Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.133
      1 /*	$NetBSD: kern_time.c,v 1.133 2007/11/25 08:43:11 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.133 2007/11/25 08:43:11 elad Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #ifndef __HAVE_TIMECOUNTER
     83 #include <sys/timevar.h>
     84 #endif /* !__HAVE_TIMECOUNTER */
     85 #include <sys/kauth.h>
     86 
     87 #include <sys/mount.h>
     88 #include <sys/syscallargs.h>
     89 
     90 #include <uvm/uvm_extern.h>
     91 
     92 #include <sys/cpu.h>
     93 
     94 kmutex_t	time_lock;
     95 
     96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97     &pool_allocator_nointr, IPL_NONE);
     98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99     &pool_allocator_nointr, IPL_NONE);
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    109 }
    110 
    111 /* Time of day and interval timer support.
    112  *
    113  * These routines provide the kernel entry points to get and set
    114  * the time-of-day and per-process interval timers.  Subroutines
    115  * here provide support for adding and subtracting timeval structures
    116  * and decrementing interval timers, optionally reloading the interval
    117  * timers when they expire.
    118  */
    119 
    120 /* This function is used by clock_settime and settimeofday */
    121 static int
    122 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    123 {
    124 	struct timeval delta, tv;
    125 #ifdef __HAVE_TIMECOUNTER
    126 	struct timeval now;
    127 	struct timespec ts1;
    128 #endif /* !__HAVE_TIMECOUNTER */
    129 	lwp_t *l;
    130 	int s;
    131 
    132 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    133 
    134 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    135 	s = splclock();
    136 #ifdef __HAVE_TIMECOUNTER
    137 	microtime(&now);
    138 	timersub(&tv, &now, &delta);
    139 #else /* !__HAVE_TIMECOUNTER */
    140 	timersub(&tv, &time, &delta);
    141 #endif /* !__HAVE_TIMECOUNTER */
    142 
    143 	if (check_kauth && kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    144 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    145 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    146 		splx(s);
    147 		return (EPERM);
    148 	}
    149 
    150 #ifdef notyet
    151 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    152 		splx(s);
    153 		return (EPERM);
    154 	}
    155 #endif
    156 
    157 #ifdef __HAVE_TIMECOUNTER
    158 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    159 	tc_setclock(&ts1);
    160 #else /* !__HAVE_TIMECOUNTER */
    161 	time = tv;
    162 #endif /* !__HAVE_TIMECOUNTER */
    163 
    164 	timeradd(&boottime, &delta, &boottime);
    165 
    166 	/*
    167 	 * XXXSMP: There is a short race between setting the time above
    168 	 * and adjusting LWP's run times.  Fixing this properly means
    169 	 * pausing all CPUs while we adjust the clock.
    170 	 */
    171 	mutex_enter(&proclist_lock);
    172 	LIST_FOREACH(l, &alllwp, l_list) {
    173 		lwp_lock(l);
    174 		timeradd(&l->l_stime, &delta, &l->l_stime);
    175 		lwp_unlock(l);
    176 	}
    177 	mutex_exit(&proclist_lock);
    178 	resettodr();
    179 	splx(s);
    180 
    181 	return (0);
    182 }
    183 
    184 int
    185 settime(struct proc *p, struct timespec *ts)
    186 {
    187 	return (settime1(p, ts, true));
    188 }
    189 
    190 /* ARGSUSED */
    191 int
    192 sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    193 {
    194 	struct sys_clock_gettime_args /* {
    195 		syscallarg(clockid_t) clock_id;
    196 		syscallarg(struct timespec *) tp;
    197 	} */ *uap = v;
    198 	clockid_t clock_id;
    199 	struct timespec ats;
    200 
    201 	clock_id = SCARG(uap, clock_id);
    202 	switch (clock_id) {
    203 	case CLOCK_REALTIME:
    204 		nanotime(&ats);
    205 		break;
    206 	case CLOCK_MONOTONIC:
    207 		nanouptime(&ats);
    208 		break;
    209 	default:
    210 		return (EINVAL);
    211 	}
    212 
    213 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    214 }
    215 
    216 /* ARGSUSED */
    217 int
    218 sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    219 {
    220 	struct sys_clock_settime_args /* {
    221 		syscallarg(clockid_t) clock_id;
    222 		syscallarg(const struct timespec *) tp;
    223 	} */ *uap = v;
    224 
    225 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    226 	    true);
    227 }
    228 
    229 
    230 int
    231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    232     bool check_kauth)
    233 {
    234 	struct timespec ats;
    235 	int error;
    236 
    237 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    238 		return (error);
    239 
    240 	switch (clock_id) {
    241 	case CLOCK_REALTIME:
    242 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    243 			return (error);
    244 		break;
    245 	case CLOCK_MONOTONIC:
    246 		return (EINVAL);	/* read-only clock */
    247 	default:
    248 		return (EINVAL);
    249 	}
    250 
    251 	return 0;
    252 }
    253 
    254 int
    255 sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    256 {
