Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.137
      1 /*	$NetBSD: kern_time.c,v 1.137 2007/12/22 01:14:55 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.137 2007/12/22 01:14:55 yamt Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <sys/cpu.h>
     90 
     91 kmutex_t	time_lock;
     92 
     93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94     &pool_allocator_nointr, IPL_NONE);
     95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96     &pool_allocator_nointr, IPL_NONE);
     97 
     98 /*
     99  * Initialize timekeeping.
    100  */
    101 void
    102 time_init(void)
    103 {
    104 
    105 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106 }
    107 
    108 /* Time of day and interval timer support.
    109  *
    110  * These routines provide the kernel entry points to get and set
    111  * the time-of-day and per-process interval timers.  Subroutines
    112  * here provide support for adding and subtracting timeval structures
    113  * and decrementing interval timers, optionally reloading the interval
    114  * timers when they expire.
    115  */
    116 
    117 /* This function is used by clock_settime and settimeofday */
    118 static int
    119 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    120 {
    121 	struct timeval delta, tv;
    122 	struct timeval now;
    123 	struct timespec ts1;
    124 	struct bintime btdelta;
    125 	lwp_t *l;
    126 	int s;
    127 
    128 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    129 
    130 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    131 	s = splclock();
    132 	microtime(&now);
    133 	timersub(&tv, &now, &delta);
    134 
    135 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    136 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    137 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    138 		splx(s);
    139 		return (EPERM);
    140 	}
    141 
    142 #ifdef notyet
    143 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    144 		splx(s);
    145 		return (EPERM);
    146 	}
    147 #endif
    148 
    149 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    150 	tc_setclock(&ts1);
    151 
    152 	timeradd(&boottime, &delta, &boottime);
    153 
    154 	/*
    155 	 * XXXSMP: There is a short race between setting the time above
    156 	 * and adjusting LWP's run times.  Fixing this properly means
    157 	 * pausing all CPUs while we adjust the clock.
    158 	 */
    159 	timeval2bintime(&delta, &btdelta);
    160 	mutex_enter(&proclist_lock);
    161 	LIST_FOREACH(l, &alllwp, l_list) {
    162 		lwp_lock(l);
    163 		bintime_add(&l->l_stime, &btdelta);
    164 		lwp_unlock(l);
    165 	}
    166 	mutex_exit(&proclist_lock);
    167 	resettodr();
    168 	splx(s);
    169 
    170 	return (0);
    171 }
    172 
    173 int
    174 settime(struct proc *p, struct timespec *ts)
    175 {
    176 	return (settime1(p, ts, true));
    177 }
    178 
    179 /* ARGSUSED */
    180 int
    181 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
    182 {
    183 	/* {
    184 		syscallarg(clockid_t) clock_id;
    185 		syscallarg(struct timespec *) tp;
    186 	} */
    187 	clockid_t clock_id;
    188 	struct timespec ats;
    189 
    190 	clock_id = SCARG(uap, clock_id);
    191 	switch (clock_id) {
    192 	case CLOCK_REALTIME:
    193 		nanotime(&ats);
    194 		break;
    195 	case CLOCK_MONOTONIC:
    196 		nanouptime(&ats);
    197 		break;
    198 	default:
    199 		return (EINVAL);
    200 	}
    201 
    202 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    203 }
    204 
    205 /* ARGSUSED */
    206 int
    207 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
    208 {
    209 	/* {
    210 		syscallarg(clockid_t) clock_id;
    211 		syscallarg(const struct timespec *) tp;
    212 	} */
    213 
    214 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    215 	    true);
    216 }
    217 
    218 
    219 int
    220 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    221     bool check_kauth)
    222 {
    223 	struct timespec ats;
    224 	int error;
    225 
    226 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    227 		return (error);
    228 
    229 	switch (clock_id) {
    230 	case CLOCK_REALTIME:
    231 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    232 			return (error);
    233 		break;
    234 	case CLOCK_MONOTONIC:
    235 		return (EINVAL);	/* read-only clock */
    236 	default:
    237 		return (EINVAL);
    238 	}
    239 
    240 	return 0;
    241 }
    242 
    243 int
    244 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
    245 {
    246 	/* {
    247 		syscallarg(clockid_t) clock_id;
    248 		syscallarg(struct timespec *) tp;
    249 	} */
    250 	clockid_t clock_id;
    251 	struct timespec ts;
    252 	int error = 0;
    253 
    254 	clock_id = SCARG(uap, clock_id);
    255 	switch (clock_id) {
    256 	case CLOCK_REALTIME:
    257 	case CLOCK_MONOTONIC:
    258 		ts.tv_sec = 0;
    259 		if (tc_getfrequency() > 1000000000)
    260 			ts.tv_nsec = 1;
    261 		else
    262 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    263 		break;
    264 	default:
    265 		return (EINVAL);
    266 	}
    267 
    268 	if (SCARG(uap, tp))
    269 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    270 
    271 	return error;
    272 }
    273 
    274 /* ARGSUSED */
    275 int
    276 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
    277 {
    278 	/* {
    279 		syscallarg(struct timespec *) rqtp;
    280 		syscallarg(struct timespec *) rmtp;
    281 	} */
    282 	struct timespec rmt, rqt;
    283 	int error, error1;
