kern_time.c revision 1.140 1 /* $NetBSD: kern_time.c,v 1.140 2008/02/19 14:21:56 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.140 2008/02/19 14:21:56 yamt Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #include <sys/kauth.h>
83
84 #include <sys/mount.h>
85 #include <sys/syscallargs.h>
86
87 #include <uvm/uvm_extern.h>
88
89 #include <sys/cpu.h>
90
91 kmutex_t time_lock;
92
93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94 &pool_allocator_nointr, IPL_NONE);
95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96 &pool_allocator_nointr, IPL_NONE);
97
98 /*
99 * Initialize timekeeping.
100 */
101 void
102 time_init(void)
103 {
104
105 mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 }
107
108 /* Time of day and interval timer support.
109 *
110 * These routines provide the kernel entry points to get and set
111 * the time-of-day and per-process interval timers. Subroutines
112 * here provide support for adding and subtracting timeval structures
113 * and decrementing interval timers, optionally reloading the interval
114 * timers when they expire.
115 */
116
117 /* This function is used by clock_settime and settimeofday */
118 static int
119 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
120 {
121 struct timeval delta, tv;
122 struct timeval now;
123 struct timespec ts1;
124 struct bintime btdelta;
125 lwp_t *l;
126 int s;
127
128 TIMESPEC_TO_TIMEVAL(&tv, ts);
129
130 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
131 s = splclock();
132 microtime(&now);
133 timersub(&tv, &now, &delta);
134
135 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
136 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
137 KAUTH_ARG(check_kauth ? false : true)) != 0) {
138 splx(s);
139 return (EPERM);
140 }
141
142 #ifdef notyet
143 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
144 splx(s);
145 return (EPERM);
146 }
147 #endif
148
149 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
150 tc_setclock(&ts1);
151
152 timeradd(&boottime, &delta, &boottime);
153
154 /*
155 * XXXSMP: There is a short race between setting the time above
156 * and adjusting LWP's run times. Fixing this properly means
157 * pausing all CPUs while we adjust the clock.
158 */
159 timeval2bintime(&delta, &btdelta);
160 mutex_enter(&proclist_lock);
161 LIST_FOREACH(l, &alllwp, l_list) {
162 lwp_lock(l);
163 bintime_add(&l->l_stime, &btdelta);
164 lwp_unlock(l);
165 }
166 mutex_exit(&proclist_lock);
167 resettodr();
168 splx(s);
169
170 return (0);
171 }
172
173 int
174 settime(struct proc *p, struct timespec *ts)
175 {
176 return (settime1(p, ts, true));
177 }
178
179 /* ARGSUSED */
180 int
181 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
182 register_t *retval)
183 {
184 /* {
185 syscallarg(clockid_t) clock_id;
186 syscallarg(struct timespec *) tp;
187 } */
188 clockid_t clock_id;
189 struct timespec ats;
190
191 clock_id = SCARG(uap, clock_id);
192 switch (clock_id) {
193 case CLOCK_REALTIME:
194 nanotime(&ats);
195 break;
196 case CLOCK_MONOTONIC:
197 nanouptime(&ats);
198 break;
199 default:
200 return (EINVAL);
201 }
202
203 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
204 }
205
206 /* ARGSUSED */
207 int
208 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
209 register_t *retval)
210 {
211 /* {
212 syscallarg(clockid_t) clock_id;
213 syscallarg(const struct timespec *) tp;
214 } */
215
216 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
217 true);
218 }
219
220
221 int
222 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
223 bool check_kauth)
224 {
225 struct timespec ats;
226 int error;
227
228 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
229 return (error);
230
231 switch (clock_id) {