    257 	struct sys_clock_getres_args /* {
    258 		syscallarg(clockid_t) clock_id;
    259 		syscallarg(struct timespec *) tp;
    260 	} */ *uap = v;
    261 	clockid_t clock_id;
    262 	struct timespec ts;
    263 	int error = 0;
    264 
    265 	clock_id = SCARG(uap, clock_id);
    266 	switch (clock_id) {
    267 	case CLOCK_REALTIME:
    268 	case CLOCK_MONOTONIC:
    269 		ts.tv_sec = 0;
    270 		if (tc_getfrequency() > 1000000000)
    271 			ts.tv_nsec = 1;
    272 		else
    273 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    274 		break;
    275 	default:
    276 		return (EINVAL);
    277 	}
    278 
    279 	if (SCARG(uap, tp))
    280 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    281 
    282 	return error;
    283 }
    284 
    285 /* ARGSUSED */
    286 int
    287 sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    288 {
    289 	struct sys_nanosleep_args/* {
    290 		syscallarg(struct timespec *) rqtp;
    291 		syscallarg(struct timespec *) rmtp;
    292 	} */ *uap = v;
    293 	struct timespec rmt, rqt;
    294 	int error, error1;
    295 
    296 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    297 	if (error)
    298 		return (error);
    299 
    300 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    301 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    302 		return error;
    303 
    304 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    305 	return error1 ? error1 : error;
    306 }
    307 
    308 int
    309 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    310 {
    311 #ifdef __HAVE_TIMECOUNTER
    312 	int error, timo;
    313 
    314 	if (itimespecfix(rqt))
    315 		return (EINVAL);
    316 
    317 	timo = tstohz(rqt);
    318 	/*
    319 	 * Avoid inadvertantly sleeping forever
    320 	 */
    321 	if (timo == 0)
    322 		timo = 1;
    323 
    324 	if (rmt != NULL)
    325 		getnanouptime(rmt);
    326 
    327 	error = kpause("nanoslp", true, timo, NULL);
    328 	if (error == ERESTART)
    329 		error = EINTR;
    330 	if (error == EWOULDBLOCK)
    331 		error = 0;
    332 
    333 	if (rmt!= NULL) {
    334 		struct timespec rmtend;
    335 
    336 		getnanouptime(&rmtend);
    337 
    338 		timespecsub(&rmtend, rmt, rmt);
    339 		timespecsub(rqt, rmt, rmt);
    340 		if (rmt->tv_sec < 0)
    341 			timespecclear(rmt);
    342 	}
    343 
    344 	return error;
    345 #else /* !__HAVE_TIMECOUNTER */
    346 	struct timeval atv, utv;
    347 	int error, s, timo;
    348 
    349 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
    350 	if (itimerfix(&atv))
    351 		return (EINVAL);
    352 
    353 	s = splclock();
    354 	timeradd(&atv,&time,&atv);
    355 	timo = hzto(&atv);
    356 	/*
    357 	 * Avoid inadvertantly sleeping forever
    358 	 */
    359 	if (timo == 0)
    360 		timo = 1;
    361 	splx(s);
    362 
    363 	error = kpause("nanoslp", true, timo, NULL);
    364 	if (error == ERESTART)
    365 		error = EINTR;
    366 	if (error == EWOULDBLOCK)
    367 		error = 0;
    368 
    369 	if (rmt != NULL) {
    370 		s = splclock();
    371 		utv = time;
    372 		splx(s);
    373 
    374 		timersub(&atv, &utv, &utv);
    375 		if (utv.tv_sec < 0)
    376 			timerclear(&utv);
    377 
    378 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
    379 	}
    380 
    381 	return error;
    382 #endif /* !__HAVE_TIMECOUNTER */
    383 }
    384 
    385 /* ARGSUSED */
    386 int
    387 sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    388 {
    389 	struct sys_gettimeofday_args /* {
    390 		syscallarg(struct timeval *) tp;
    391 		syscallarg(void *) tzp;		really "struct timezone *"
    392 	} */ *uap = v;
    393 	struct timeval atv;
    394 	int error = 0;
    395 	struct timezone tzfake;
    396 
    397 	if (SCARG(uap, tp)) {
    398 		microtime(&atv);
    399 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    400 		if (error)
    401 			return (error);
    402 	}
    403 	if (SCARG(uap, tzp)) {
    404 		/*
    405 		 * NetBSD has no kernel notion of time zone, so we just
    406 		 * fake up a timezone struct and return it if demanded.
    407 		 */
    408 		tzfake.tz_minuteswest = 0;
    409 		tzfake.tz_dsttime = 0;
    410 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    411 	}
    412 	return (error);
    413 }
    414 
    415 /* ARGSUSED */
    416 int
    417 sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    418 {
    419 	struct sys_settimeofday_args /* {
    420 		syscallarg(const struct timeval *) tv;
    421 		syscallarg(const void *) tzp;	really "const struct timezone *"
    422 	} */ *uap = v;
    423 
    424 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    425 }
    426 
    427 int
    428 settimeofday1(const struct timeval *utv, bool userspace,
    429     const void *utzp, struct lwp *l, bool check_kauth)
    430 {
    431 	struct timeval atv;
    432 	struct timespec ts;
    433 	int error;
    434 
    435 	/* Verify all parameters before changing time. */
    436 
    437 	/*
    438 	 * NetBSD has no kernel notion of time zone, and only an
    439 	 * obsolete program would try to set it, so we log a warning.