    284 
    285 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    286 	if (error)
    287 		return (error);
    288 
    289 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    290 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291 		return error;
    292 
    293 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294 	return error1 ? error1 : error;
    295 }
    296 
    297 int
    298 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    299 {
    300 	int error, timo;
    301 
    302 	if (itimespecfix(rqt))
    303 		return (EINVAL);
    304 
    305 	timo = tstohz(rqt);
    306 	/*
    307 	 * Avoid inadvertantly sleeping forever
    308 	 */
    309 	if (timo == 0)
    310 		timo = 1;
    311 
    312 	if (rmt != NULL)
    313 		getnanouptime(rmt);
    314 
    315 	error = kpause("nanoslp", true, timo, NULL);
    316 	if (error == ERESTART)
    317 		error = EINTR;
    318 	if (error == EWOULDBLOCK)
    319 		error = 0;
    320 
    321 	if (rmt!= NULL) {
    322 		struct timespec rmtend;
    323 
    324 		getnanouptime(&rmtend);
    325 
    326 		timespecsub(&rmtend, rmt, rmt);
    327 		timespecsub(rqt, rmt, rmt);
    328 		if (rmt->tv_sec < 0)
    329 			timespecclear(rmt);
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /* ARGSUSED */
    336 int
    337 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
    338 {
    339 	/* {
    340 		syscallarg(struct timeval *) tp;
    341 		syscallarg(void *) tzp;		really "struct timezone *";
    342 	} */
    343 	struct timeval atv;
    344 	int error = 0;
    345 	struct timezone tzfake;
    346 
    347 	if (SCARG(uap, tp)) {
    348 		microtime(&atv);
    349 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    350 		if (error)
    351 			return (error);
    352 	}
    353 	if (SCARG(uap, tzp)) {
    354 		/*
    355 		 * NetBSD has no kernel notion of time zone, so we just
    356 		 * fake up a timezone struct and return it if demanded.
    357 		 */
    358 		tzfake.tz_minuteswest = 0;
    359 		tzfake.tz_dsttime = 0;
    360 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    361 	}
    362 	return (error);
    363 }
    364 
    365 /* ARGSUSED */
    366 int
    367 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
    368 {
    369 	/* {
    370 		syscallarg(const struct timeval *) tv;
    371 		syscallarg(const void *) tzp;	really "const struct timezone *";
    372 	} */
    373 
    374 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    375 }
    376 
    377 int
    378 settimeofday1(const struct timeval *utv, bool userspace,
    379     const void *utzp, struct lwp *l, bool check_kauth)
    380 {
    381 	struct timeval atv;
    382 	struct timespec ts;
    383 	int error;
    384 
    385 	/* Verify all parameters before changing time. */
    386 
    387 	/*
    388 	 * NetBSD has no kernel notion of time zone, and only an
    389 	 * obsolete program would try to set it, so we log a warning.
    390 	 */
    391 	if (utzp)
    392 		log(LOG_WARNING, "pid %d attempted to set the "
    393 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    394 
    395 	if (utv == NULL)
    396 		return 0;
    397 
    398 	if (userspace) {
    399 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    400 			return error;
    401 		utv = &atv;
    402 	}
    403 
    404 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    405 	return settime1(l->l_proc, &ts, check_kauth);
    406 }
    407 
    408 #ifndef __HAVE_TIMECOUNTER
    409 int	tickdelta;			/* current clock skew, us. per tick */
    410 long	timedelta;			/* unapplied time correction, us. */
    411 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    412 #endif
    413 
    414 int	time_adjusted;			/* set if an adjustment is made */
    415 
    416 /* ARGSUSED */
    417 int
    418 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
    419 {
    420 	/* {
    421 		syscallarg(const struct timeval *) delta;
    422 		syscallarg(struct timeval *) olddelta;
    423 	} */
    424 	int error;
    425 
    426 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    427 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    428 		return (error);
    429 
    430 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    431 }
    432 
    433 int
    434 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    435 {
    436 	struct timeval atv;
    437 	int error = 0;
    438 
    439 #ifdef __HAVE_TIMECOUNTER
    440 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    441 #else /* !__HAVE_TIMECOUNTER */
    442 	long ndelta, ntickdelta, odelta;
    443 	int s;
    444 #endif /* !__HAVE_TIMECOUNTER */
    445 
    446 #ifdef __HAVE_TIMECOUNTER
    447 	if (olddelta) {
    448 		atv.tv_sec = time_adjtime / 1000000;
    449 		atv.tv_usec = time_adjtime % 1000000;
    450 		if (atv.tv_usec < 0) {
    451 			atv.tv_usec += 1000000;
    452 			atv.tv_sec--;
    453 		}
    454 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    455 		if (error)
    456 			return (error);
    457 	}
    458 
    459 	if (delta) {
    460 		error = copyin(delta, &atv, sizeof(struct timeval));
    461 		if (error)
    462 			return (error);
    463 
    464 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    465 			atv.tv_usec;
    466 
    467 		if (time_adjtime)
    468 			/* We need to save the system time during shutdown */
    469 			time_adjusted |= 1;
    470 	}
    471 #else /* !__HAVE_TIMECOUNTER */
    472 	error = copyin(delta, &atv, sizeof(struct timeval));
    473 	if (error)
    474 		return (error);
    475 
    476 	/*
    477 	 * Compute the total correction and the rate at which to apply it.
