Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.139
      1 /*	$NetBSD: kern_time.c,v 1.139 2008/02/19 14:17:39 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.139 2008/02/19 14:17:39 yamt Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <sys/cpu.h>
     90 
     91 kmutex_t	time_lock;
     92 
     93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94     &pool_allocator_nointr, IPL_NONE);
     95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96     &pool_allocator_nointr, IPL_NONE);
     97 
     98 /*
     99  * Initialize timekeeping.
    100  */
    101 void
    102 time_init(void)
    103 {
    104 
    105 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106 }
    107 
    108 /* Time of day and interval timer support.
    109  *
    110  * These routines provide the kernel entry points to get and set
    111  * the time-of-day and per-process interval timers.  Subroutines
    112  * here provide support for adding and subtracting timeval structures
    113  * and decrementing interval timers, optionally reloading the interval
    114  * timers when they expire.
    115  */
    116 
    117 /* This function is used by clock_settime and settimeofday */
    118 static int
    119 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    120 {
    121 	struct timeval delta, tv;
    122 	struct timeval now;
    123 	struct timespec ts1;
    124 	struct bintime btdelta;
    125 	lwp_t *l;
    126 	int s;
    127 
    128 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    129 
    130 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    131 	s = splclock();
    132 	microtime(&now);
    133 	timersub(&tv, &now, &delta);
    134 
    135 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    136 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    137 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    138 		splx(s);
    139 		return (EPERM);
    140 	}
    141 
    142 #ifdef notyet
    143 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    144 		splx(s);
    145 		return (EPERM);
    146 	}
    147 #endif
    148 
    149 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    150 	tc_setclock(&ts1);
    151 
    152 	timeradd(&boottime, &delta, &boottime);
    153 
    154 	/*
    155 	 * XXXSMP: There is a short race between setting the time above
    156 	 * and adjusting LWP's run times.  Fixing this properly means
    157 	 * pausing all CPUs while we adjust the clock.
    158 	 */
    159 	timeval2bintime(&delta, &btdelta);
    160 	mutex_enter(&proclist_lock);
    161 	LIST_FOREACH(l, &alllwp, l_list) {
    162 		lwp_lock(l);
    163 		bintime_add(&l->l_stime, &btdelta);
    164 		lwp_unlock(l);
    165 	}
    166 	mutex_exit(&proclist_lock);
    167 	resettodr();
    168 	splx(s);
    169 
    170 	return (0);
    171 }
    172 
    173 int
    174 settime(struct proc *p, struct timespec *ts)
    175 {
    176 	return (settime1(p, ts, true));
    177 }
    178 
    179 /* ARGSUSED */
    180 int
    181 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
    182 {
    183 	/* {
    184 		syscallarg(clockid_t) clock_id;
    185 		syscallarg(struct timespec *) tp;
    186 	} */
    187 	clockid_t clock_id;
    188 	struct timespec ats;
    189 
    190 	clock_id = SCARG(uap, clock_id);
    191 	switch (clock_id) {
    192 	case CLOCK_REALTIME:
    193 		nanotime(&ats);
    194 		break;
    195 	case CLOCK_MONOTONIC:
    196 		nanouptime(&ats);
    197 		break;
    198 	default:
    199 		return (EINVAL);
    200 	}
    201 
    202 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    203 }
    204 
    205 /* ARGSUSED */
    206 int
    207 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
    208 {
    209 	/* {
    210 		syscallarg(clockid_t) clock_id;
    211 		syscallarg(const struct timespec *) tp;
    212 	} */
    213 
    214 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    215 	    true);
    216 }
    217 
    218 
    219 int
    220 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    221     bool check_kauth)
    222 {
    223 	struct timespec ats;
    224 	int error;
    225 
    226 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    227 		return (error);
    228 
    229 	switch (clock_id) {
    230 	case CLOCK_REALTIME:
