154 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1155 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1156 			return (error);
   1157 	}
   1158 	if (itvp == 0)
   1159 		return (0);
   1160 
   1161 	return dosetitimer(p, which, &aitv);
   1162 }
   1163 
   1164 int
   1165 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1166 {
   1167 #ifdef __HAVE_TIMECOUNTER
   1168 	struct timeval now;
   1169 #endif
   1170 	struct ptimer *pt;
   1171 	int s;
   1172 
   1173 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1174 		return (EINVAL);
   1175 
   1176 	/*
   1177 	 * Don't bother allocating data structures if the process just
   1178 	 * wants to clear the timer.
   1179 	 */
   1180 	if (!timerisset(&itvp->it_value) &&
   1181 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1182 		return (0);
   1183 
   1184 	if (p->p_timers == NULL)
   1185 		timers_alloc(p);
   1186 	if (p->p_timers->pts_timers[which] == NULL) {
   1187 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1188 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1189 		pt->pt_ev.sigev_value.sival_int = which;
   1190 		pt->pt_overruns = 0;
   1191 		pt->pt_proc = p;
   1192 		pt->pt_type = which;
   1193 		pt->pt_entry = which;
   1194 		switch (which) {
   1195 		case ITIMER_REAL:
   1196 			callout_init(&pt->pt_ch, 0);
   1197 			pt->pt_ev.sigev_signo = SIGALRM;
   1198 			break;
   1199 		case ITIMER_VIRTUAL:
   1200 			pt->pt_active = 0;
   1201 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1202 			break;
   1203 		case ITIMER_PROF:
   1204 			pt->pt_active = 0;
   1205 			pt->pt_ev.sigev_signo = SIGPROF;
   1206 			break;
   1207 		}
   1208 	} else
   1209 		pt = p->p_timers->pts_timers[which];
   1210 
   1211 	pt->pt_time = *itvp;
   1212 	p->p_timers->pts_timers[which] = pt;
   1213 
   1214 	s = splclock();
   1215 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1216 		/* Convert to absolute time */
   1217 #ifdef __HAVE_TIMECOUNTER
   1218 		/* XXX need to wrap in splclock for timecounters case? */
   1219 		getmicrotime(&now);
   1220 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1221 #else /* !__HAVE_TIMECOUNTER */
   1222 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1223 #endif /* !__HAVE_TIMECOUNTER */
   1224 	}
   1225 	timer_settime(pt);
   1226 	splx(s);
   1227 
   1228 	return (0);
   1229 }
   1230 
   1231 /* Utility routines to manage the array of pointers to timers. */
   1232 void
   1233 timers_alloc(struct proc *p)
   1234 {
   1235 	int i;
   1236 	struct ptimers *pts;
   1237 
   1238 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1239 	LIST_INIT(&pts->pts_virtual);
   1240 	LIST_INIT(&pts->pts_prof);
   1241 	for (i = 0; i < TIMER_MAX; i++)
   1242 		pts->pts_timers[i] = NULL;
   1243 	pts->pts_fired = 0;
   1244 	p->p_timers = pts;
   1245 }
   1246 
   1247 /*
   1248  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1249  * then clean up all timers and free all the data structures. If
   1250  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1251  * by timer_create(), not the BSD setitimer() timers, and only free the
   1252  * structure if none of those remain.
   1253  */
   1254 void
   1255 timers_free(struct proc *p, int which)
   1256 {
   1257 	int i, s;
   1258 	struct ptimers *pts;
   1259 	struct ptimer *pt, *ptn;
   1260 	struct timeval tv;
   1261 
   1262 	if (p->p_timers) {
   1263 		pts = p->p_timers;
   1264 		if (which == TIMERS_ALL)
   1265 			i = 0;
   1266 		else {
   1267 			s = splclock();
   1268 			timerclear(&tv);
   1269 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1270 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1271 			     ptn = LIST_NEXT(ptn, pt_list))
   1272 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1273 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1274 			if (ptn) {
   1275 				timeradd(&tv, &ptn->pt_time.it_value,
   1276 				    &ptn->pt_time.it_value);
   1277 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1278 				    ptn, pt_list);
   1279 			}
   1280 
   1281 			timerclear(&tv);
   1282 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1283 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1284 			     ptn = LIST_NEXT(ptn, pt_list))
   1285 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1286 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1287 			if (ptn) {
   1288 				timeradd(&tv, &ptn->pt_time.it_value,
   1289 				    &ptn->pt_time.it_value);
   1290 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1291 				    pt_list);
   1292 			}
   1293 			splx(s);
   1294 			i = 3;
   1295 		}
   1296 		for ( ; i < TIMER_MAX; i++)
   1297 			if ((pt = pts->pts_timers[i]) != NULL) {
   1298 				if (pt->pt_type == CLOCK_REALTIME) {
   1299 					callout_stop(&pt->pt_ch);
   1300 					callout_destroy(&pt->pt_ch);
   1301 				}
   1302 				pts->pts_timers[i] = NULL;
   1303 				pool_put(&ptimer_pool, pt);
   1304 			}
   1305 		if ((pts->pts_timers[0] == NULL) &&
   1306 		    (pts->pts_timers[1] == NULL) &&
   1307 		    (pts->pts_timers[2] == NULL)) {
   1308 			p->p_timers = NULL;
   1309 			pool_put(&ptimers_pool, pts);
   1310 		}
   1311 	}
   1312 }
   1313 
   1314 /*
   1315  * Decrement an interval timer by a specified number
   1316  * of microseconds, which must be less than a second,
   1317  * i.e. < 1000000.  If the timer expires, then reload
   1318  * it.  In this case, carry over (usec - old value) to
   1319  * reduce the value reloaded into the timer so that
   1320  * the timer does not drift.  This routine assumes
   1321  * that it is called in a context where the timers
   1322  * on which it is operating cannot change in value.