    478 	 * Round the adjustment down to a whole multiple of the per-tick
    479 	 * delta, so that after some number of incremental changes in
    480 	 * hardclock(), tickdelta will become zero, lest the correction
    481 	 * overshoot and start taking us away from the desired final time.
    482 	 */
    483 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    484 	if (ndelta > bigadj || ndelta < -bigadj)
    485 		ntickdelta = 10 * tickadj;
    486 	else
    487 		ntickdelta = tickadj;
    488 	if (ndelta % ntickdelta)
    489 		ndelta = ndelta / ntickdelta * ntickdelta;
    490 
    491 	/*
    492 	 * To make hardclock()'s job easier, make the per-tick delta negative
    493 	 * if we want time to run slower; then hardclock can simply compute
    494 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    495 	 */
    496 	if (ndelta < 0)
    497 		ntickdelta = -ntickdelta;
    498 	if (ndelta != 0)
    499 		/* We need to save the system clock time during shutdown */
    500 		time_adjusted |= 1;
    501 	s = splclock();
    502 	odelta = timedelta;
    503 	timedelta = ndelta;
    504 	tickdelta = ntickdelta;
    505 	splx(s);
    506 
    507 	if (olddelta) {
    508 		atv.tv_sec = odelta / 1000000;
    509 		atv.tv_usec = odelta % 1000000;
    510 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    511 	}
    512 #endif /* __HAVE_TIMECOUNTER */
    513 
    514 	return error;
    515 }
    516 
    517 /*
    518  * Interval timer support. Both the BSD getitimer() family and the POSIX
    519  * timer_*() family of routines are supported.
    520  *
    521  * All timers are kept in an array pointed to by p_timers, which is
    522  * allocated on demand - many processes don't use timers at all. The
    523  * first three elements in this array are reserved for the BSD timers:
    524  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    525  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    526  * syscall.
    527  *
    528  * Realtime timers are kept in the ptimer structure as an absolute
    529  * time; virtual time timers are kept as a linked list of deltas.
    530  * Virtual time timers are processed in the hardclock() routine of
    531  * kern_clock.c.  The real time timer is processed by a callout
    532  * routine, called from the softclock() routine.  Since a callout may
    533  * be delayed in real time due to interrupt processing in the system,
    534  * it is possible for the real time timeout routine (realtimeexpire,
    535  * given below), to be delayed in real time past when it is supposed
    536  * to occur.  It does not suffice, therefore, to reload the real timer
    537  * .it_value from the real time timers .it_interval.  Rather, we
    538  * compute the next time in absolute time the timer should go off.  */
    539 
    540 /* Allocate a POSIX realtime timer. */
    541 int
    542 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
    543 {
    544 	/* {
    545 		syscallarg(clockid_t) clock_id;
    546 		syscallarg(struct sigevent *) evp;
    547 		syscallarg(timer_t *) timerid;
    548 	} */
    549 
    550 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    551 	    SCARG(uap, evp), copyin, l);
    552 }
    553 
    554 int
    555 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    556     copyin_t fetch_event, struct lwp *l)
    557 {
    558 	int error;
    559 	timer_t timerid;
    560 	struct ptimer *pt;
    561 	struct proc *p;
    562 
    563 	p = l->l_proc;
    564 
    565 	if (id < CLOCK_REALTIME ||
    566 	    id > CLOCK_PROF)
    567 		return (EINVAL);
    568 
    569 	if (p->p_timers == NULL)
    570 		timers_alloc(p);
    571 
    572 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    573 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    574 		if (p->p_timers->pts_timers[timerid] == NULL)
    575 			break;
    576 
    577 	if (timerid == TIMER_MAX)
    578 		return EAGAIN;
    579 
    580 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    581 	if (evp) {
    582 		if (((error =
    583 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    584 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    585 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    586 			pool_put(&ptimer_pool, pt);
    587 			return (error ? error : EINVAL);
    588 		}
    589 	} else {
    590 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    591 		switch (id) {
    592 		case CLOCK_REALTIME:
    593 			pt->pt_ev.sigev_signo = SIGALRM;
    594 			break;
    595 		case CLOCK_VIRTUAL:
    596 			pt->pt_ev.sigev_signo = SIGVTALRM;
    597 			break;
    598 		case CLOCK_PROF:
