kern_time.c revision 1.137 1 /* $NetBSD: kern_time.c,v 1.137 2007/12/22 01:14:55 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.137 2007/12/22 01:14:55 yamt Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #include <sys/kauth.h>
83
84 #include <sys/mount.h>
85 #include <sys/syscallargs.h>
86
87 #include <uvm/uvm_extern.h>
88
89 #include <sys/cpu.h>
90
91 kmutex_t time_lock;
92
93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94 &pool_allocator_nointr, IPL_NONE);
95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96 &pool_allocator_nointr, IPL_NONE);
97
98 /*
99 * Initialize timekeeping.
100 */
101 void
102 time_init(void)
103 {
104
105 mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 }
107
108 /* Time of day and interval timer support.
109 *
110 * These routines provide the kernel entry points to get and set
111 * the time-of-day and per-process interval timers. Subroutines
112 * here provide support for adding and subtracting timeval structures
113 * and decrementing interval timers, optionally reloading the interval
114 * timers when they expire.
115 */
116
117 /* This function is used by clock_settime and settimeofday */
118 static int
119 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
120 {
121 struct timeval delta, tv;
122 struct timeval now;
123 struct timespec ts1;
124 struct bintime btdelta;
125 lwp_t *l;
126 int s;
127
128 TIMESPEC_TO_TIMEVAL(&tv, ts);
129
130 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
131 s = splclock();
132 microtime(&now);
133 timersub(&tv, &now, &delta);
134
135 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
136 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
137 KAUTH_ARG(check_kauth ? false : true)) != 0) {
138 splx(s);
139 return (EPERM);
140 }
141
142 #ifdef notyet
143 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
144 splx(s);
145 return (EPERM);
146 }
147 #endif
148
149 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
150 tc_setclock(&ts1);
151
152 timeradd(&boottime, &delta, &boottime);
153
154 /*
155 * XXXSMP: There is a short race between setting the time above
156 * and adjusting LWP's run times. Fixing this properly means
157 * pausing all CPUs while we adjust the clock.
158 */
159 timeval2bintime(&delta, &btdelta);
160 mutex_enter(&proclist_lock);
161 LIST_FOREACH(l, &alllwp, l_list) {
162 lwp_lock(l);
163 bintime_add(&l->l_stime, &btdelta);
164 lwp_unlock(l);
165 }
166 mutex_exit(&proclist_lock);
167 resettodr();
168 splx(s);
169
170 return (0);
171 }
172
173 int
174 settime(struct proc *p, struct timespec *ts)
175 {
176 return (settime1(p, ts, true));
177 }
178
179 /* ARGSUSED */
180 int
181 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
182 {
183 /* {
184 syscallarg(clockid_t) clock_id;
185 syscallarg(struct timespec *) tp;
186 } */
187 clockid_t clock_id;
188 struct timespec ats;
189
190 clock_id = SCARG(uap, clock_id);
191 switch (clock_id) {
192 case CLOCK_REALTIME:
193 nanotime(&ats);
194 break;
195 case CLOCK_MONOTONIC:
196 nanouptime(&ats);
197 break;
198 default:
199 return (EINVAL);
200 }
201
202 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
203 }
204
205 /* ARGSUSED */
206 int
207 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
208 {
209 /* {
210 syscallarg(clockid_t) clock_id;
211 syscallarg(const struct timespec *) tp;
212 } */
213
214 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
215 true);
216 }
217
218
219 int
220 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
221 bool check_kauth)
222 {
223 struct timespec ats;
224 int error;
225
226 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
227 return (error);
228
229 switch (clock_id) {
230 case CLOCK_REALTIME:
231 if ((error = settime1(p, &ats, check_kauth)) != 0)
232 return (error);
233 break;
234 case CLOCK_MONOTONIC:
235 return (EINVAL); /* read-only clock */
236 default:
237 return (EINVAL);
238 }
239
240 return 0;
241 }
242
243 int
244 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
245 {
246 /* {
247 syscallarg(clockid_t) clock_id;
248 syscallarg(struct timespec *) tp;
249 } */
250 clockid_t clock_id;
251 struct timespec ts;
252 int error = 0;
253
254 clock_id = SCARG(uap, clock_id);
255 switch (clock_id) {
256 case CLOCK_REALTIME:
257 case CLOCK_MONOTONIC:
258 ts.tv_sec = 0;
259 if (tc_getfrequency() > 1000000000)
260 ts.tv_nsec = 1;
261 else
262 ts.tv_nsec = 1000000000 / tc_getfrequency();
263 break;
264 default:
265 return (EINVAL);
266 }
267
268 if (SCARG(uap, tp))
269 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
270
271 return error;
272 }
273
274 /* ARGSUSED */
275 int
276 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
277 {
278 /* {
279 syscallarg(struct timespec *) rqtp;
280 syscallarg(struct timespec *) rmtp;
281 } */