    231 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    232 			return (error);
    233 		break;
    234 	case CLOCK_MONOTONIC:
    235 		return (EINVAL);	/* read-only clock */
    236 	default:
    237 		return (EINVAL);
    238 	}
    239 
    240 	return 0;
    241 }
    242 
    243 int
    244 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
    245 {
    246 	/* {
    247 		syscallarg(clockid_t) clock_id;
    248 		syscallarg(struct timespec *) tp;
    249 	} */
    250 	clockid_t clock_id;
    251 	struct timespec ts;
    252 	int error = 0;
    253 
    254 	clock_id = SCARG(uap, clock_id);
    255 	switch (clock_id) {
    256 	case CLOCK_REALTIME:
    257 	case CLOCK_MONOTONIC:
    258 		ts.tv_sec = 0;
    259 		if (tc_getfrequency() > 1000000000)
    260 			ts.tv_nsec = 1;
    261 		else
    262 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    263 		break;
    264 	default:
    265 		return (EINVAL);
    266 	}
    267 
    268 	if (SCARG(uap, tp))
    269 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    270 
    271 	return error;
    272 }
    273 
    274 /* ARGSUSED */
    275 int
    276 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
    277 {
    278 	/* {
    279 		syscallarg(struct timespec *) rqtp;
    280 		syscallarg(struct timespec *) rmtp;
    281 	} */
    282 	struct timespec rmt, rqt;
    283 	int error, error1;
    284 
    285 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    286 	if (error)
    287 		return (error);
    288 
    289 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    290 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291 		return error;
    292 
    293 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294 	return error1 ? error1 : error;
    295 }
    296 
    297 int
    298 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    299 {
    300 	int error, timo;
    301 
    302 	if (itimespecfix(rqt))
    303 		return (EINVAL);
    304 
    305 	timo = tstohz(rqt);
    306 	/*
    307 	 * Avoid inadvertantly sleeping forever
    308 	 */
    309 	if (timo == 0)
    310 		timo = 1;
    311 
    312 	if (rmt != NULL)
    313 		getnanouptime(rmt);
    314 
    315 	error = kpause("nanoslp", true, timo, NULL);
    316 	if (error == ERESTART)
    317 		error = EINTR;
    318 	if (error == EWOULDBLOCK)
    319 		error = 0;
    320 
    321 	if (rmt != NULL) {
    322 		struct timespec rmtend;
    323 
    324 		getnanouptime(&rmtend);
    325 
    326 		timespecsub(&rmtend, rmt, rmt);
    327 		timespecsub(rqt, rmt, rmt);
    328 		if (rmt->tv_sec < 0)
    329 			timespecclear(rmt);
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /* ARGSUSED */
    336 int
    337 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
    338 {
    339 	/* {
    340 		syscallarg(struct timeval *) tp;
    341 		syscallarg(void *) tzp;		really "struct timezone *";
    342 	} */
    343 	struct timeval atv;
    344 	int error = 0;
    345 	struct timezone tzfake;
    346 
    347 	if (SCARG(uap, tp)) {
    348 		microtime(&atv);
    349 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    350 		if (error)
    351 			return (error);
    352 	}
    353 	if (SCARG(uap, tzp)) {
    354 		/*
    355 		 * NetBSD has no kernel notion of time zone, so we just
    356 		 * fake up a timezone struct and return it if demanded.
    357 		 */
    358 		tzfake.tz_minuteswest = 0;
    359 		tzfake.tz_dsttime = 0;
    360 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    361 	}
    362 	return (error);
    363 }
    364 
    365 /* ARGSUSED */
    366 int
    367 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
    368 {
    369 	/* {
    370 		syscallarg(const struct timeval *) tv;
    371 		syscallarg(const void *) tzp;	really "const struct timezone *";
    372 	} */
    373 
    374 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    375 }
    376 
    377 int
    378 settimeofday1(const struct timeval *utv, bool userspace,
    379     const void *utzp, struct lwp *l, bool check_kauth)
    380 {
    381 	struct timeval atv;
    382 	struct timespec ts;
    383 	int error;
    384 
    385 	/* Verify all parameters before changing time. */
    386 
    387 	/*
    388 	 * NetBSD has no kernel notion of time zone, and only an
    389 	 * obsolete program would try to set it, so we log a warning.