    599 			pt->pt_ev.sigev_signo = SIGPROF;
    600 			break;
    601 		}
    602 		pt->pt_ev.sigev_value.sival_int = timerid;
    603 	}
    604 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    605 	pt->pt_info.ksi_errno = 0;
    606 	pt->pt_info.ksi_code = 0;
    607 	pt->pt_info.ksi_pid = p->p_pid;
    608 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    609 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    610 
    611 	pt->pt_type = id;
    612 	pt->pt_proc = p;
    613 	pt->pt_overruns = 0;
    614 	pt->pt_poverruns = 0;
    615 	pt->pt_entry = timerid;
    616 	timerclear(&pt->pt_time.it_value);
    617 	if (id == CLOCK_REALTIME)
    618 		callout_init(&pt->pt_ch, 0);
    619 	else
    620 		pt->pt_active = 0;
    621 
    622 	p->p_timers->pts_timers[timerid] = pt;
    623 
    624 	return copyout(&timerid, tid, sizeof(timerid));
    625 }
    626 
    627 /* Delete a POSIX realtime timer */
    628 int
    629 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
    630 {
    631 	/* {
    632 		syscallarg(timer_t) timerid;
    633 	} */
    634 	struct proc *p = l->l_proc;
    635 	timer_t timerid;
    636 	struct ptimer *pt, *ptn;
    637 	int s;
    638 
    639 	timerid = SCARG(uap, timerid);
    640 
    641 	if ((p->p_timers == NULL) ||
    642 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    643 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    644 		return (EINVAL);
    645 
    646 	if (pt->pt_type == CLOCK_REALTIME) {
    647 		callout_stop(&pt->pt_ch);
    648 		callout_destroy(&pt->pt_ch);
    649 	} else if (pt->pt_active) {
    650 		s = splclock();
    651 		ptn = LIST_NEXT(pt, pt_list);
    652 		LIST_REMOVE(pt, pt_list);
    653 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    654 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    655 			    &ptn->pt_time.it_value);
    656 		splx(s);
    657 	}
    658 
    659 	p->p_timers->pts_timers[timerid] = NULL;
    660 	pool_put(&ptimer_pool, pt);
    661 
    662 	return (0);
    663 }
    664 
    665 /*
    666  * Set up the given timer. The value in pt->pt_time.it_value is taken
    667  * to be an absolute time for CLOCK_REALTIME timers and a relative
    668  * time for virtual timers.
    669  * Must be called at splclock().
    670  */
    671 void
    672 timer_settime(struct ptimer *pt)
    673 {
    674 	struct ptimer *ptn, *pptn;
    675 	struct ptlist *ptl;
    676 
    677 	if (pt->pt_type == CLOCK_REALTIME) {
    678 		callout_stop(&pt->pt_ch);
    679 		if (timerisset(&pt->pt_time.it_value)) {
    680 			/*
    681 			 * Don't need to check hzto() return value, here.
    682 			 * callout_reset() does it for us.
    683 			 */
    684 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    685 			    realtimerexpire, pt);
    686 		}
    687 	} else {
    688 		if (pt->pt_active) {
    689 			ptn = LIST_NEXT(pt, pt_list);
    690 			LIST_REMOVE(pt, pt_list);
    691 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    692 				timeradd(&pt->pt_time.it_value,
    693 				    &ptn->pt_time.it_value,
    694 				    &ptn->pt_time.it_value);
    695 		}
    696 		if (timerisset(&pt->pt_time.it_value)) {
    697 			if (pt->pt_type == CLOCK_VIRTUAL)
    698 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    699 			else
    700 				ptl = &pt->pt_proc->p_timers->pts_prof;
    701 
    702 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    703 			     ptn && timercmp(&pt->pt_time.it_value,
    704 				 &ptn->pt_time.it_value, >);
    705 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    706 				timersub(&pt->pt_time.it_value,
    707 				    &ptn->pt_time.it_value,
    708 				    &pt->pt_time.it_value);
    709 
    710 			if (pptn)
    711 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    712 			else
    713 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    714 
    715 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    716 				timersub(&ptn->pt_time.it_value,
    717 				    &pt->pt_time.it_value,
    718 				    &ptn->pt_time.it_value);
    719 
    720 			pt->pt_active = 1;
    721 		} else
    722 			pt->pt_active = 0;
    723 	}
    724 }
    725 
    726 void
    727 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    728 {
    729 	struct timeval now;
    730 	struct ptimer *ptn;
    731 
    732 	*aitv = pt->pt_time;
    733 	if (pt->pt_type == CLOCK_REALTIME) {
    734 		/*
    735 		 * Convert from absolute to relative time in .it_value
    736 		 * part of real time timer.  If time for real time
    737 		 * timer has passed return 0, else return difference
    738 		 * between current time and time for the timer to go
    739 		 * off.