232 case CLOCK_REALTIME:
233 if ((error = settime1(p, &ats, check_kauth)) != 0)
234 return (error);
235 break;
236 case CLOCK_MONOTONIC:
237 return (EINVAL); /* read-only clock */
238 default:
239 return (EINVAL);
240 }
241
242 return 0;
243 }
244
245 int
246 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
247 register_t *retval)
248 {
249 /* {
250 syscallarg(clockid_t) clock_id;
251 syscallarg(struct timespec *) tp;
252 } */
253 clockid_t clock_id;
254 struct timespec ts;
255 int error = 0;
256
257 clock_id = SCARG(uap, clock_id);
258 switch (clock_id) {
259 case CLOCK_REALTIME:
260 case CLOCK_MONOTONIC:
261 ts.tv_sec = 0;
262 if (tc_getfrequency() > 1000000000)
263 ts.tv_nsec = 1;
264 else
265 ts.tv_nsec = 1000000000 / tc_getfrequency();
266 break;
267 default:
268 return (EINVAL);
269 }
270
271 if (SCARG(uap, tp))
272 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
273
274 return error;
275 }
276
277 /* ARGSUSED */
278 int
279 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
280 register_t *retval)
281 {
282 /* {
283 syscallarg(struct timespec *) rqtp;
284 syscallarg(struct timespec *) rmtp;
285 } */
286 struct timespec rmt, rqt;
287 int error, error1;
288
289 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290 if (error)
291 return (error);
292
293 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
294 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
295 return error;
296
297 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
298 return error1 ? error1 : error;
299 }
300
301 int
302 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
303 {
304 int error, timo;
305
306 if (itimespecfix(rqt))
307 return (EINVAL);
308
309 timo = tstohz(rqt);
310 /*
311 * Avoid inadvertantly sleeping forever
312 */
313 if (timo == 0)
314 timo = 1;
315
316 if (rmt != NULL)
317 getnanouptime(rmt);
318
319 error = kpause("nanoslp", true, timo, NULL);
320 if (error == ERESTART)
321 error = EINTR;
322 if (error == EWOULDBLOCK)
323 error = 0;
324
325 if (rmt != NULL) {
326 struct timespec rmtend;
327
328 getnanouptime(&rmtend);
329
330 timespecsub(&rmtend, rmt, rmt);
331 timespecsub(rqt, rmt, rmt);
332 if (rmt->tv_sec < 0)
333 timespecclear(rmt);
334 }
335
336 return error;
337 }
338
339 /* ARGSUSED */
340 int
341 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
342 register_t *retval)
343 {
344 /* {
345 syscallarg(struct timeval *) tp;
346 syscallarg(void *) tzp; really "struct timezone *";
347 } */
348 struct timeval atv;
349 int error = 0;
350 struct timezone tzfake;
351
352 if (SCARG(uap, tp)) {
353 microtime(&atv);
354 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
355 if (error)
356 return (error);
357 }
358 if (SCARG(uap, tzp)) {
359 /*
360 * NetBSD has no kernel notion of time zone, so we just
361 * fake up a timezone struct and return it if demanded.
362 */
363 tzfake.tz_minuteswest = 0;
364 tzfake.tz_dsttime = 0;
365 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
366 }
367 return (error);
368 }
369
370 /* ARGSUSED */
371 int
372 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
373 register_t *retval)
374 {
375 /* {
376 syscallarg(const struct timeval *) tv;
377 syscallarg(const void *) tzp; really "const struct timezone *";
378 } */
379
380 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
381 }
382
383 int
384 settimeofday1(const struct timeval *utv, bool userspace,
385 const void *utzp, struct lwp *l, bool check_kauth)
386 {
387 struct timeval atv;
388 struct timespec ts;
389 int error;
390
391 /* Verify all parameters before changing time. */
392
393 /*
394 * NetBSD has no kernel notion of time zone, and only an
395 * obsolete program would try to set it, so we log a warning.