282 struct timespec rmt, rqt;
283 int error, error1;
284
285 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
286 if (error)
287 return (error);
288
289 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
290 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291 return error;
292
293 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294 return error1 ? error1 : error;
295 }
296
297 int
298 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
299 {
300 int error, timo;
301
302 if (itimespecfix(rqt))
303 return (EINVAL);
304
305 timo = tstohz(rqt);
306 /*
307 * Avoid inadvertantly sleeping forever
308 */
309 if (timo == 0)
310 timo = 1;
311
312 if (rmt != NULL)
313 getnanouptime(rmt);
314
315 error = kpause("nanoslp", true, timo, NULL);
316 if (error == ERESTART)
317 error = EINTR;
318 if (error == EWOULDBLOCK)
319 error = 0;
320
321 if (rmt!= NULL) {
322 struct timespec rmtend;
323
324 getnanouptime(&rmtend);
325
326 timespecsub(&rmtend, rmt, rmt);
327 timespecsub(rqt, rmt, rmt);
328 if (rmt->tv_sec < 0)
329 timespecclear(rmt);
330 }
331
332 return error;
333 }
334
335 /* ARGSUSED */
336 int
337 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
338 {
339 /* {
340 syscallarg(struct timeval *) tp;
341 syscallarg(void *) tzp; really "struct timezone *";
342 } */
343 struct timeval atv;
344 int error = 0;
345 struct timezone tzfake;
346
347 if (SCARG(uap, tp)) {
348 microtime(&atv);
349 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
350 if (error)
351 return (error);
352 }
353 if (SCARG(uap, tzp)) {
354 /*
355 * NetBSD has no kernel notion of time zone, so we just
356 * fake up a timezone struct and return it if demanded.
357 */
358 tzfake.tz_minuteswest = 0;
359 tzfake.tz_dsttime = 0;
360 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
361 }
362 return (error);
363 }
364
365 /* ARGSUSED */
366 int
367 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
368 {
369 /* {
370 syscallarg(const struct timeval *) tv;
371 syscallarg(const void *) tzp; really "const struct timezone *";
372 } */
373
374 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
375 }
376
377 int
378 settimeofday1(const struct timeval *utv, bool userspace,
379 const void *utzp, struct lwp *l, bool check_kauth)
380 {
381 struct timeval atv;
382 struct timespec ts;
383 int error;
384
385 /* Verify all parameters before changing time. */
386
387 /*
388 * NetBSD has no kernel notion of time zone, and only an
389 * obsolete program would try to set it, so we log a warning.
390 */
391 if (utzp)
392 log(LOG_WARNING, "pid %d attempted to set the "
393 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
394
395 if (utv == NULL)
396 return 0;
397
398 if (userspace) {
399 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
400 return error;
401 utv = &atv;
402 }
403
404 TIMEVAL_TO_TIMESPEC(utv, &ts);
405 return settime1(l->l_proc, &ts, check_kauth);
406 }
407
408 #ifndef __HAVE_TIMECOUNTER
409 int tickdelta; /* current clock skew, us. per tick */
410 long timedelta; /* unapplied time correction, us. */
411 long bigadj = 1000000; /* use 10x skew above bigadj us. */
412 #endif
413
414 int time_adjusted; /* set if an adjustment is made */
415
416 /* ARGSUSED */
417 int
418 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
419 {
420 /* {
421 syscallarg(const struct timeval *) delta;
422 syscallarg(struct timeval *) olddelta;
423 } */
424 int error;
425
426 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
427 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
428 return (error);
429
430 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
431 }
432
433 int
434 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
435 {
436 struct timeval atv;
437 int error = 0;
438
439 #ifdef __HAVE_TIMECOUNTER
440 extern int64_t time_adjtime; /* in kern_ntptime.c */
441 #else /* !__HAVE_TIMECOUNTER */
442 long ndelta, ntickdelta, odelta;
443 int s;
444 #endif /* !__HAVE_TIMECOUNTER */
445
446 #ifdef __HAVE_TIMECOUNTER
447 if (olddelta) {
448 atv.tv_sec = time_adjtime / 1000000;
449 atv.tv_usec = time_adjtime % 1000000;
450 if (atv.tv_usec < 0) {
451 atv.tv_usec += 1000000;
452 atv.tv_sec--;
453 }
454 error = copyout(&atv, olddelta, sizeof(struct timeval));
455 if (error)
456 return (error);
457 }
458
459 if (delta) {
460 error = copyin(delta, &atv, sizeof(struct timeval));
461 if (error)
462 return (error);
463
464 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
465 atv.tv_usec;
466
467 if (time_adjtime)
468 /* We need to save the system time during shutdown */
469 time_adjusted |= 1;
470 }
471 #else /* !__HAVE_TIMECOUNTER */
472 error = copyin(delta, &atv, sizeof(struct timeval));
473 if (error)
474 return (error);
475
476 /*
477 * Compute the total correction and the rate at which to apply it.