    390 	 */
    391 	if (utzp)
    392 		log(LOG_WARNING, "pid %d attempted to set the "
    393 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    394 
    395 	if (utv == NULL)
    396 		return 0;
    397 
    398 	if (userspace) {
    399 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    400 			return error;
    401 		utv = &atv;
    402 	}
    403 
    404 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    405 	return settime1(l->l_proc, &ts, check_kauth);
    406 }
    407 
    408 int	time_adjusted;			/* set if an adjustment is made */
    409 
    410 /* ARGSUSED */
    411 int
    412 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
    413 {
    414 	/* {
    415 		syscallarg(const struct timeval *) delta;
    416 		syscallarg(struct timeval *) olddelta;
    417 	} */
    418 	int error;
    419 
    420 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    421 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    422 		return (error);
    423 
    424 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    425 }
    426 
    427 int
    428 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    429 {
    430 	struct timeval atv;
    431 	int error = 0;
    432 
    433 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    434 
    435 	if (olddelta) {
    436 		atv.tv_sec = time_adjtime / 1000000;
    437 		atv.tv_usec = time_adjtime % 1000000;
    438 		if (atv.tv_usec < 0) {
    439 			atv.tv_usec += 1000000;
    440 			atv.tv_sec--;
    441 		}
    442 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    443 		if (error)
    444 			return (error);
    445 	}
    446 
    447 	if (delta) {
    448 		error = copyin(delta, &atv, sizeof(struct timeval));
    449 		if (error)
    450 			return (error);
    451 
    452 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    453 			atv.tv_usec;
    454 
    455 		if (time_adjtime)
    456 			/* We need to save the system time during shutdown */
    457 			time_adjusted |= 1;
    458 	}
    459 
    460 	return error;
    461 }
    462 
    463 /*
    464  * Interval timer support. Both the BSD getitimer() family and the POSIX
    465  * timer_*() family of routines are supported.
    466  *
    467  * All timers are kept in an array pointed to by p_timers, which is
    468  * allocated on demand - many processes don't use timers at all. The
    469  * first three elements in this array are reserved for the BSD timers:
    470  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    471  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    472  * syscall.
    473  *
    474  * Realtime timers are kept in the ptimer structure as an absolute
    475  * time; virtual time timers are kept as a linked list of deltas.
    476  * Virtual time timers are processed in the hardclock() routine of
    477  * kern_clock.c.  The real time timer is processed by a callout
    478  * routine, called from the softclock() routine.  Since a callout may
    479  * be delayed in real time due to interrupt processing in the system,
    480  * it is possible for the real time timeout routine (realtimeexpire,
    481  * given below), to be delayed in real time past when it is supposed
    482  * to occur.  It does not suffice, therefore, to reload the real timer
    483  * .it_value from the real time timers .it_interval.  Rather, we
    484  * compute the next time in absolute time the timer should go off.  */
    485 
    486 /* Allocate a POSIX realtime timer. */
    487 int
    488 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
    489 {
    490 	/* {
    491 		syscallarg(clockid_t) clock_id;
    492 		syscallarg(struct sigevent *) evp;
    493 		syscallarg(timer_t *) timerid;
    494 	} */
    495 
    496 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    497 	    SCARG(uap, evp), copyin, l);
    498 }
    499 
    500 int
    501 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    502     copyin_t fetch_event, struct lwp *l)
    503 {
    504 	int error;
    505 	timer_t timerid;
    506 	struct ptimer *pt;
    507 	struct proc *p;
    508 
    509 	p = l->l_proc;
    510 
    511 	if (id < CLOCK_REALTIME ||
    512 	    id > CLOCK_PROF)
    513 		return (EINVAL);
    514 
    515 	if (p->p_timers == NULL)
    516 		timers_alloc(p);
    517 
    518 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    519 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    520 		if (p->p_timers->pts_timers[timerid] == NULL)
    521 			break;
    522 
    523 	if (timerid == TIMER_MAX)
    524 		return EAGAIN;
    525 
    526 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    527 	if (evp) {
    528 		if (((error =
    529 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    530 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    531 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    532 			pool_put(&ptimer_pool, pt);
    533 			return (error ? error : EINVAL);
    534 		}
    535 	} else {