    440 	 */
    441 	if (utzp)
    442 		log(LOG_WARNING, "pid %d attempted to set the "
    443 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    444 
    445 	if (utv == NULL)
    446 		return 0;
    447 
    448 	if (userspace) {
    449 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    450 			return error;
    451 		utv = &atv;
    452 	}
    453 
    454 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    455 	return settime1(l->l_proc, &ts, check_kauth);
    456 }
    457 
    458 #ifndef __HAVE_TIMECOUNTER
    459 int	tickdelta;			/* current clock skew, us. per tick */
    460 long	timedelta;			/* unapplied time correction, us. */
    461 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    462 #endif
    463 
    464 int	time_adjusted;			/* set if an adjustment is made */
    465 
    466 /* ARGSUSED */
    467 int
    468 sys_adjtime(struct lwp *l, void *v, register_t *retval)
    469 {
    470 	struct sys_adjtime_args /* {
    471 		syscallarg(const struct timeval *) delta;
    472 		syscallarg(struct timeval *) olddelta;
    473 	} */ *uap = v;
    474 	int error;
    475 
    476 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    477 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    478 		return (error);
    479 
    480 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    481 }
    482 
    483 int
    484 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    485 {
    486 	struct timeval atv;
    487 	int error = 0;
    488 
    489 #ifdef __HAVE_TIMECOUNTER
    490 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    491 #else /* !__HAVE_TIMECOUNTER */
    492 	long ndelta, ntickdelta, odelta;
    493 	int s;
    494 #endif /* !__HAVE_TIMECOUNTER */
    495 
    496 #ifdef __HAVE_TIMECOUNTER
    497 	if (olddelta) {
    498 		atv.tv_sec = time_adjtime / 1000000;
    499 		atv.tv_usec = time_adjtime % 1000000;
    500 		if (atv.tv_usec < 0) {
    501 			atv.tv_usec += 1000000;
    502 			atv.tv_sec--;
    503 		}
    504 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    505 		if (error)
    506 			return (error);
    507 	}
    508 
    509 	if (delta) {
    510 		error = copyin(delta, &atv, sizeof(struct timeval));
    511 		if (error)
    512 			return (error);
    513 
    514 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    515 			atv.tv_usec;
    516 
    517 		if (time_adjtime)
    518 			/* We need to save the system time during shutdown */
    519 			time_adjusted |= 1;
    520 	}
    521 #else /* !__HAVE_TIMECOUNTER */
    522 	error = copyin(delta, &atv, sizeof(struct timeval));
    523 	if (error)
    524 		return (error);
    525 
    526 	/*
    527 	 * Compute the total correction and the rate at which to apply it.
    528 	 * Round the adjustment down to a whole multiple of the per-tick
    529 	 * delta, so that after some number of incremental changes in
    530 	 * hardclock(), tickdelta will become zero, lest the correction
    531 	 * overshoot and start taking us away from the desired final time.
    532 	 */
    533 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    534 	if (ndelta > bigadj || ndelta < -bigadj)
    535 		ntickdelta = 10 * tickadj;
    536 	else
    537 		ntickdelta = tickadj;
    538 	if (ndelta % ntickdelta)
    539 		ndelta = ndelta / ntickdelta * ntickdelta;
    540 
    541 	/*
    542 	 * To make hardclock()'s job easier, make the per-tick delta negative
    543 	 * if we want time to run slower; then hardclock can simply compute
    544 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    545 	 */
    546 	if (ndelta < 0)
    547 		ntickdelta = -ntickdelta;
    548 	if (ndelta != 0)
    549 		/* We need to save the system clock time during shutdown */
    550 		time_adjusted |= 1;
    551 	s = splclock();
    552 	odelta = timedelta;
    553 	timedelta = ndelta;
    554 	tickdelta = ntickdelta;
    555 	splx(s);
    556 
    557 	if (olddelta) {
    558 		atv.tv_sec = odelta / 1000000;
    559 		atv.tv_usec = odelta % 1000000;
    560 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    561 	}
    562 #endif /* __HAVE_TIMECOUNTER */
    563 
    564 	return error;
    565 }
    566 
    567 /*
    568  * Interval timer support. Both the BSD getitimer() family and the POSIX
    569  * timer_*() family of routines are supported.
    570  *
    571  * All timers are kept in an array pointed to by p_timers, which is
    572  * allocated on demand - many processes don't use timers at all. The
    573  * first three elements in this array are reserved for the BSD timers:
    574  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    575  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    576  * syscall.
    577  *
    578  * Realtime timers are kept in the ptimer structure as an absolute
    579  * time; virtual time timers are kept as a linked list of deltas.