478 * Round the adjustment down to a whole multiple of the per-tick
479 * delta, so that after some number of incremental changes in
480 * hardclock(), tickdelta will become zero, lest the correction
481 * overshoot and start taking us away from the desired final time.
482 */
483 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
484 if (ndelta > bigadj || ndelta < -bigadj)
485 ntickdelta = 10 * tickadj;
486 else
487 ntickdelta = tickadj;
488 if (ndelta % ntickdelta)
489 ndelta = ndelta / ntickdelta * ntickdelta;
490
491 /*
492 * To make hardclock()'s job easier, make the per-tick delta negative
493 * if we want time to run slower; then hardclock can simply compute
494 * tick + tickdelta, and subtract tickdelta from timedelta.
495 */
496 if (ndelta < 0)
497 ntickdelta = -ntickdelta;
498 if (ndelta != 0)
499 /* We need to save the system clock time during shutdown */
500 time_adjusted |= 1;
501 s = splclock();
502 odelta = timedelta;
503 timedelta = ndelta;
504 tickdelta = ntickdelta;
505 splx(s);
506
507 if (olddelta) {
508 atv.tv_sec = odelta / 1000000;
509 atv.tv_usec = odelta % 1000000;
510 error = copyout(&atv, olddelta, sizeof(struct timeval));
511 }
512 #endif /* __HAVE_TIMECOUNTER */
513
514 return error;
515 }
516
517 /*
518 * Interval timer support. Both the BSD getitimer() family and the POSIX
519 * timer_*() family of routines are supported.
520 *
521 * All timers are kept in an array pointed to by p_timers, which is
522 * allocated on demand - many processes don't use timers at all. The
523 * first three elements in this array are reserved for the BSD timers:
524 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
525 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
526 * syscall.
527 *
528 * Realtime timers are kept in the ptimer structure as an absolute
529 * time; virtual time timers are kept as a linked list of deltas.
530 * Virtual time timers are processed in the hardclock() routine of
531 * kern_clock.c. The real time timer is processed by a callout
532 * routine, called from the softclock() routine. Since a callout may
533 * be delayed in real time due to interrupt processing in the system,
534 * it is possible for the real time timeout routine (realtimeexpire,
535 * given below), to be delayed in real time past when it is supposed
536 * to occur. It does not suffice, therefore, to reload the real timer
537 * .it_value from the real time timers .it_interval. Rather, we
538 * compute the next time in absolute time the timer should go off. */
539
540 /* Allocate a POSIX realtime timer. */
541 int
542 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
543 {
544 /* {
545 syscallarg(clockid_t) clock_id;
546 syscallarg(struct sigevent *) evp;
547 syscallarg(timer_t *) timerid;
548 } */
549
550 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
551 SCARG(uap, evp), copyin, l);
552 }
553
554 int
555 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
556 copyin_t fetch_event, struct lwp *l)
557 {
558 int error;
559 timer_t timerid;
560 struct ptimer *pt;
561 struct proc *p;
562
563 p = l->l_proc;
564
565 if (id < CLOCK_REALTIME ||
566 id > CLOCK_PROF)
567 return (EINVAL);
568
569 if (p->p_timers == NULL)
570 timers_alloc(p);
571
572 /* Find a free timer slot, skipping those reserved for setitimer(). */
573 for (timerid = 3; timerid < TIMER_MAX; timerid++)
574 if (p->p_timers->pts_timers[timerid] == NULL)
575 break;
576
577 if (timerid == TIMER_MAX)
578 return EAGAIN;
579
580 pt = pool_get(&ptimer_pool, PR_WAITOK);
581 if (evp) {
582 if (((error =
583 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
584 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
585 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
586 pool_put(&ptimer_pool, pt);
587 return (error ? error : EINVAL);
588 }
589 } else {
590 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
591 switch (id) {
592 case CLOCK_REALTIME:
593 pt->pt_ev.sigev_signo = SIGALRM;