    536 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    537 		switch (id) {
    538 		case CLOCK_REALTIME:
    539 			pt->pt_ev.sigev_signo = SIGALRM;
    540 			break;
    541 		case CLOCK_VIRTUAL:
    542 			pt->pt_ev.sigev_signo = SIGVTALRM;
    543 			break;
    544 		case CLOCK_PROF:
    545 			pt->pt_ev.sigev_signo = SIGPROF;
    546 			break;
    547 		}
    548 		pt->pt_ev.sigev_value.sival_int = timerid;
    549 	}
    550 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    551 	pt->pt_info.ksi_errno = 0;
    552 	pt->pt_info.ksi_code = 0;
    553 	pt->pt_info.ksi_pid = p->p_pid;
    554 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    555 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    556 
    557 	pt->pt_type = id;
    558 	pt->pt_proc = p;
    559 	pt->pt_overruns = 0;
    560 	pt->pt_poverruns = 0;
    561 	pt->pt_entry = timerid;
    562 	timerclear(&pt->pt_time.it_value);
    563 	if (id == CLOCK_REALTIME)
    564 		callout_init(&pt->pt_ch, 0);
    565 	else
    566 		pt->pt_active = 0;
    567 
    568 	p->p_timers->pts_timers[timerid] = pt;
    569 
    570 	return copyout(&timerid, tid, sizeof(timerid));
    571 }
    572 
    573 /* Delete a POSIX realtime timer */
    574 int
    575 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
    576 {
    577 	/* {
    578 		syscallarg(timer_t) timerid;
    579 	} */
    580 	struct proc *p = l->l_proc;
    581 	timer_t timerid;
    582 	struct ptimer *pt, *ptn;
    583 	int s;
    584 
    585 	timerid = SCARG(uap, timerid);
    586 
    587 	if ((p->p_timers == NULL) ||
    588 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    589 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    590 		return (EINVAL);
    591 
    592 	if (pt->pt_type == CLOCK_REALTIME) {
    593 		callout_stop(&pt->pt_ch);
    594 		callout_destroy(&pt->pt_ch);
    595 	} else if (pt->pt_active) {
    596 		s = splclock();
    597 		ptn = LIST_NEXT(pt, pt_list);
    598 		LIST_REMOVE(pt, pt_list);
    599 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    600 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    601 			    &ptn->pt_time.it_value);
    602 		splx(s);
    603 	}
    604 
    605 	p->p_timers->pts_timers[timerid] = NULL;
    606 	pool_put(&ptimer_pool, pt);
    607 
    608 	return (0);
    609 }
    610 
    611 /*
    612  * Set up the given timer. The value in pt->pt_time.it_value is taken
    613  * to be an absolute time for CLOCK_REALTIME timers and a relative
    614  * time for virtual timers.
    615  * Must be called at splclock().
    616  */
    617 void
    618 timer_settime(struct ptimer *pt)
    619 {
    620 	struct ptimer *ptn, *pptn;
    621 	struct ptlist *ptl;
    622 
    623 	if (pt->pt_type == CLOCK_REALTIME) {
    624 		callout_stop(&pt->pt_ch);
    625 		if (timerisset(&pt->pt_time.it_value)) {
    626 			/*
    627 			 * Don't need to check hzto() return value, here.
    628 			 * callout_reset() does it for us.
    629 			 */
    630 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    631 			    realtimerexpire, pt);
    632 		}
    633 	} else {
    634 		if (pt->pt_active) {
    635 			ptn = LIST_NEXT(pt, pt_list);
    636 			LIST_REMOVE(pt, pt_list);
    637 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    638 				timeradd(&pt->pt_time.it_value,
    639 				    &ptn->pt_time.it_value,
    640 				    &ptn->pt_time.it_value);
    641 		}
    642 		if (timerisset(&pt->pt_time.it_value)) {
    643 			if (pt->pt_type == CLOCK_VIRTUAL)
    644 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    645 			else
    646 				ptl = &pt->pt_proc->p_timers->pts_prof;
    647 
    648 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    649 			     ptn && timercmp(&pt->pt_time.it_value,
    650 				 &ptn->pt_time.it_value, >);
    651 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    652 				timersub(&pt->pt_time.it_value,
    653 				    &ptn->pt_time.it_value,
    654 				    &pt->pt_time.it_value);
    655 
    656 			if (pptn)
    657 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    658 			else
    659 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    660 
    661 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    662 				timersub(&ptn->pt_time.it_value,
    663 				    &pt->pt_time.it_value,
    664 				    &ptn->pt_time.it_value);
    665 
    666 			pt->pt_active = 1;
    667 		} else
    668 			pt->pt_active = 0;
    669 	}
    670 }
    671 
    672 void
    673 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    674 {
    675 	struct timeval now;
    676 	struct ptimer *ptn;
    677 
    678 	*aitv = pt->pt_time;
    679 	if (pt->pt_type == CLOCK_REALTIME) {
    680 		/*
    681 		 * Convert from absolute to relative time in .it_value
    682 		 * part of real time timer.  If time for real time
    683 		 * timer has passed return 0, else return difference
    684 		 * between current time and time for the timer to go
    685 		 * off.