    740 		 */
    741 		if (timerisset(&aitv->it_value)) {
    742 			getmicrotime(&now);
    743 			if (timercmp(&aitv->it_value, &now, <))
    744 				timerclear(&aitv->it_value);
    745 			else
    746 				timersub(&aitv->it_value, &now,
    747 				    &aitv->it_value);
    748 		}
    749 	} else if (pt->pt_active) {
    750 		if (pt->pt_type == CLOCK_VIRTUAL)
    751 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    752 		else
    753 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    754 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    755 			timeradd(&aitv->it_value,
    756 			    &ptn->pt_time.it_value, &aitv->it_value);
    757 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    758 	} else
    759 		timerclear(&aitv->it_value);
    760 }
    761 
    762 
    763 
    764 /* Set and arm a POSIX realtime timer */
    765 int
    766 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
    767 {
    768 	/* {
    769 		syscallarg(timer_t) timerid;
    770 		syscallarg(int) flags;
    771 		syscallarg(const struct itimerspec *) value;
    772 		syscallarg(struct itimerspec *) ovalue;
    773 	} */
    774 	int error;
    775 	struct itimerspec value, ovalue, *ovp = NULL;
    776 
    777 	if ((error = copyin(SCARG(uap, value), &value,
    778 	    sizeof(struct itimerspec))) != 0)
    779 		return (error);
    780 
    781 	if (SCARG(uap, ovalue))
    782 		ovp = &ovalue;
    783 
    784 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    785 	    SCARG(uap, flags), l->l_proc)) != 0)
    786 		return error;
    787 
    788 	if (ovp)
    789 		return copyout(&ovalue, SCARG(uap, ovalue),
    790 		    sizeof(struct itimerspec));
    791 	return 0;
    792 }
    793 
    794 int
    795 dotimer_settime(int timerid, struct itimerspec *value,
    796     struct itimerspec *ovalue, int flags, struct proc *p)
    797 {
    798 	struct timeval now;
    799 	struct itimerval val, oval;
    800 	struct ptimer *pt;
    801 	int s;
    802 
    803 	if ((p->p_timers == NULL) ||
    804 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    805 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    806 		return (EINVAL);
    807 
    808 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    809 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    810 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    811 		return (EINVAL);
    812 
    813 	oval = pt->pt_time;
    814 	pt->pt_time = val;
    815 
    816 	s = splclock();
    817 	/*
    818 	 * If we've been passed a relative time for a realtime timer,
    819 	 * convert it to absolute; if an absolute time for a virtual
    820 	 * timer, convert it to relative and make sure we don't set it
    821 	 * to zero, which would cancel the timer, or let it go
    822 	 * negative, which would confuse the comparison tests.
    823 	 */
    824 	if (timerisset(&pt->pt_time.it_value)) {
    825 		if (pt->pt_type == CLOCK_REALTIME) {
    826 			if ((flags & TIMER_ABSTIME) == 0) {
    827 				getmicrotime(&now);
    828 				timeradd(&pt->pt_time.it_value, &now,
    829 				    &pt->pt_time.it_value);
    830 			}
    831 		} else {
    832 			if ((flags & TIMER_ABSTIME) != 0) {
    833 				getmicrotime(&now);
    834 				timersub(&pt->pt_time.it_value, &now,
    835 				    &pt->pt_time.it_value);
    836 				if (!timerisset(&pt->pt_time.it_value) ||
    837 				    pt->pt_time.it_value.tv_sec < 0) {
    838 					pt->pt_time.it_value.tv_sec = 0;
    839 					pt->pt_time.it_value.tv_usec = 1;
    840 				}
    841 			}
    842 		}
    843 	}
    844 
    845 	timer_settime(pt);
    846 	splx(s);
    847 
    848 	if (ovalue) {
    849 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    850 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    851 	}
    852 
    853 	return (0);
    854 }
    855 
    856 /* Return the time remaining until a POSIX timer fires. */
    857 int
    858 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
    859 {
    860 	/* {
    861 		syscallarg(timer_t) timerid;
    862 		syscallarg(struct itimerspec *) value;
    863 	} */
    864 	struct itimerspec its;
    865 	int error;
    866 
    867 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    868 	    &its)) != 0)
    869 		return error;
    870 
    871 	return copyout(&its, SCARG(uap, value), sizeof(its));
    872 }
    873 
    874 int
    875 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    876 {
    877 	int s;
    878 	struct ptimer *pt;
    879 	struct itimerval aitv;
    880 
    881 	if ((p->p_timers == NULL) ||
    882 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    883 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    884 		return (EINVAL);
    885 
    886 	s = splclock();
    887 	timer_gettime(pt, &aitv);
    888 	splx(s);
    889 
    890 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    891 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    892 
    893 	return 0;
    894 }
    895 
    896 /*
    897  * Return the count of the number of times a periodic timer expired
    898  * while a notification was already pending. The counter is reset when
    899  * a timer expires and a notification can be posted.