594 break;
595 case CLOCK_VIRTUAL:
596 pt->pt_ev.sigev_signo = SIGVTALRM;
597 break;
598 case CLOCK_PROF:
599 pt->pt_ev.sigev_signo = SIGPROF;
600 break;
601 }
602 pt->pt_ev.sigev_value.sival_int = timerid;
603 }
604 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
605 pt->pt_info.ksi_errno = 0;
606 pt->pt_info.ksi_code = 0;
607 pt->pt_info.ksi_pid = p->p_pid;
608 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
609 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
610
611 pt->pt_type = id;
612 pt->pt_proc = p;
613 pt->pt_overruns = 0;
614 pt->pt_poverruns = 0;
615 pt->pt_entry = timerid;
616 timerclear(&pt->pt_time.it_value);
617 if (id == CLOCK_REALTIME)
618 callout_init(&pt->pt_ch, 0);
619 else
620 pt->pt_active = 0;
621
622 p->p_timers->pts_timers[timerid] = pt;
623
624 return copyout(&timerid, tid, sizeof(timerid));
625 }
626
627 /* Delete a POSIX realtime timer */
628 int
629 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
630 {
631 /* {
632 syscallarg(timer_t) timerid;
633 } */
634 struct proc *p = l->l_proc;
635 timer_t timerid;
636 struct ptimer *pt, *ptn;
637 int s;
638
639 timerid = SCARG(uap, timerid);
640
641 if ((p->p_timers == NULL) ||
642 (timerid < 2) || (timerid >= TIMER_MAX) ||
643 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
644 return (EINVAL);
645
646 if (pt->pt_type == CLOCK_REALTIME) {
647 callout_stop(&pt->pt_ch);
648 callout_destroy(&pt->pt_ch);
649 } else if (pt->pt_active) {
650 s = splclock();
651 ptn = LIST_NEXT(pt, pt_list);
652 LIST_REMOVE(pt, pt_list);
653 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
654 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
655 &ptn->pt_time.it_value);
656 splx(s);
657 }
658
659 p->p_timers->pts_timers[timerid] = NULL;
660 pool_put(&ptimer_pool, pt);
661
662 return (0);
663 }
664
665 /*
666 * Set up the given timer. The value in pt->pt_time.it_value is taken
667 * to be an absolute time for CLOCK_REALTIME timers and a relative
668 * time for virtual timers.
669 * Must be called at splclock().
670 */
671 void
672 timer_settime(struct ptimer *pt)
673 {
674 struct ptimer *ptn, *pptn;
675 struct ptlist *ptl;
676
677 if (pt->pt_type == CLOCK_REALTIME) {
678 callout_stop(&pt->pt_ch);
679 if (timerisset(&pt->pt_time.it_value)) {
680 /*
681 * Don't need to check hzto() return value, here.
682 * callout_reset() does it for us.
683 */
684 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
685 realtimerexpire, pt);
686 }
687 } else {
688 if (pt->pt_active) {
689 ptn = LIST_NEXT(pt, pt_list);
690 LIST_REMOVE(pt, pt_list);
691 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
692 timeradd(&pt->pt_time.it_value,
693 &ptn->pt_time.it_value,
694 &ptn->pt_time.it_value);
695 }
696 if (timerisset(&pt->pt_time.it_value)) {
697 if (pt->pt_type == CLOCK_VIRTUAL)
698 ptl = &pt->pt_proc->p_timers->pts_virtual;
699 else
700 ptl = &pt->pt_proc->p_timers->pts_prof;
701
702 for (ptn = LIST_FIRST(ptl), pptn = NULL;
703 ptn && timercmp(&pt->pt_time.it_value,
704 &ptn->pt_time.it_value, >);
705 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
706 timersub(&pt->pt_time.it_value,
707 &ptn->pt_time.it_value,
708 &pt->pt_time.it_value);
709
710 if (pptn)
711 LIST_INSERT_AFTER(pptn, pt, pt_list);
712 else
713 LIST_INSERT_HEAD(ptl, pt, pt_list);
714
715 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
716 timersub(&ptn->pt_time.it_value,
717 &pt->pt_time.it_value,
718 &ptn->pt_time.it_value);
719
720 pt->pt_active = 1;
721 } else
722 pt->pt_active = 0;
723 }
724 }
725
726 void
727 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
728 {
729 struct timeval now;
730 struct ptimer *ptn;
731
732 *aitv = pt->pt_time;
733 if (pt->pt_type == CLOCK_REALTIME) {
734 /*
735 * Convert from absolute to relative time in .it_value
736 * part of real time timer. If time for real time
737 * timer has passed return 0, else return difference
738 * between current time and time for the timer to go
739 * off.