    686 		 */
    687 		if (timerisset(&aitv->it_value)) {
    688 			getmicrotime(&now);
    689 			if (timercmp(&aitv->it_value, &now, <))
    690 				timerclear(&aitv->it_value);
    691 			else
    692 				timersub(&aitv->it_value, &now,
    693 				    &aitv->it_value);
    694 		}
    695 	} else if (pt->pt_active) {
    696 		if (pt->pt_type == CLOCK_VIRTUAL)
    697 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    698 		else
    699 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    700 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    701 			timeradd(&aitv->it_value,
    702 			    &ptn->pt_time.it_value, &aitv->it_value);
    703 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    704 	} else
    705 		timerclear(&aitv->it_value);
    706 }
    707 
    708 
    709 
    710 /* Set and arm a POSIX realtime timer */
    711 int
    712 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
    713 {
    714 	/* {
    715 		syscallarg(timer_t) timerid;
    716 		syscallarg(int) flags;
    717 		syscallarg(const struct itimerspec *) value;
    718 		syscallarg(struct itimerspec *) ovalue;
    719 	} */
    720 	int error;
    721 	struct itimerspec value, ovalue, *ovp = NULL;
    722 
    723 	if ((error = copyin(SCARG(uap, value), &value,
    724 	    sizeof(struct itimerspec))) != 0)
    725 		return (error);
    726 
    727 	if (SCARG(uap, ovalue))
    728 		ovp = &ovalue;
    729 
    730 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    731 	    SCARG(uap, flags), l->l_proc)) != 0)
    732 		return error;
    733 
    734 	if (ovp)
    735 		return copyout(&ovalue, SCARG(uap, ovalue),
    736 		    sizeof(struct itimerspec));
    737 	return 0;
    738 }
    739 
    740 int
    741 dotimer_settime(int timerid, struct itimerspec *value,
    742     struct itimerspec *ovalue, int flags, struct proc *p)
    743 {
    744 	struct timeval now;
    745 	struct itimerval val, oval;
    746 	struct ptimer *pt;
    747 	int s;
    748 
    749 	if ((p->p_timers == NULL) ||
    750 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    751 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    752 		return (EINVAL);
    753 
    754 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    755 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    756 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    757 		return (EINVAL);
    758 
    759 	oval = pt->pt_time;
    760 	pt->pt_time = val;
    761 
    762 	s = splclock();
    763 	/*
    764 	 * If we've been passed a relative time for a realtime timer,
    765 	 * convert it to absolute; if an absolute time for a virtual
    766 	 * timer, convert it to relative and make sure we don't set it
    767 	 * to zero, which would cancel the timer, or let it go
    768 	 * negative, which would confuse the comparison tests.
    769 	 */
    770 	if (timerisset(&pt->pt_time.it_value)) {
    771 		if (pt->pt_type == CLOCK_REALTIME) {
    772 			if ((flags & TIMER_ABSTIME) == 0) {
    773 				getmicrotime(&now);
    774 				timeradd(&pt->pt_time.it_value, &now,
    775 				    &pt->pt_time.it_value);
    776 			}
    777 		} else {
    778 			if ((flags & TIMER_ABSTIME) != 0) {
    779 				getmicrotime(&now);
    780 				timersub(&pt->pt_time.it_value, &now,
    781 				    &pt->pt_time.it_value);
    782 				if (!timerisset(&pt->pt_time.it_value) ||
    783 				    pt->pt_time.it_value.tv_sec < 0) {
    784 					pt->pt_time.it_value.tv_sec = 0;
    785 					pt->pt_time.it_value.tv_usec = 1;
    786 				}
    787 			}
    788 		}
    789 	}
    790 
    791 	timer_settime(pt);
    792 	splx(s);
    793 
    794 	if (ovalue) {
    795 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    796 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    797 	}
    798 
    799 	return (0);
    800 }
    801 
    802 /* Return the time remaining until a POSIX timer fires. */
    803 int
    804 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
    805 {
    806 	/* {
    807 		syscallarg(timer_t) timerid;
    808 		syscallarg(struct itimerspec *) value;
    809 	} */
    810 	struct itimerspec its;
    811 	int error;
    812 
    813 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    814 	    &its)) != 0)
    815 		return error;
    816 
    817 	return copyout(&its, SCARG(uap, value), sizeof(its));
    818 }
    819 
    820 int
    821 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    822 {
    823 	int s;
    824 	struct ptimer *pt;
    825 	struct itimerval aitv;
    826 
    827 	if ((p->p_timers == NULL) ||
    828 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    829 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    830 		return (EINVAL);
    831 
    832 	s = splclock();
    833 	timer_gettime(pt, &aitv);
    834 	splx(s);
    835 
    836 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    837 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    838 
    839 	return 0;
    840 }
    841 
    842 /*
    843  * Return the count of the number of times a periodic timer expired
    844  * while a notification was already pending. The counter is reset when
    845  * a timer expires and a notification can be posted.