    580  * Virtual time timers are processed in the hardclock() routine of
    581  * kern_clock.c.  The real time timer is processed by a callout
    582  * routine, called from the softclock() routine.  Since a callout may
    583  * be delayed in real time due to interrupt processing in the system,
    584  * it is possible for the real time timeout routine (realtimeexpire,
    585  * given below), to be delayed in real time past when it is supposed
    586  * to occur.  It does not suffice, therefore, to reload the real timer
    587  * .it_value from the real time timers .it_interval.  Rather, we
    588  * compute the next time in absolute time the timer should go off.  */
    589 
    590 /* Allocate a POSIX realtime timer. */
    591 int
    592 sys_timer_create(struct lwp *l, void *v, register_t *retval)
    593 {
    594 	struct sys_timer_create_args /* {
    595 		syscallarg(clockid_t) clock_id;
    596 		syscallarg(struct sigevent *) evp;
    597 		syscallarg(timer_t *) timerid;
    598 	} */ *uap = v;
    599 
    600 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    601 	    SCARG(uap, evp), copyin, l);
    602 }
    603 
    604 int
    605 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    606     copyin_t fetch_event, struct lwp *l)
    607 {
    608 	int error;
    609 	timer_t timerid;
    610 	struct ptimer *pt;
    611 	struct proc *p;
    612 
    613 	p = l->l_proc;
    614 
    615 	if (id < CLOCK_REALTIME ||
    616 	    id > CLOCK_PROF)
    617 		return (EINVAL);
    618 
    619 	if (p->p_timers == NULL)
    620 		timers_alloc(p);
    621 
    622 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    623 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    624 		if (p->p_timers->pts_timers[timerid] == NULL)
    625 			break;
    626 
    627 	if (timerid == TIMER_MAX)
    628 		return EAGAIN;
    629 
    630 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    631 	if (evp) {
    632 		if (((error =
    633 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    634 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    635 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    636 			pool_put(&ptimer_pool, pt);
    637 			return (error ? error : EINVAL);
    638 		}
    639 	} else {
    640 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    641 		switch (id) {
    642 		case CLOCK_REALTIME:
    643 			pt->pt_ev.sigev_signo = SIGALRM;
    644 			break;
    645 		case CLOCK_VIRTUAL:
    646 			pt->pt_ev.sigev_signo = SIGVTALRM;
    647 			break;
    648 		case CLOCK_PROF:
    649 			pt->pt_ev.sigev_signo = SIGPROF;
    650 			break;
    651 		}
    652 		pt->pt_ev.sigev_value.sival_int = timerid;
    653 	}
    654 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    655 	pt->pt_info.ksi_errno = 0;
    656 	pt->pt_info.ksi_code = 0;
    657 	pt->pt_info.ksi_pid = p->p_pid;
    658 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    659 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    660 
    661 	pt->pt_type = id;
    662 	pt->pt_proc = p;
    663 	pt->pt_overruns = 0;
    664 	pt->pt_poverruns = 0;
    665 	pt->pt_entry = timerid;
    666 	timerclear(&pt->pt_time.it_value);
    667 	if (id == CLOCK_REALTIME)
    668 		callout_init(&pt->pt_ch, 0);
    669 	else
    670 		pt->pt_active = 0;
    671 
    672 	p->p_timers->pts_timers[timerid] = pt;
    673 
    674 	return copyout(&timerid, tid, sizeof(timerid));
    675 }
    676 
    677 /* Delete a POSIX realtime timer */
    678 int
    679 sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    680 {
    681 	struct sys_timer_delete_args /*  {
    682 		syscallarg(timer_t) timerid;
    683 	} */ *uap = v;
    684 	struct proc *p = l->l_proc;
    685 	timer_t timerid;
    686 	struct ptimer *pt, *ptn;
    687 	int s;
    688 
    689 	timerid = SCARG(uap, timerid);
    690 
    691 	if ((p->p_timers == NULL) ||
    692 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    693 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    694 		return (EINVAL);
    695 
    696 	if (pt->pt_type == CLOCK_REALTIME) {
    697 		callout_stop(&pt->pt_ch);
    698 		callout_destroy(&pt->pt_ch);
    699 	} else if (pt->pt_active) {
    700 		s = splclock();
    701 		ptn = LIST_NEXT(pt, pt_list);
    702 		LIST_REMOVE(pt, pt_list);
    703 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    704 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    705 			    &ptn->pt_time.it_value);
    706 		splx(s);
    707 	}
    708 
    709 	p->p_timers->pts_timers[timerid] = NULL;
    710 	pool_put(&ptimer_pool, pt);
    711 
    712 	return (0);
    713 }
    714 
    715 /*
    716  * Set up the given timer. The value in pt->pt_time.it_value is taken
    717  * to be an absolute time for CLOCK_REALTIME timers and a relative
    718  * time for virtual timers.
    719  * Must be called at splclock().
    720  */
    721 void
    722 timer_settime(struct ptimer *pt)
    723 {
    724 	struct ptimer *ptn, *pptn;
    725 	struct ptlist *ptl;
    726 
    727 	if (pt->pt_type == CLOCK_REALTIME) {
    728 		callout_stop(&pt->pt_ch);
    729 		if (timerisset(&pt->pt_time.it_value)) {
    730 			/*
    731 			 * Don't need to check hzto() return value, here.
    732 			 * callout_reset() does it for us.
    733 			 */
    734 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    735 			    realtimerexpire, pt);
    736 		}
    737 	} else {
    738 		if (pt->pt_active) {
    739 			ptn = LIST_NEXT(pt, pt_list);
    740 			LIST_REMOVE(pt, pt_list);
    741 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    742 				timeradd(&pt->pt_time.it_value,
    743 				    &ptn->pt_time.it_value,
    744 				    &ptn->pt_time.it_value);
    745 		}
    746 		if (timerisset(&pt->pt_time.it_value)) {
    747 			if (pt->pt_type == CLOCK_VIRTUAL)
    748 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    749 			else
    750 				ptl = &pt->pt_proc->p_timers->pts_prof;
    751 
    752 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    753 			     ptn && timercmp(&pt->pt_time.it_value,
    754 				 &ptn->pt_time.it_value, >);
    755 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    756 				timersub(&pt->pt_time.it_value,
    757 				    &ptn->pt_time.it_value,
    758 				    &pt->pt_time.it_value);
    759 
    760 			if (pptn)
    761 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    762 			else
    763 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    764 
    765 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    766 				timersub(&ptn->pt_time.it_value,
    767 				    &pt->pt_time.it_value,
    768 				    &ptn->pt_time.it_value);
    769 
    770 			pt->pt_active = 1;
    771 		} else
    772 			pt->pt_active = 0;
    773 	}
    774 }
    775 
    776 void
    777 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    778 {
    779 #ifdef __HAVE_TIMECOUNTER
    780 	struct timeval now;
    781 #endif
    782 	struct ptimer *ptn;
    783 
    784 	*aitv = pt->pt_time;
    785 	if (pt->pt_type == CLOCK_REALTIME) {
    786 		/*
    787 		 * Convert from absolute to relative time in .it_value
    788 		 * part of real time timer.  If time for real time
    789 		 * timer has passed return 0, else return difference
    790 		 * between current time and time for the timer to go
    791 		 * off.