740 */
741 if (timerisset(&aitv->it_value)) {
742 getmicrotime(&now);
743 if (timercmp(&aitv->it_value, &now, <))
744 timerclear(&aitv->it_value);
745 else
746 timersub(&aitv->it_value, &now,
747 &aitv->it_value);
748 }
749 } else if (pt->pt_active) {
750 if (pt->pt_type == CLOCK_VIRTUAL)
751 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
752 else
753 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
754 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
755 timeradd(&aitv->it_value,
756 &ptn->pt_time.it_value, &aitv->it_value);
757 KASSERT(ptn != NULL); /* pt should be findable on the list */
758 } else
759 timerclear(&aitv->it_value);
760 }
761
762
763
764 /* Set and arm a POSIX realtime timer */
765 int
766 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
767 {
768 /* {
769 syscallarg(timer_t) timerid;
770 syscallarg(int) flags;
771 syscallarg(const struct itimerspec *) value;
772 syscallarg(struct itimerspec *) ovalue;
773 } */
774 int error;
775 struct itimerspec value, ovalue, *ovp = NULL;
776
777 if ((error = copyin(SCARG(uap, value), &value,
778 sizeof(struct itimerspec))) != 0)
779 return (error);
780
781 if (SCARG(uap, ovalue))
782 ovp = &ovalue;
783
784 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
785 SCARG(uap, flags), l->l_proc)) != 0)
786 return error;
787
788 if (ovp)
789 return copyout(&ovalue, SCARG(uap, ovalue),
790 sizeof(struct itimerspec));
791 return 0;
792 }
793
794 int
795 dotimer_settime(int timerid, struct itimerspec *value,
796 struct itimerspec *ovalue, int flags, struct proc *p)
797 {
798 struct timeval now;
799 struct itimerval val, oval;
800 struct ptimer *pt;
801 int s;
802
803 if ((p->p_timers == NULL) ||
804 (timerid < 2) || (timerid >= TIMER_MAX) ||
805 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
806 return (EINVAL);
807
808 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
809 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
810 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
811 return (EINVAL);
812
813 oval = pt->pt_time;
814 pt->pt_time = val;
815
816 s = splclock();
817 /*
818 * If we've been passed a relative time for a realtime timer,
819 * convert it to absolute; if an absolute time for a virtual
820 * timer, convert it to relative and make sure we don't set it
821 * to zero, which would cancel the timer, or let it go
822 * negative, which would confuse the comparison tests.
823 */
824 if (timerisset(&pt->pt_time.it_value)) {
825 if (pt->pt_type == CLOCK_REALTIME) {
826 if ((flags & TIMER_ABSTIME) == 0) {
827 getmicrotime(&now);
828 timeradd(&pt->pt_time.it_value, &now,
829 &pt->pt_time.it_value);
830 }
831 } else {
832 if ((flags & TIMER_ABSTIME) != 0) {
833 getmicrotime(&now);
834 timersub(&pt->pt_time.it_value, &now,
835 &pt->pt_time.it_value);
836 if (!timerisset(&pt->pt_time.it_value) ||
837 pt->pt_time.it_value.tv_sec < 0) {
838 pt->pt_time.it_value.tv_sec = 0;
839 pt->pt_time.it_value.tv_usec = 1;
840 }
841 }
842 }
843 }
844
845 timer_settime(pt);
846 splx(s);
847
848 if (ovalue) {
849 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
850 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
851 }
852
853 return (0);
854 }
855
856 /* Return the time remaining until a POSIX timer fires. */
857 int
858 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
859 {
860 /* {
861 syscallarg(timer_t) timerid;
862 syscallarg(struct itimerspec *) value;
863 } */
864 struct itimerspec its;
865 int error;
866
867 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
868 &its)) != 0)
869 return error;
870
871 return copyout(&its, SCARG(uap, value), sizeof(its));
872 }
873
874 int
875 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
876 {
877 int s;
878 struct ptimer *pt;
879 struct itimerval aitv;
880
881 if ((p->p_timers == NULL) ||
882 (timerid < 2) || (timerid >= TIMER_MAX) ||
883 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
884 return (EINVAL);
885
886 s = splclock();
887 timer_gettime(pt, &aitv);
888 splx(s);
889
890 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
891 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
892
893 return 0;
894 }
895
896 /*
897 * Return the count of the number of times a periodic timer expired
898 * while a notification was already pending. The counter is reset when
899 * a timer expires and a notification can be posted.