    846  */
    847 int
    848 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
    849 {
    850 	/* {
    851 		syscallarg(timer_t) timerid;
    852 	} */
    853 	struct proc *p = l->l_proc;
    854 	int timerid;
    855 	struct ptimer *pt;
    856 
    857 	timerid = SCARG(uap, timerid);
    858 
    859 	if ((p->p_timers == NULL) ||
    860 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    861 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    862 		return (EINVAL);
    863 
    864 	*retval = pt->pt_poverruns;
    865 
    866 	return (0);
    867 }
    868 
    869 /*
    870  * Real interval timer expired:
    871  * send process whose timer expired an alarm signal.
    872  * If time is not set up to reload, then just return.
    873  * Else compute next time timer should go off which is > current time.
    874  * This is where delay in processing this timeout causes multiple
    875  * SIGALRM calls to be compressed into one.
    876  */
    877 void
    878 realtimerexpire(void *arg)
    879 {
    880 	struct timeval now;
    881 	struct ptimer *pt;
    882 	int s;
    883 
    884 	pt = (struct ptimer *)arg;
    885 
    886 	itimerfire(pt);
    887 
    888 	if (!timerisset(&pt->pt_time.it_interval)) {
    889 		timerclear(&pt->pt_time.it_value);
    890 		return;
    891 	}
    892 	for (;;) {
    893 		s = splclock();	/* XXX need spl now? */
    894 		timeradd(&pt->pt_time.it_value,
    895 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    896 		getmicrotime(&now);
    897 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    898 			/*
    899 			 * Don't need to check hzto() return value, here.
    900 			 * callout_reset() does it for us.
    901 			 */
    902 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    903 			    realtimerexpire, pt);
    904 			splx(s);
    905 			return;
    906 		}
    907 		splx(s);
    908 		pt->pt_overruns++;
    909 	}
    910 }
    911 
    912 /* BSD routine to get the value of an interval timer. */
    913 /* ARGSUSED */
    914 int
    915 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
    916 {
    917 	/* {
    918 		syscallarg(int) which;
    919 		syscallarg(struct itimerval *) itv;
    920 	} */
    921 	struct proc *p = l->l_proc;
    922 	struct itimerval aitv;
    923 	int error;
    924 
    925 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    926 	if (error)
    927 		return error;
    928 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    929 }
    930 
    931 int
    932 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    933 {
    934 	int s;
    935 
    936 	if ((u_int)which > ITIMER_PROF)
    937 		return (EINVAL);
    938 
    939 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    940 		timerclear(&itvp->it_value);
    941 		timerclear(&itvp->it_interval);
    942 	} else {
    943 		s = splclock();
    944 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    945 		splx(s);
    946 	}
    947 
    948 	return 0;
    949 }
    950 
    951 /* BSD routine to set/arm an interval timer. */
    952 /* ARGSUSED */
    953 int
    954 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
    955 {
    956 	/* {
    957 		syscallarg(int) which;
    958 		syscallarg(const struct itimerval *) itv;
    959 		syscallarg(struct itimerval *) oitv;
    960 	} */
    961 	struct proc *p = l->l_proc;
    962 	int which = SCARG(uap, which);
    963 	struct sys_getitimer_args getargs;
    964 	const struct itimerval *itvp;
    965 	struct itimerval aitv;
    966 	int error;
    967 
    968 	if ((u_int)which > ITIMER_PROF)
    969 		return (EINVAL);
    970 	itvp = SCARG(uap, itv);
    971 	if (itvp &&
    972 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    973 		return (error);
    974 	if (SCARG(uap, oitv) != NULL) {
    975 		SCARG(&getargs, which) = which;
    976 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    977 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    978 			return (error);
    979 	}
    980 	if (itvp == 0)
    981 		return (0);
    982 
    983 	return dosetitimer(p, which, &aitv);
    984 }
    985 
    986 int
    987 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
    988 {
    989 	struct timeval now;
    990 	struct ptimer *pt;
    991 	int s;
    992 
    993 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
    994 		return (EINVAL);
    995 
    996 	/*
    997 	 * Don't bother allocating data structures if the process just
    998 	 * wants to clear the timer.