    900  */
    901 int
    902 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
    903 {
    904 	/* {
    905 		syscallarg(timer_t) timerid;
    906 	} */
    907 	struct proc *p = l->l_proc;
    908 	int timerid;
    909 	struct ptimer *pt;
    910 
    911 	timerid = SCARG(uap, timerid);
    912 
    913 	if ((p->p_timers == NULL) ||
    914 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    915 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    916 		return (EINVAL);
    917 
    918 	*retval = pt->pt_poverruns;
    919 
    920 	return (0);
    921 }
    922 
    923 /*
    924  * Real interval timer expired:
    925  * send process whose timer expired an alarm signal.
    926  * If time is not set up to reload, then just return.
    927  * Else compute next time timer should go off which is > current time.
    928  * This is where delay in processing this timeout causes multiple
    929  * SIGALRM calls to be compressed into one.
    930  */
    931 void
    932 realtimerexpire(void *arg)
    933 {
    934 	struct timeval now;
    935 	struct ptimer *pt;
    936 	int s;
    937 
    938 	pt = (struct ptimer *)arg;
    939 
    940 	itimerfire(pt);
    941 
    942 	if (!timerisset(&pt->pt_time.it_interval)) {
    943 		timerclear(&pt->pt_time.it_value);
    944 		return;
    945 	}
    946 	for (;;) {
    947 		s = splclock();	/* XXX need spl now? */
    948 		timeradd(&pt->pt_time.it_value,
    949 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    950 		getmicrotime(&now);
    951 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    952 			/*
    953 			 * Don't need to check hzto() return value, here.
    954 			 * callout_reset() does it for us.
    955 			 */
    956 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    957 			    realtimerexpire, pt);
    958 			splx(s);
    959 			return;
    960 		}
    961 		splx(s);
    962 		pt->pt_overruns++;
    963 	}
    964 }
    965 
    966 /* BSD routine to get the value of an interval timer. */
    967 /* ARGSUSED */
    968 int
    969 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
    970 {
    971 	/* {
    972 		syscallarg(int) which;
    973 		syscallarg(struct itimerval *) itv;
    974 	} */
    975 	struct proc *p = l->l_proc;
    976 	struct itimerval aitv;
    977 	int error;
    978 
    979 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    980 	if (error)
    981 		return error;
    982 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    983 }
    984 
    985 int
    986 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    987 {
    988 	int s;
    989 
    990 	if ((u_int)which > ITIMER_PROF)
    991 		return (EINVAL);
    992 
    993 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    994 		timerclear(&itvp->it_value);
    995 		timerclear(&itvp->it_interval);
    996 	} else {
    997 		s = splclock();
    998 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    999 		splx(s);
   1000 	}
   1001 
   1002 	return 0;
   1003 }
   1004 
   1005 /* BSD routine to set/arm an interval timer. */
   1006 /* ARGSUSED */
   1007 int
   1008 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
   1009 {
   1010 	/* {
   1011 		syscallarg(int) which;
   1012 		syscallarg(const struct itimerval *) itv;
   1013 		syscallarg(struct itimerval *) oitv;
   1014 	} */
   1015 	struct proc *p = l->l_proc;
   1016 	int which = SCARG(uap, which);
   1017 	struct sys_getitimer_args getargs;
   1018 	const struct itimerval *itvp;
   1019 	struct itimerval aitv;
   1020 	int error;
   1021 
   1022 	if ((u_int)which > ITIMER_PROF)
   1023 		return (EINVAL);
   1024 	itvp = SCARG(uap, itv);
   1025 	if (itvp &&
   1026 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1027 		return (error);
   1028 	if (SCARG(uap, oitv) != NULL) {
   1029 		SCARG(&getargs, which) = which;
   1030 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1031 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1032 			return (error);
   1033 	}
   1034 	if (itvp == 0)
   1035 		return (0);
   1036 
   1037 	return dosetitimer(p, which, &aitv);
   1038 }
   1039 
   1040 int
   1041 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1042 {
   1043 	struct timeval now;
   1044 	struct ptimer *pt;
   1045 	int s;
   1046 
   1047 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1048 		return (EINVAL);
   1049 
   1050 	/*
   1051 	 * Don't bother allocating data structures if the process just
   1052 	 * wants to clear the timer.