    792 		 */
    793 		if (timerisset(&aitv->it_value)) {
    794 #ifdef __HAVE_TIMECOUNTER
    795 			getmicrotime(&now);
    796 			if (timercmp(&aitv->it_value, &now, <))
    797 				timerclear(&aitv->it_value);
    798 			else
    799 				timersub(&aitv->it_value, &now,
    800 				    &aitv->it_value);
    801 #else /* !__HAVE_TIMECOUNTER */
    802 			if (timercmp(&aitv->it_value, &time, <))
    803 				timerclear(&aitv->it_value);
    804 			else
    805 				timersub(&aitv->it_value, &time,
    806 				    &aitv->it_value);
    807 #endif /* !__HAVE_TIMECOUNTER */
    808 		}
    809 	} else if (pt->pt_active) {
    810 		if (pt->pt_type == CLOCK_VIRTUAL)
    811 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    812 		else
    813 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    814 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    815 			timeradd(&aitv->it_value,
    816 			    &ptn->pt_time.it_value, &aitv->it_value);
    817 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    818 	} else
    819 		timerclear(&aitv->it_value);
    820 }
    821 
    822 
    823 
    824 /* Set and arm a POSIX realtime timer */
    825 int
    826 sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    827 {
    828 	struct sys_timer_settime_args /* {
    829 		syscallarg(timer_t) timerid;
    830 		syscallarg(int) flags;
    831 		syscallarg(const struct itimerspec *) value;
    832 		syscallarg(struct itimerspec *) ovalue;
    833 	} */ *uap = v;
    834 	int error;
    835 	struct itimerspec value, ovalue, *ovp = NULL;
    836 
    837 	if ((error = copyin(SCARG(uap, value), &value,
    838 	    sizeof(struct itimerspec))) != 0)
    839 		return (error);
    840 
    841 	if (SCARG(uap, ovalue))
    842 		ovp = &ovalue;
    843 
    844 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    845 	    SCARG(uap, flags), l->l_proc)) != 0)
    846 		return error;
    847 
    848 	if (ovp)
    849 		return copyout(&ovalue, SCARG(uap, ovalue),
    850 		    sizeof(struct itimerspec));
    851 	return 0;
    852 }
    853 
    854 int
    855 dotimer_settime(int timerid, struct itimerspec *value,
    856     struct itimerspec *ovalue, int flags, struct proc *p)
    857 {
    858 #ifdef __HAVE_TIMECOUNTER
    859 	struct timeval now;
    860 #endif
    861 	struct itimerval val, oval;
    862 	struct ptimer *pt;
    863 	int s;
    864 
    865 	if ((p->p_timers == NULL) ||
    866 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    867 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    868 		return (EINVAL);
    869 
    870 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    871 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    872 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    873 		return (EINVAL);
    874 
    875 	oval = pt->pt_time;
    876 	pt->pt_time = val;
    877 
    878 	s = splclock();
    879 	/*
    880 	 * If we've been passed a relative time for a realtime timer,
    881 	 * convert it to absolute; if an absolute time for a virtual
    882 	 * timer, convert it to relative and make sure we don't set it
    883 	 * to zero, which would cancel the timer, or let it go
    884 	 * negative, which would confuse the comparison tests.
    885 	 */
    886 	if (timerisset(&pt->pt_time.it_value)) {
    887 		if (pt->pt_type == CLOCK_REALTIME) {
    888 #ifdef __HAVE_TIMECOUNTER
    889 			if ((flags & TIMER_ABSTIME) == 0) {
    890 				getmicrotime(&now);
    891 				timeradd(&pt->pt_time.it_value, &now,
    892 				    &pt->pt_time.it_value);
    893 			}
    894 #else /* !__HAVE_TIMECOUNTER */
    895 			if ((flags & TIMER_ABSTIME) == 0)
    896 				timeradd(&pt->pt_time.it_value, &time,
    897 				    &pt->pt_time.it_value);
    898 #endif /* !__HAVE_TIMECOUNTER */
    899 		} else {
    900 			if ((flags & TIMER_ABSTIME) != 0) {
    901 #ifdef __HAVE_TIMECOUNTER
    902 				getmicrotime(&now);
    903 				timersub(&pt->pt_time.it_value, &now,
    904 				    &pt->pt_time.it_value);
    905 #else /* !__HAVE_TIMECOUNTER */
    906 				timersub(&pt->pt_time.it_value, &time,
    907 				    &pt->pt_time.it_value);
    908 #endif /* !__HAVE_TIMECOUNTER */
    909 				if (!timerisset(&pt->pt_time.it_value) ||
    910 				    pt->pt_time.it_value.tv_sec < 0) {
    911 					pt->pt_time.it_value.tv_sec = 0;
    912 					pt->pt_time.it_value.tv_usec = 1;
    913 				}
    914 			}
    915 		}
    916 	}
    917 
    918 	timer_settime(pt);
    919 	splx(s);
    920 
    921 	if (ovalue) {
    922 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    923 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    924 	}
    925 
    926 	return (0);
    927 }
    928 
    929 /* Return the time remaining until a POSIX timer fires. */
    930 int
    931 sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    932 {
    933 	struct sys_timer_gettime_args /* {
    934 		syscallarg(timer_t) timerid;
    935 		syscallarg(struct itimerspec *) value;
    936 	} */ *uap = v;
    937 	struct itimerspec its;
    938 	int error;
    939 
    940 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    941 	    &its)) != 0)
    942 		return error;
    943 
    944 	return copyout(&its, SCARG(uap, value), sizeof(its));
    945 }
    946 
    947 int
    948 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    949 {
    950 	int s;
    951 	struct ptimer *pt;
    952 	struct itimerval aitv;
    953 
    954 	if ((p->p_timers == NULL) ||
    955 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    956 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    957 		return (EINVAL);
    958 
    959 	s = splclock();
    960 	timer_gettime(pt, &aitv);
    961 	splx(s);
    962 
    963 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    964 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    965 
    966 	return 0;
    967 }
    968 
    969 /*
    970  * Return the count of the number of times a periodic timer expired
    971  * while a notification was already pending. The counter is reset when
    972  * a timer expires and a notification can be posted.