    999 	 */
   1000 	if (!timerisset(&itvp->it_value) &&
   1001 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1002 		return (0);
   1003 
   1004 	if (p->p_timers == NULL)
   1005 		timers_alloc(p);
   1006 	if (p->p_timers->pts_timers[which] == NULL) {
   1007 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1008 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1009 		pt->pt_ev.sigev_value.sival_int = which;
   1010 		pt->pt_overruns = 0;
   1011 		pt->pt_proc = p;
   1012 		pt->pt_type = which;
   1013 		pt->pt_entry = which;
   1014 		switch (which) {
   1015 		case ITIMER_REAL:
   1016 			callout_init(&pt->pt_ch, 0);
   1017 			pt->pt_ev.sigev_signo = SIGALRM;
   1018 			break;
   1019 		case ITIMER_VIRTUAL:
   1020 			pt->pt_active = 0;
   1021 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1022 			break;
   1023 		case ITIMER_PROF:
   1024 			pt->pt_active = 0;
   1025 			pt->pt_ev.sigev_signo = SIGPROF;
   1026 			break;
   1027 		}
   1028 	} else
   1029 		pt = p->p_timers->pts_timers[which];
   1030 
   1031 	pt->pt_time = *itvp;
   1032 	p->p_timers->pts_timers[which] = pt;
   1033 
   1034 	s = splclock();
   1035 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1036 		/* Convert to absolute time */
   1037 		/* XXX need to wrap in splclock for timecounters case? */
   1038 		getmicrotime(&now);
   1039 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1040 	}
   1041 	timer_settime(pt);
   1042 	splx(s);
   1043 
   1044 	return (0);
   1045 }
   1046 
   1047 /* Utility routines to manage the array of pointers to timers. */
   1048 void
   1049 timers_alloc(struct proc *p)
   1050 {
   1051 	int i;
   1052 	struct ptimers *pts;
   1053 
   1054 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1055 	LIST_INIT(&pts->pts_virtual);
   1056 	LIST_INIT(&pts->pts_prof);
   1057 	for (i = 0; i < TIMER_MAX; i++)
   1058 		pts->pts_timers[i] = NULL;
   1059 	pts->pts_fired = 0;
   1060 	p->p_timers = pts;
   1061 }
   1062 
   1063 /*
   1064  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1065  * then clean up all timers and free all the data structures. If
   1066  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1067  * by timer_create(), not the BSD setitimer() timers, and only free the
   1068  * structure if none of those remain.
   1069  */
   1070 void
   1071 timers_free(struct proc *p, int which)
   1072 {
   1073 	int i, s;
   1074 	struct ptimers *pts;
   1075 	struct ptimer *pt, *ptn;
   1076 	struct timeval tv;
   1077 
   1078 	if (p->p_timers) {
   1079 		pts = p->p_timers;
   1080 		if (which == TIMERS_ALL)
   1081 			i = 0;
   1082 		else {
   1083 			s = splclock();
   1084 			timerclear(&tv);
   1085 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1086 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1087 			     ptn = LIST_NEXT(ptn, pt_list))
   1088 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1089 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1090 			if (ptn) {
   1091 				timeradd(&tv, &ptn->pt_time.it_value,
   1092 				    &ptn->pt_time.it_value);
   1093 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1094 				    ptn, pt_list);
   1095 			}
   1096 
   1097 			timerclear(&tv);
   1098 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1099 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1100 			     ptn = LIST_NEXT(ptn, pt_list))
   1101 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1102 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1103 			if (ptn) {
   1104 				timeradd(&tv, &ptn->pt_time.it_value,
   1105 				    &ptn->pt_time.it_value);
   1106 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1107 				    pt_list);
   1108 			}
   1109 			splx(s);
   1110 			i = 3;
   1111 		}
   1112 		for ( ; i < TIMER_MAX; i++)
   1113 			if ((pt = pts->pts_timers[i]) != NULL) {
   1114 				if (pt->pt_type == CLOCK_REALTIME) {
   1115 					callout_stop(&pt->pt_ch);
   1116 					callout_destroy(&pt->pt_ch);
   1117 				}
   1118 				pts->pts_timers[i] = NULL;
   1119 				pool_put(&ptimer_pool, pt);
   1120 			}
   1121 		if ((pts->pts_timers[0] == NULL) &&
   1122 		    (pts->pts_timers[1] == NULL) &&
   1123 		    (pts->pts_timers[2] == NULL)) {
   1124 			p->p_timers = NULL;
   1125 			pool_put(&ptimers_pool, pts);
   1126 		}
   1127 	}
   1128 }
   1129 
   1130 /*
   1131  * Decrement an interval timer by a specified number
   1132  * of microseconds, which must be less than a second,
   1133  * i.e. < 1000000.  If the timer expires, then reload
   1134  * it.  In this case, carry over (usec - old value) to
   1135  * reduce the value reloaded into the timer so that
   1136  * the timer does not drift.  This routine assumes
   1137  * that it is called in a context where the timers
   1138  * on which it is operating cannot change in value.