900 */
901 int
902 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
903 {
904 /* {
905 syscallarg(timer_t) timerid;
906 } */
907 struct proc *p = l->l_proc;
908 int timerid;
909 struct ptimer *pt;
910
911 timerid = SCARG(uap, timerid);
912
913 if ((p->p_timers == NULL) ||
914 (timerid < 2) || (timerid >= TIMER_MAX) ||
915 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
916 return (EINVAL);
917
918 *retval = pt->pt_poverruns;
919
920 return (0);
921 }
922
923 /*
924 * Real interval timer expired:
925 * send process whose timer expired an alarm signal.
926 * If time is not set up to reload, then just return.
927 * Else compute next time timer should go off which is > current time.
928 * This is where delay in processing this timeout causes multiple
929 * SIGALRM calls to be compressed into one.
930 */
931 void
932 realtimerexpire(void *arg)
933 {
934 struct timeval now;
935 struct ptimer *pt;
936 int s;
937
938 pt = (struct ptimer *)arg;
939
940 itimerfire(pt);
941
942 if (!timerisset(&pt->pt_time.it_interval)) {
943 timerclear(&pt->pt_time.it_value);
944 return;
945 }
946 for (;;) {
947 s = splclock(); /* XXX need spl now? */
948 timeradd(&pt->pt_time.it_value,
949 &pt->pt_time.it_interval, &pt->pt_time.it_value);
950 getmicrotime(&now);
951 if (timercmp(&pt->pt_time.it_value, &now, >)) {
952 /*
953 * Don't need to check hzto() return value, here.
954 * callout_reset() does it for us.
955 */
956 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
957 realtimerexpire, pt);
958 splx(s);
959 return;
960 }
961 splx(s);
962 pt->pt_overruns++;
963 }
964 }
965
966 /* BSD routine to get the value of an interval timer. */
967 /* ARGSUSED */
968 int
969 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
970 {
971 /* {
972 syscallarg(int) which;
973 syscallarg(struct itimerval *) itv;
974 } */
975 struct proc *p = l->l_proc;
976 struct itimerval aitv;
977 int error;
978
979 error = dogetitimer(p, SCARG(uap, which), &aitv);
980 if (error)
981 return error;
982 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
983 }
984
985 int
986 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
987 {
988 int s;
989
990 if ((u_int)which > ITIMER_PROF)
991 return (EINVAL);
992
993 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
994 timerclear(&itvp->it_value);
995 timerclear(&itvp->it_interval);
996 } else {
997 s = splclock();
998 timer_gettime(p->p_timers->pts_timers[which], itvp);
999 splx(s);
1000 }
1001
1002 return 0;
1003 }
1004
1005 /* BSD routine to set/arm an interval timer. */
1006 /* ARGSUSED */
1007 int
1008 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
1009 {
1010 /* {
1011 syscallarg(int) which;
1012 syscallarg(const struct itimerval *) itv;
1013 syscallarg(struct itimerval *) oitv;
1014 } */
1015 struct proc *p = l->l_proc;
1016 int which = SCARG(uap, which);
1017 struct sys_getitimer_args getargs;
1018 const struct itimerval *itvp;
1019 struct itimerval aitv;
1020 int error;
1021
1022 if ((u_int)which > ITIMER_PROF)
1023 return (EINVAL);
1024 itvp = SCARG(uap, itv);
1025 if (itvp &&
1026 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1027 return (error);
1028 if (SCARG(uap, oitv) != NULL) {
1029 SCARG(&getargs, which) = which;
1030 SCARG(&getargs, itv) = SCARG(uap, oitv);
1031 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1032 return (error);
1033 }
1034 if (itvp == 0)
1035 return (0);
1036
1037 return dosetitimer(p, which, &aitv);
1038 }
1039
1040 int
1041 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1042 {
1043 struct timeval now;
1044 struct ptimer *pt;
1045 int s;
1046
1047 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1048 return (EINVAL);
1049
1050 /*
1051 * Don't bother allocating data structures if the process just
1052 * wants to clear the timer.