    973  */
    974 int
    975 sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    976 {
    977 	struct sys_timer_getoverrun_args /* {
    978 		syscallarg(timer_t) timerid;
    979 	} */ *uap = v;
    980 	struct proc *p = l->l_proc;
    981 	int timerid;
    982 	struct ptimer *pt;
    983 
    984 	timerid = SCARG(uap, timerid);
    985 
    986 	if ((p->p_timers == NULL) ||
    987 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    988 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    989 		return (EINVAL);
    990 
    991 	*retval = pt->pt_poverruns;
    992 
    993 	return (0);
    994 }
    995 
    996 /*
    997  * Real interval timer expired:
    998  * send process whose timer expired an alarm signal.
    999  * If time is not set up to reload, then just return.
   1000  * Else compute next time timer should go off which is > current time.
   1001  * This is where delay in processing this timeout causes multiple
   1002  * SIGALRM calls to be compressed into one.
   1003  */
   1004 void
   1005 realtimerexpire(void *arg)
   1006 {
   1007 #ifdef __HAVE_TIMECOUNTER
   1008 	struct timeval now;
   1009 #endif
   1010 	struct ptimer *pt;
   1011 	int s;
   1012 
   1013 	pt = (struct ptimer *)arg;
   1014 
   1015 	itimerfire(pt);
   1016 
   1017 	if (!timerisset(&pt->pt_time.it_interval)) {
   1018 		timerclear(&pt->pt_time.it_value);
   1019 		return;
   1020 	}
   1021 #ifdef __HAVE_TIMECOUNTER
   1022 	for (;;) {
   1023 		s = splclock();	/* XXX need spl now? */
   1024 		timeradd(&pt->pt_time.it_value,
   1025 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1026 		getmicrotime(&now);
   1027 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1028 			/*
   1029 			 * Don't need to check hzto() return value, here.
   1030 			 * callout_reset() does it for us.
   1031 			 */
   1032 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1033 			    realtimerexpire, pt);
   1034 			splx(s);
   1035 			return;
   1036 		}
   1037 		splx(s);
   1038 		pt->pt_overruns++;
   1039 	}
   1040 #else /* !__HAVE_TIMECOUNTER */
   1041 	for (;;) {
   1042 		s = splclock();
   1043 		timeradd(&pt->pt_time.it_value,
   1044 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1045 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1046 			/*
   1047 			 * Don't need to check hzto() return value, here.
   1048 			 * callout_reset() does it for us.
   1049 			 */
   1050 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1051 			    realtimerexpire, pt);
   1052 			splx(s);
   1053 			return;
   1054 		}
   1055 		splx(s);
   1056 		pt->pt_overruns++;
   1057 	}
   1058 #endif /* !__HAVE_TIMECOUNTER */
   1059 }
   1060 
   1061 /* BSD routine to get the value of an interval timer. */
   1062 /* ARGSUSED */
   1063 int
   1064 sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1065 {
   1066 	struct sys_getitimer_args /* {
   1067 		syscallarg(int) which;
   1068 		syscallarg(struct itimerval *) itv;
   1069 	} */ *uap = v;
   1070 	struct proc *p = l->l_proc;
   1071 	struct itimerval aitv;
   1072 	int error;
   1073 
   1074 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1075 	if (error)
   1076 		return error;
   1077 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1078 }
   1079 
   1080 int
   1081 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1082 {
   1083 	int s;
   1084 
   1085 	if ((u_int)which > ITIMER_PROF)
   1086 		return (EINVAL);
   1087 
   1088 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1089 		timerclear(&itvp->it_value);
   1090 		timerclear(&itvp->it_interval);
   1091 	} else {
   1092 		s = splclock();
   1093 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1094 		splx(s);
   1095 	}
   1096 
   1097 	return 0;
   1098 }
   1099 
   1100 /* BSD routine to set/arm an interval timer. */
   1101 /* ARGSUSED */
   1102 int
   1103 sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1104 {
   1105 	struct sys_setitimer_args /* {
   1106 		syscallarg(int) which;
   1107 		syscallarg(const struct itimerval *) itv;
   1108 		syscallarg(struct itimerval *) oitv;
   1109 	} */ *uap = v;
   1110 	struct proc *p = l->l_proc;
   1111 	int which = SCARG(uap, which);
   1112 	struct sys_getitimer_args getargs;
   1113 	const struct itimerval *itvp;
   1114 	struct itimerval aitv;
   1115 	int error;
   1116 
   1117 	if ((u_int)which > ITIMER_PROF)
   1118 		return (EINVAL);
   1119 	itvp = SCARG(uap, itv);
   1120 	if (itvp &&
   1121 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1122 		return (error);
   1123 	if (SCARG(uap, oitv) != NULL) {
   1124 		SCARG(&getargs, which) = which;
   1125 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1126 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1127 			return (error);
   1128 	}
   1129 	if (itvp == 0)
   1130 		return (0);
   1131 
   1132 	return dosetitimer(p, which, &aitv);
   1133 }
   1134 
   1135 int
   1136 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1137 {
   1138 #ifdef __HAVE_TIMECOUNTER
   1139 	struct timeval now;
   1140 #endif
   1141 	struct ptimer *pt;
   1142 	int s;
   1143 
   1144 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1145 		return (EINVAL);
   1146 
   1147 	/*
   1148 	 * Don't bother allocating data structures if the process just
   1149 	 * wants to clear the timer.