   1053 	 */
   1054 	if (!timerisset(&itvp->it_value) &&
   1055 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1056 		return (0);
   1057 
   1058 	if (p->p_timers == NULL)
   1059 		timers_alloc(p);
   1060 	if (p->p_timers->pts_timers[which] == NULL) {
   1061 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1062 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1063 		pt->pt_ev.sigev_value.sival_int = which;
   1064 		pt->pt_overruns = 0;
   1065 		pt->pt_proc = p;
   1066 		pt->pt_type = which;
   1067 		pt->pt_entry = which;
   1068 		switch (which) {
   1069 		case ITIMER_REAL:
   1070 			callout_init(&pt->pt_ch, 0);
   1071 			pt->pt_ev.sigev_signo = SIGALRM;
   1072 			break;
   1073 		case ITIMER_VIRTUAL:
   1074 			pt->pt_active = 0;
   1075 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1076 			break;
   1077 		case ITIMER_PROF:
   1078 			pt->pt_active = 0;
   1079 			pt->pt_ev.sigev_signo = SIGPROF;
   1080 			break;
   1081 		}
   1082 	} else
   1083 		pt = p->p_timers->pts_timers[which];
   1084 
   1085 	pt->pt_time = *itvp;
   1086 	p->p_timers->pts_timers[which] = pt;
   1087 
   1088 	s = splclock();
   1089 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1090 		/* Convert to absolute time */
   1091 		/* XXX need to wrap in splclock for timecounters case? */
   1092 		getmicrotime(&now);
   1093 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1094 	}
   1095 	timer_settime(pt);
   1096 	splx(s);
   1097 
   1098 	return (0);
   1099 }
   1100 
   1101 /* Utility routines to manage the array of pointers to timers. */
   1102 void
   1103 timers_alloc(struct proc *p)
   1104 {
   1105 	int i;
   1106 	struct ptimers *pts;
   1107 
   1108 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1109 	LIST_INIT(&pts->pts_virtual);
   1110 	LIST_INIT(&pts->pts_prof);
   1111 	for (i = 0; i < TIMER_MAX; i++)
   1112 		pts->pts_timers[i] = NULL;
   1113 	pts->pts_fired = 0;
   1114 	p->p_timers = pts;
   1115 }
   1116 
   1117 /*
   1118  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1119  * then clean up all timers and free all the data structures. If
   1120  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1121  * by timer_create(), not the BSD setitimer() timers, and only free the
   1122  * structure if none of those remain.
   1123  */
   1124 void
   1125 timers_free(struct proc *p, int which)
   1126 {
   1127 	int i, s;
   1128 	struct ptimers *pts;
   1129 	struct ptimer *pt, *ptn;
   1130 	struct timeval tv;
   1131 
   1132 	if (p->p_timers) {
   1133 		pts = p->p_timers;
   1134 		if (which == TIMERS_ALL)
   1135 			i = 0;
   1136 		else {
   1137 			s = splclock();
   1138 			timerclear(&tv);
   1139 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1140 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1141 			     ptn = LIST_NEXT(ptn, pt_list))
   1142 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1143 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1144 			if (ptn) {
   1145 				timeradd(&tv, &ptn->pt_time.it_value,
   1146 				    &ptn->pt_time.it_value);
   1147 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1148 				    ptn, pt_list);
   1149 			}
   1150 
   1151 			timerclear(&tv);
   1152 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1153 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1154 			     ptn = LIST_NEXT(ptn, pt_list))
   1155 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1156 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1157 			if (ptn) {
   1158 				timeradd(&tv, &ptn->pt_time.it_value,
   1159 				    &ptn->pt_time.it_value);
   1160 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1161 				    pt_list);
   1162 			}
   1163 			splx(s);
   1164 			i = 3;
   1165 		}
   1166 		for ( ; i < TIMER_MAX; i++)
   1167 			if ((pt = pts->pts_timers[i]) != NULL) {
   1168 				if (pt->pt_type == CLOCK_REALTIME) {
   1169 					callout_stop(&pt->pt_ch);
   1170 					callout_destroy(&pt->pt_ch);
   1171 				}
   1172 				pts->pts_timers[i] = NULL;
   1173 				pool_put(&ptimer_pool, pt);
   1174 			}
   1175 		if ((pts->pts_timers[0] == NULL) &&
   1176 		    (pts->pts_timers[1] == NULL) &&
   1177 		    (pts->pts_timers[2] == NULL)) {
   1178 			p->p_timers = NULL;
   1179 			pool_put(&ptimers_pool, pts);
   1180 		}
   1181 	}
   1182 }
   1183 
   1184 /*
   1185  * Decrement an interval timer by a specified number
   1186  * of microseconds, which must be less than a second,
   1187  * i.e. < 1000000.  If the timer expires, then reload
   1188  * it.  In this case, carry over (usec - old value) to
   1189  * reduce the value reloaded into the timer so that
   1190  * the timer does not drift.  This routine assumes
   1191  * that it is called in a context where the timers
   1192  * on which it is operating cannot change in value.