1053 */
1054 if (!timerisset(&itvp->it_value) &&
1055 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1056 return (0);
1057
1058 if (p->p_timers == NULL)
1059 timers_alloc(p);
1060 if (p->p_timers->pts_timers[which] == NULL) {
1061 pt = pool_get(&ptimer_pool, PR_WAITOK);
1062 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1063 pt->pt_ev.sigev_value.sival_int = which;
1064 pt->pt_overruns = 0;
1065 pt->pt_proc = p;
1066 pt->pt_type = which;
1067 pt->pt_entry = which;
1068 switch (which) {
1069 case ITIMER_REAL:
1070 callout_init(&pt->pt_ch, 0);
1071 pt->pt_ev.sigev_signo = SIGALRM;
1072 break;
1073 case ITIMER_VIRTUAL:
1074 pt->pt_active = 0;
1075 pt->pt_ev.sigev_signo = SIGVTALRM;
1076 break;
1077 case ITIMER_PROF:
1078 pt->pt_active = 0;
1079 pt->pt_ev.sigev_signo = SIGPROF;
1080 break;
1081 }
1082 } else
1083 pt = p->p_timers->pts_timers[which];
1084
1085 pt->pt_time = *itvp;
1086 p->p_timers->pts_timers[which] = pt;
1087
1088 s = splclock();
1089 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1090 /* Convert to absolute time */
1091 /* XXX need to wrap in splclock for timecounters case? */
1092 getmicrotime(&now);
1093 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1094 }
1095 timer_settime(pt);
1096 splx(s);
1097
1098 return (0);
1099 }
1100
1101 /* Utility routines to manage the array of pointers to timers. */
1102 void
1103 timers_alloc(struct proc *p)
1104 {
1105 int i;
1106 struct ptimers *pts;
1107
1108 pts = pool_get(&ptimers_pool, PR_WAITOK);
1109 LIST_INIT(&pts->pts_virtual);
1110 LIST_INIT(&pts->pts_prof);
1111 for (i = 0; i < TIMER_MAX; i++)
1112 pts->pts_timers[i] = NULL;
1113 pts->pts_fired = 0;
1114 p->p_timers = pts;
1115 }
1116
1117 /*
1118 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1119 * then clean up all timers and free all the data structures. If
1120 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1121 * by timer_create(), not the BSD setitimer() timers, and only free the
1122 * structure if none of those remain.
1123 */
1124 void
1125 timers_free(struct proc *p, int which)
1126 {
1127 int i, s;
1128 struct ptimers *pts;
1129 struct ptimer *pt, *ptn;
1130 struct timeval tv;
1131
1132 if (p->p_timers) {
1133 pts = p->p_timers;
1134 if (which == TIMERS_ALL)
1135 i = 0;
1136 else {
1137 s = splclock();
1138 timerclear(&tv);
1139 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1140 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1141 ptn = LIST_NEXT(ptn, pt_list))
1142 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1143 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1144 if (ptn) {
1145 timeradd(&tv, &ptn->pt_time.it_value,
1146 &ptn->pt_time.it_value);
1147 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1148 ptn, pt_list);
1149 }
1150
1151 timerclear(&tv);
1152 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1153 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1154 ptn = LIST_NEXT(ptn, pt_list))
1155 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1156 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1157 if (ptn) {
1158 timeradd(&tv, &ptn->pt_time.it_value,
1159 &ptn->pt_time.it_value);
1160 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1161 pt_list);
1162 }
1163 splx(s);
1164 i = 3;
1165 }
1166 for ( ; i < TIMER_MAX; i++)
1167 if ((pt = pts->pts_timers[i]) != NULL) {
1168 if (pt->pt_type == CLOCK_REALTIME) {
1169 callout_stop(&pt->pt_ch);
1170 callout_destroy(&pt->pt_ch);
1171 }
1172 pts->pts_timers[i] = NULL;
1173 pool_put(&ptimer_pool, pt);
1174 }
1175 if ((pts->pts_timers[0] == NULL) &&
1176 (pts->pts_timers[1] == NULL) &&
1177 (pts->pts_timers[2] == NULL)) {
1178 p->p_timers = NULL;
1179 pool_put(&ptimers_pool, pts);
1180 }
1181 }
1182 }
1183
1184 /*
1185 * Decrement an interval timer by a specified number
1186 * of microseconds, which must be less than a second,
1187 * i.e. < 1000000. If the timer expires, then reload
1188 * it. In this case, carry over (usec - old value) to
1189 * reduce the value reloaded into the timer so that
1190 * the timer does not drift. This routine assumes
1191 * that it is called in a context where the timers
1192 * on which it is operating cannot change in value.