   1150 	 */
   1151 	if (!timerisset(&itvp->it_value) &&
   1152 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1153 		return (0);
   1154 
   1155 	if (p->p_timers == NULL)
   1156 		timers_alloc(p);
   1157 	if (p->p_timers->pts_timers[which] == NULL) {
   1158 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1159 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1160 		pt->pt_ev.sigev_value.sival_int = which;
   1161 		pt->pt_overruns = 0;
   1162 		pt->pt_proc = p;
   1163 		pt->pt_type = which;
   1164 		pt->pt_entry = which;
   1165 		switch (which) {
   1166 		case ITIMER_REAL:
   1167 			callout_init(&pt->pt_ch, 0);
   1168 			pt->pt_ev.sigev_signo = SIGALRM;
   1169 			break;
   1170 		case ITIMER_VIRTUAL:
   1171 			pt->pt_active = 0;
   1172 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1173 			break;
   1174 		case ITIMER_PROF:
   1175 			pt->pt_active = 0;
   1176 			pt->pt_ev.sigev_signo = SIGPROF;
   1177 			break;
   1178 		}
   1179 	} else
   1180 		pt = p->p_timers->pts_timers[which];
   1181 
   1182 	pt->pt_time = *itvp;
   1183 	p->p_timers->pts_timers[which] = pt;
   1184 
   1185 	s = splclock();
   1186 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1187 		/* Convert to absolute time */
   1188 #ifdef __HAVE_TIMECOUNTER
   1189 		/* XXX need to wrap in splclock for timecounters case? */
   1190 		getmicrotime(&now);
   1191 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1192 #else /* !__HAVE_TIMECOUNTER */
   1193 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1194 #endif /* !__HAVE_TIMECOUNTER */
   1195 	}
   1196 	timer_settime(pt);
   1197 	splx(s);
   1198 
   1199 	return (0);
   1200 }
   1201 
   1202 /* Utility routines to manage the array of pointers to timers. */
   1203 void
   1204 timers_alloc(struct proc *p)
   1205 {
   1206 	int i;
   1207 	struct ptimers *pts;
   1208 
   1209 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1210 	LIST_INIT(&pts->pts_virtual);
   1211 	LIST_INIT(&pts->pts_prof);
   1212 	for (i = 0; i < TIMER_MAX; i++)
   1213 		pts->pts_timers[i] = NULL;
   1214 	pts->pts_fired = 0;
   1215 	p->p_timers = pts;
   1216 }
   1217 
   1218 /*
   1219  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1220  * then clean up all timers and free all the data structures. If
   1221  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1222  * by timer_create(), not the BSD setitimer() timers, and only free the
   1223  * structure if none of those remain.
   1224  */
   1225 void
   1226 timers_free(struct proc *p, int which)
   1227 {
   1228 	int i, s;
   1229 	struct ptimers *pts;
   1230 	struct ptimer *pt, *ptn;
   1231 	struct timeval tv;
   1232 
   1233 	if (p->p_timers) {
   1234 		pts = p->p_timers;
   1235 		if (which == TIMERS_ALL)
   1236 			i = 0;
   1237 		else {
   1238 			s = splclock();
   1239 			timerclear(&tv);
   1240 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1241 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1242 			     ptn = LIST_NEXT(ptn, pt_list))
   1243 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1244 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1245 			if (ptn) {
   1246 				timeradd(&tv, &ptn->pt_time.it_value,
   1247 				    &ptn->pt_time.it_value);
   1248 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1249 				    ptn, pt_list);
   1250 			}
   1251 
   1252 			timerclear(&tv);
   1253 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1254 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1255 			     ptn = LIST_NEXT(ptn, pt_list))
   1256 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1257 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1258 			if (ptn) {
   1259 				timeradd(&tv, &ptn->pt_time.it_value,
   1260 				    &ptn->pt_time.it_value);
   1261 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1262 				    pt_list);
   1263 			}
   1264 			splx(s);
   1265 			i = 3;
   1266 		}
   1267 		for ( ; i < TIMER_MAX; i++)
   1268 			if ((pt = pts->pts_timers[i]) != NULL) {
   1269 				if (pt->pt_type == CLOCK_REALTIME) {
   1270 					callout_stop(&pt->pt_ch);
   1271 					callout_destroy(&pt->pt_ch);
   1272 				}
   1273 				pts->pts_timers[i] = NULL;
   1274 				pool_put(&ptimer_pool, pt);
   1275 			}
   1276 		if ((pts->pts_timers[0] == NULL) &&
   1277 		    (pts->pts_timers[1] == NULL) &&
   1278 		    (pts->pts_timers[2] == NULL)) {
   1279 			p->p_timers = NULL;
   1280 			pool_put(&ptimers_pool, pts);
   1281 		}
   1282 	}
   1283 }
   1284 
   1285 /*
   1286  * Decrement an interval timer by a specified number
   1287  * of microseconds, which must be less than a second,
   1288  * i.e. < 1000000.  If the timer expires, then reload
   1289  * it.  In this case, carry over (usec - old value) to
   1290  * reduce the value reloaded into the timer so that
   1291  * the timer does not drift.  This routine assumes
   1292  * that it is called in a context where the timers
   1293  * on which it is operating cannot change in value.