   1323  */
   1324 int
   1325 itimerdecr(struct ptimer *pt, int usec)
   1326 {
   1327 	struct itimerval *itp;
   1328 
   1329 	itp = &pt->pt_time;
   1330 	if (itp->it_value.tv_usec < usec) {
   1331 		if (itp->it_value.tv_sec == 0) {
   1332 			/* expired, and already in next interval */
   1333 			usec -= itp->it_value.tv_usec;
   1334 			goto expire;
   1335 		}
   1336 		itp->it_value.tv_usec += 1000000;
   1337 		itp->it_value.tv_sec--;
   1338 	}
   1339 	itp->it_value.tv_usec -= usec;
   1340 	usec = 0;
   1341 	if (timerisset(&itp->it_value))
   1342 		return (1);
   1343 	/* expired, exactly at end of interval */
   1344 expire:
   1345 	if (timerisset(&itp->it_interval)) {
   1346 		itp->it_value = itp->it_interval;
   1347 		itp->it_value.tv_usec -= usec;
   1348 		if (itp->it_value.tv_usec < 0) {
   1349 			itp->it_value.tv_usec += 1000000;
   1350 			itp->it_value.tv_sec--;
   1351 		}
   1352 		timer_settime(pt);
   1353 	} else
   1354 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1355 	return (0);
   1356 }
   1357 
   1358 void
   1359 itimerfire(struct ptimer *pt)
   1360 {
   1361 	struct proc *p = pt->pt_proc;
   1362 
   1363 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1364 		/*
   1365 		 * No RT signal infrastructure exists at this time;
   1366 		 * just post the signal number and throw away the
   1367 		 * value.
   1368 		 */
   1369 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1370 			pt->pt_overruns++;
   1371 		else {
   1372 			ksiginfo_t ksi;
   1373 			KSI_INIT(&ksi);
   1374 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1375 			ksi.ksi_code = SI_TIMER;
   1376 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1377 			pt->pt_poverruns = pt->pt_overruns;
   1378 			pt->pt_overruns = 0;
   1379 			mutex_enter(&proclist_mutex);
   1380 			kpsignal(p, &ksi, NULL);
   1381 			mutex_exit(&proclist_mutex);
   1382 		}
   1383 	}
   1384 }
   1385 
   1386 /*
   1387  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1388  * for usage and rationale.
   1389  */
   1390 int
   1391 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1392 {
   1393 	struct timeval tv, delta;
   1394 	int rv = 0;
   1395 #ifndef __HAVE_TIMECOUNTER
   1396 	int s;
   1397 #endif
   1398 
   1399 #ifdef __HAVE_TIMECOUNTER
   1400 	getmicrouptime(&tv);
   1401 #else /* !__HAVE_TIMECOUNTER */
   1402 	s = splclock();
   1403 	tv = mono_time;
   1404 	splx(s);
   1405 #endif /* !__HAVE_TIMECOUNTER */
   1406 	timersub(&tv, lasttime, &delta);
   1407 
   1408 	/*
   1409 	 * check for 0,0 is so that the message will be seen at least once,
   1410 	 * even if interval is huge.
   1411 	 */
   1412 	if (timercmp(&delta, mininterval, >=) ||
   1413 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1414 		*lasttime = tv;
   1415 		rv = 1;
   1416 	}
   1417 
   1418 	return (rv);
   1419 }
   1420 
   1421 /*
   1422  * ppsratecheck(): packets (or events) per second limitation.
   1423  */
   1424 int
   1425 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1426 {
   1427 	struct timeval tv, delta;
   1428 	int rv;
   1429 #ifndef __HAVE_TIMECOUNTER
   1430 	int s;
   1431 #endif
   1432 
   1433 #ifdef __HAVE_TIMECOUNTER
   1434 	getmicrouptime(&tv);
   1435 #else /* !__HAVE_TIMECOUNTER */
   1436 	s = splclock();
   1437 	tv = mono_time;
   1438 	splx(s);
   1439 #endif /* !__HAVE_TIMECOUNTER */
   1440 	timersub(&tv, lasttime, &delta);
   1441 
   1442 	/*
   1443 	 * check for 0,0 is so that the message will be seen at least once.
   1444 	 * if more than one second have passed since the last update of
   1445 	 * lasttime, reset the counter.
   1446 	 *
   1447 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1448 	 * try to use *curpps for stat purposes as well.
   1449 	 */
   1450 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1451 	    delta.tv_sec >= 1) {
   1452 		*lasttime = tv;
   1453 		*curpps = 0;
   1454 	}
   1455 	if (maxpps < 0)
   1456 		rv = 1;
   1457 	else if (*curpps < maxpps)
   1458 		rv = 1;
   1459 	else
   1460 		rv = 0;
   1461 
   1462 #if 1 /*DIAGNOSTIC?*/
   1463 	/* be careful about wrap-around */
   1464 	if (*curpps + 1 > *curpps)
   1465 		*curpps = *curpps + 1;
   1466 #else
   1467 	/*
   1468 	 * assume that there's not too many calls to this function.
   1469 	 * not sure if the assumption holds, as it depends on *caller's*
   1470 	 * behavior, not the behavior of this function.
   1471 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1472 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1473 	 */
   1474 	*curpps = *curpps + 1;
   1475 #endif
   1476 
   1477 	return (rv);
   1478 }
   1479