1193 */
1194 int
1195 itimerdecr(struct ptimer *pt, int usec)
1196 {
1197 struct itimerval *itp;
1198
1199 itp = &pt->pt_time;
1200 if (itp->it_value.tv_usec < usec) {
1201 if (itp->it_value.tv_sec == 0) {
1202 /* expired, and already in next interval */
1203 usec -= itp->it_value.tv_usec;
1204 goto expire;
1205 }
1206 itp->it_value.tv_usec += 1000000;
1207 itp->it_value.tv_sec--;
1208 }
1209 itp->it_value.tv_usec -= usec;
1210 usec = 0;
1211 if (timerisset(&itp->it_value))
1212 return (1);
1213 /* expired, exactly at end of interval */
1214 expire:
1215 if (timerisset(&itp->it_interval)) {
1216 itp->it_value = itp->it_interval;
1217 itp->it_value.tv_usec -= usec;
1218 if (itp->it_value.tv_usec < 0) {
1219 itp->it_value.tv_usec += 1000000;
1220 itp->it_value.tv_sec--;
1221 }
1222 timer_settime(pt);
1223 } else
1224 itp->it_value.tv_usec = 0; /* sec is already 0 */
1225 return (0);
1226 }
1227
1228 void
1229 itimerfire(struct ptimer *pt)
1230 {
1231 struct proc *p = pt->pt_proc;
1232
1233 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1234 /*
1235 * No RT signal infrastructure exists at this time;
1236 * just post the signal number and throw away the
1237 * value.
1238 */
1239 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1240 pt->pt_overruns++;
1241 else {
1242 ksiginfo_t ksi;
1243 KSI_INIT(&ksi);
1244 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1245 ksi.ksi_code = SI_TIMER;
1246 ksi.ksi_value = pt->pt_ev.sigev_value;
1247 pt->pt_poverruns = pt->pt_overruns;
1248 pt->pt_overruns = 0;
1249 mutex_enter(&proclist_mutex);
1250 kpsignal(p, &ksi, NULL);
1251 mutex_exit(&proclist_mutex);
1252 }
1253 }
1254 }
1255
1256 /*
1257 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1258 * for usage and rationale.
1259 */
1260 int
1261 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1262 {
1263 struct timeval tv, delta;
1264 int rv = 0;
1265
1266 getmicrouptime(&tv);
1267 timersub(&tv, lasttime, &delta);
1268
1269 /*
1270 * check for 0,0 is so that the message will be seen at least once,
1271 * even if interval is huge.
1272 */
1273 if (timercmp(&delta, mininterval, >=) ||
1274 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1275 *lasttime = tv;
1276 rv = 1;
1277 }
1278
1279 return (rv);
1280 }
1281
1282 /*
1283 * ppsratecheck(): packets (or events) per second limitation.
1284 */
1285 int
1286 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1287 {
1288 struct timeval tv, delta;
1289 int rv;
1290
1291 getmicrouptime(&tv);
1292 timersub(&tv, lasttime, &delta);
1293
1294 /*
1295 * check for 0,0 is so that the message will be seen at least once.
1296 * if more than one second have passed since the last update of
1297 * lasttime, reset the counter.
1298 *
1299 * we do increment *curpps even in *curpps < maxpps case, as some may
1300 * try to use *curpps for stat purposes as well.
1301 */
1302 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1303 delta.tv_sec >= 1) {
1304 *lasttime = tv;
1305 *curpps = 0;
1306 }
1307 if (maxpps < 0)
1308 rv = 1;
1309 else if (*curpps < maxpps)
1310 rv = 1;
1311 else
1312 rv = 0;
1313
1314 #if 1 /*DIAGNOSTIC?*/
1315 /* be careful about wrap-around */
1316 if (*curpps + 1 > *curpps)
1317 *curpps = *curpps + 1;
1318 #else
1319 /*
1320 * assume that there's not too many calls to this function.
1321 * not sure if the assumption holds, as it depends on *caller's*
1322 * behavior, not the behavior of this function.
1323 * IMHO it is wrong to make assumption on the caller's behavior,
1324 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1325 */
1326 *curpps = *curpps + 1;
1327 #endif
1328
1329 return (rv);
1330 }
1331