   1294  */
   1295 int
   1296 itimerdecr(struct ptimer *pt, int usec)
   1297 {
   1298 	struct itimerval *itp;
   1299 
   1300 	itp = &pt->pt_time;
   1301 	if (itp->it_value.tv_usec < usec) {
   1302 		if (itp->it_value.tv_sec == 0) {
   1303 			/* expired, and already in next interval */
   1304 			usec -= itp->it_value.tv_usec;
   1305 			goto expire;
   1306 		}
   1307 		itp->it_value.tv_usec += 1000000;
   1308 		itp->it_value.tv_sec--;
   1309 	}
   1310 	itp->it_value.tv_usec -= usec;
   1311 	usec = 0;
   1312 	if (timerisset(&itp->it_value))
   1313 		return (1);
   1314 	/* expired, exactly at end of interval */
   1315 expire:
   1316 	if (timerisset(&itp->it_interval)) {
   1317 		itp->it_value = itp->it_interval;
   1318 		itp->it_value.tv_usec -= usec;
   1319 		if (itp->it_value.tv_usec < 0) {
   1320 			itp->it_value.tv_usec += 1000000;
   1321 			itp->it_value.tv_sec--;
   1322 		}
   1323 		timer_settime(pt);
   1324 	} else
   1325 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1326 	return (0);
   1327 }
   1328 
   1329 void
   1330 itimerfire(struct ptimer *pt)
   1331 {
   1332 	struct proc *p = pt->pt_proc;
   1333 
   1334 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1335 		/*
   1336 		 * No RT signal infrastructure exists at this time;
   1337 		 * just post the signal number and throw away the
   1338 		 * value.
   1339 		 */
   1340 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1341 			pt->pt_overruns++;
   1342 		else {
   1343 			ksiginfo_t ksi;
   1344 			KSI_INIT(&ksi);
   1345 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1346 			ksi.ksi_code = SI_TIMER;
   1347 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1348 			pt->pt_poverruns = pt->pt_overruns;
   1349 			pt->pt_overruns = 0;
   1350 			mutex_enter(&proclist_mutex);
   1351 			kpsignal(p, &ksi, NULL);
   1352 			mutex_exit(&proclist_mutex);
   1353 		}
   1354 	}
   1355 }
   1356 
   1357 /*
   1358  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1359  * for usage and rationale.
   1360  */
   1361 int
   1362 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1363 {
   1364 	struct timeval tv, delta;
   1365 	int rv = 0;
   1366 #ifndef __HAVE_TIMECOUNTER
   1367 	int s;
   1368 #endif
   1369 
   1370 #ifdef __HAVE_TIMECOUNTER
   1371 	getmicrouptime(&tv);
   1372 #else /* !__HAVE_TIMECOUNTER */
   1373 	s = splclock();
   1374 	tv = mono_time;
   1375 	splx(s);
   1376 #endif /* !__HAVE_TIMECOUNTER */
   1377 	timersub(&tv, lasttime, &delta);
   1378 
   1379 	/*
   1380 	 * check for 0,0 is so that the message will be seen at least once,
   1381 	 * even if interval is huge.
   1382 	 */
   1383 	if (timercmp(&delta, mininterval, >=) ||
   1384 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1385 		*lasttime = tv;
   1386 		rv = 1;
   1387 	}
   1388 
   1389 	return (rv);
   1390 }
   1391 
   1392 /*
   1393  * ppsratecheck(): packets (or events) per second limitation.
   1394  */
   1395 int
   1396 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1397 {
   1398 	struct timeval tv, delta;
   1399 	int rv;
   1400 #ifndef __HAVE_TIMECOUNTER
   1401 	int s;
   1402 #endif
   1403 
   1404 #ifdef __HAVE_TIMECOUNTER
   1405 	getmicrouptime(&tv);
   1406 #else /* !__HAVE_TIMECOUNTER */
   1407 	s = splclock();
   1408 	tv = mono_time;
   1409 	splx(s);
   1410 #endif /* !__HAVE_TIMECOUNTER */
   1411 	timersub(&tv, lasttime, &delta);
   1412 
   1413 	/*
   1414 	 * check for 0,0 is so that the message will be seen at least once.
   1415 	 * if more than one second have passed since the last update of
   1416 	 * lasttime, reset the counter.
   1417 	 *
   1418 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1419 	 * try to use *curpps for stat purposes as well.
   1420 	 */
   1421 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1422 	    delta.tv_sec >= 1) {
   1423 		*lasttime = tv;
   1424 		*curpps = 0;
   1425 	}
   1426 	if (maxpps < 0)
   1427 		rv = 1;
   1428 	else if (*curpps < maxpps)
   1429 		rv = 1;
   1430 	else
   1431 		rv = 0;
   1432 
   1433 #if 1 /*DIAGNOSTIC?*/
   1434 	/* be careful about wrap-around */
   1435 	if (*curpps + 1 > *curpps)
   1436 		*curpps = *curpps + 1;
   1437 #else
   1438 	/*
   1439 	 * assume that there's not too many calls to this function.
   1440 	 * not sure if the assumption holds, as it depends on *caller's*
   1441 	 * behavior, not the behavior of this function.
   1442 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1443 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1444 	 */
   1445 	*curpps = *curpps + 1;
   1446 #endif
   1447 
   1448 	return (rv);
   1449 }
   1450