   1139  */
   1140 int
   1141 itimerdecr(struct ptimer *pt, int usec)
   1142 {
   1143 	struct itimerval *itp;
   1144 
   1145 	itp = &pt->pt_time;
   1146 	if (itp->it_value.tv_usec < usec) {
   1147 		if (itp->it_value.tv_sec == 0) {
   1148 			/* expired, and already in next interval */
   1149 			usec -= itp->it_value.tv_usec;
   1150 			goto expire;
   1151 		}
   1152 		itp->it_value.tv_usec += 1000000;
   1153 		itp->it_value.tv_sec--;
   1154 	}
   1155 	itp->it_value.tv_usec -= usec;
   1156 	usec = 0;
   1157 	if (timerisset(&itp->it_value))
   1158 		return (1);
   1159 	/* expired, exactly at end of interval */
   1160 expire:
   1161 	if (timerisset(&itp->it_interval)) {
   1162 		itp->it_value = itp->it_interval;
   1163 		itp->it_value.tv_usec -= usec;
   1164 		if (itp->it_value.tv_usec < 0) {
   1165 			itp->it_value.tv_usec += 1000000;
   1166 			itp->it_value.tv_sec--;
   1167 		}
   1168 		timer_settime(pt);
   1169 	} else
   1170 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1171 	return (0);
   1172 }
   1173 
   1174 void
   1175 itimerfire(struct ptimer *pt)
   1176 {
   1177 	struct proc *p = pt->pt_proc;
   1178 
   1179 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1180 		/*
   1181 		 * No RT signal infrastructure exists at this time;
   1182 		 * just post the signal number and throw away the
   1183 		 * value.
   1184 		 */
   1185 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1186 			pt->pt_overruns++;
   1187 		else {
   1188 			ksiginfo_t ksi;
   1189 			KSI_INIT(&ksi);
   1190 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1191 			ksi.ksi_code = SI_TIMER;
   1192 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1193 			pt->pt_poverruns = pt->pt_overruns;
   1194 			pt->pt_overruns = 0;
   1195 			mutex_enter(&proclist_mutex);
   1196 			kpsignal(p, &ksi, NULL);
   1197 			mutex_exit(&proclist_mutex);
   1198 		}
   1199 	}
   1200 }
   1201 
   1202 /*
   1203  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1204  * for usage and rationale.
   1205  */
   1206 int
   1207 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1208 {
   1209 	struct timeval tv, delta;
   1210 	int rv = 0;
   1211 
   1212 	getmicrouptime(&tv);
   1213 	timersub(&tv, lasttime, &delta);
   1214 
   1215 	/*
   1216 	 * check for 0,0 is so that the message will be seen at least once,
   1217 	 * even if interval is huge.
   1218 	 */
   1219 	if (timercmp(&delta, mininterval, >=) ||
   1220 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1221 		*lasttime = tv;
   1222 		rv = 1;
   1223 	}
   1224 
   1225 	return (rv);
   1226 }
   1227 
   1228 /*
   1229  * ppsratecheck(): packets (or events) per second limitation.
   1230  */
   1231 int
   1232 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1233 {
   1234 	struct timeval tv, delta;
   1235 	int rv;
   1236 
   1237 	getmicrouptime(&tv);
   1238 	timersub(&tv, lasttime, &delta);
   1239 
   1240 	/*
   1241 	 * check for 0,0 is so that the message will be seen at least once.
   1242 	 * if more than one second have passed since the last update of
   1243 	 * lasttime, reset the counter.
   1244 	 *
   1245 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1246 	 * try to use *curpps for stat purposes as well.
   1247 	 */
   1248 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1249 	    delta.tv_sec >= 1) {
   1250 		*lasttime = tv;
   1251 		*curpps = 0;
   1252 	}
   1253 	if (maxpps < 0)
   1254 		rv = 1;
   1255 	else if (*curpps < maxpps)
   1256 		rv = 1;
   1257 	else
   1258 		rv = 0;
   1259 
   1260 #if 1 /*DIAGNOSTIC?*/
   1261 	/* be careful about wrap-around */
   1262 	if (*curpps + 1 > *curpps)
   1263 		*curpps = *curpps + 1;
   1264 #else
   1265 	/*
   1266 	 * assume that there's not too many calls to this function.
   1267 	 * not sure if the assumption holds, as it depends on *caller's*
   1268 	 * behavior, not the behavior of this function.
   1269 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1270 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1271 	 */
   1272 	*curpps = *curpps + 1;
   1273 #endif
   1274 
   1275 	return (rv);
   1276 }
   1277