   1193  */
   1194 int
   1195 itimerdecr(struct ptimer *pt, int usec)
   1196 {
   1197 	struct itimerval *itp;
   1198 
   1199 	itp = &pt->pt_time;
   1200 	if (itp->it_value.tv_usec < usec) {
   1201 		if (itp->it_value.tv_sec == 0) {
   1202 			/* expired, and already in next interval */
   1203 			usec -= itp->it_value.tv_usec;
   1204 			goto expire;
   1205 		}
   1206 		itp->it_value.tv_usec += 1000000;
   1207 		itp->it_value.tv_sec--;
   1208 	}
   1209 	itp->it_value.tv_usec -= usec;
   1210 	usec = 0;
   1211 	if (timerisset(&itp->it_value))
   1212 		return (1);
   1213 	/* expired, exactly at end of interval */
   1214 expire:
   1215 	if (timerisset(&itp->it_interval)) {
   1216 		itp->it_value = itp->it_interval;
   1217 		itp->it_value.tv_usec -= usec;
   1218 		if (itp->it_value.tv_usec < 0) {
   1219 			itp->it_value.tv_usec += 1000000;
   1220 			itp->it_value.tv_sec--;
   1221 		}
   1222 		timer_settime(pt);
   1223 	} else
   1224 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1225 	return (0);
   1226 }
   1227 
   1228 void
   1229 itimerfire(struct ptimer *pt)
   1230 {
   1231 	struct proc *p = pt->pt_proc;
   1232 
   1233 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1234 		/*
   1235 		 * No RT signal infrastructure exists at this time;
   1236 		 * just post the signal number and throw away the
   1237 		 * value.
   1238 		 */
   1239 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1240 			pt->pt_overruns++;
   1241 		else {
   1242 			ksiginfo_t ksi;
   1243 			KSI_INIT(&ksi);
   1244 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1245 			ksi.ksi_code = SI_TIMER;
   1246 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1247 			pt->pt_poverruns = pt->pt_overruns;
   1248 			pt->pt_overruns = 0;
   1249 			mutex_enter(&proclist_mutex);
   1250 			kpsignal(p, &ksi, NULL);
   1251 			mutex_exit(&proclist_mutex);
   1252 		}
   1253 	}
   1254 }
   1255 
   1256 /*
   1257  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1258  * for usage and rationale.
   1259  */
   1260 int
   1261 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1262 {
   1263 	struct timeval tv, delta;
   1264 	int rv = 0;
   1265 
   1266 	getmicrouptime(&tv);
   1267 	timersub(&tv, lasttime, &delta);
   1268 
   1269 	/*
   1270 	 * check for 0,0 is so that the message will be seen at least once,
   1271 	 * even if interval is huge.
   1272 	 */
   1273 	if (timercmp(&delta, mininterval, >=) ||
   1274 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1275 		*lasttime = tv;
   1276 		rv = 1;
   1277 	}
   1278 
   1279 	return (rv);
   1280 }
   1281 
   1282 /*
   1283  * ppsratecheck(): packets (or events) per second limitation.
   1284  */
   1285 int
   1286 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1287 {
   1288 	struct timeval tv, delta;
   1289 	int rv;
   1290 
   1291 	getmicrouptime(&tv);
   1292 	timersub(&tv, lasttime, &delta);
   1293 
   1294 	/*
   1295 	 * check for 0,0 is so that the message will be seen at least once.
   1296 	 * if more than one second have passed since the last update of
   1297 	 * lasttime, reset the counter.
   1298 	 *
   1299 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1300 	 * try to use *curpps for stat purposes as well.
   1301 	 */
   1302 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1303 	    delta.tv_sec >= 1) {
   1304 		*lasttime = tv;
   1305 		*curpps = 0;
   1306 	}
   1307 	if (maxpps < 0)
   1308 		rv = 1;
   1309 	else if (*curpps < maxpps)
   1310 		rv = 1;
   1311 	else
   1312 		rv = 0;
   1313 
   1314 #if 1 /*DIAGNOSTIC?*/
   1315 	/* be careful about wrap-around */
   1316 	if (*curpps + 1 > *curpps)
   1317 		*curpps = *curpps + 1;
   1318 #else
   1319 	/*
   1320 	 * assume that there's not too many calls to this function.
   1321 	 * not sure if the assumption holds, as it depends on *caller's*
   1322 	 * behavior, not the behavior of this function.
   1323 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1324 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1325 	 */
   1326 	*curpps = *curpps + 1;
   1327 #endif
   1328 
   1329 	return (rv);
   1330 }
   1331