396 */
397 if (utzp)
398 log(LOG_WARNING, "pid %d attempted to set the "
399 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
400
401 if (utv == NULL)
402 return 0;
403
404 if (userspace) {
405 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
406 return error;
407 utv = &atv;
408 }
409
410 TIMEVAL_TO_TIMESPEC(utv, &ts);
411 return settime1(l->l_proc, &ts, check_kauth);
412 }
413
414 int time_adjusted; /* set if an adjustment is made */
415
416 /* ARGSUSED */
417 int
418 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
419 register_t *retval)
420 {
421 /* {
422 syscallarg(const struct timeval *) delta;
423 syscallarg(struct timeval *) olddelta;
424 } */
425 int error;
426
427 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
428 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
429 return (error);
430
431 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
432 }
433
434 int
435 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
436 {
437 struct timeval atv;
438 int error = 0;
439
440 extern int64_t time_adjtime; /* in kern_ntptime.c */
441
442 if (olddelta) {
443 atv.tv_sec = time_adjtime / 1000000;
444 atv.tv_usec = time_adjtime % 1000000;
445 if (atv.tv_usec < 0) {
446 atv.tv_usec += 1000000;
447 atv.tv_sec--;
448 }
449 error = copyout(&atv, olddelta, sizeof(struct timeval));
450 if (error)
451 return (error);
452 }
453
454 if (delta) {
455 error = copyin(delta, &atv, sizeof(struct timeval));
456 if (error)
457 return (error);
458
459 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
460 atv.tv_usec;
461
462 if (time_adjtime)
463 /* We need to save the system time during shutdown */
464 time_adjusted |= 1;
465 }
466
467 return error;
468 }
469
470 /*
471 * Interval timer support. Both the BSD getitimer() family and the POSIX
472 * timer_*() family of routines are supported.
473 *
474 * All timers are kept in an array pointed to by p_timers, which is
475 * allocated on demand - many processes don't use timers at all. The
476 * first three elements in this array are reserved for the BSD timers:
477 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
478 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
479 * syscall.
480 *
481 * Realtime timers are kept in the ptimer structure as an absolute
482 * time; virtual time timers are kept as a linked list of deltas.
483 * Virtual time timers are processed in the hardclock() routine of
484 * kern_clock.c. The real time timer is processed by a callout
485 * routine, called from the softclock() routine. Since a callout may
486 * be delayed in real time due to interrupt processing in the system,
487 * it is possible for the real time timeout routine (realtimeexpire,
488 * given below), to be delayed in real time past when it is supposed
489 * to occur. It does not suffice, therefore, to reload the real timer
490 * .it_value from the real time timers .it_interval. Rather, we
491 * compute the next time in absolute time the timer should go off. */
492
493 /* Allocate a POSIX realtime timer. */
494 int
495 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
496 register_t *retval)
497 {
498 /* {
499 syscallarg(clockid_t) clock_id;
500 syscallarg(struct sigevent *) evp;
501 syscallarg(timer_t *) timerid;
502 } */
503
504 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
505 SCARG(uap, evp), copyin, l);
506 }
507
508 int
509 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
510 copyin_t fetch_event, struct lwp *l)
511 {
512 int error;
513 timer_t timerid;
514 struct ptimer *pt;
515 struct proc *p;
516
517 p = l->l_proc;
518
519 if (id < CLOCK_REALTIME ||
520 id > CLOCK_PROF)
521 return (EINVAL);
522
523 if (p->p_timers == NULL)
524 timers_alloc(p);
525
526 /* Find a free timer slot, skipping those reserved for setitimer(). */
527 for (timerid = 3; timerid < TIMER_MAX; timerid++)
528 if (p->p_timers->pts_timers[timerid] == NULL)
529 break;
530
531 if (timerid == TIMER_MAX)
532 return EAGAIN;
533
534 pt = pool_get(&ptimer_pool, PR_WAITOK);
535 if (evp) {
536 if (((error =
537 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
538 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
539 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
540 pool_put(&ptimer_pool, pt);
541 return (error ? error : EINVAL);
542 }
543 } else {
544 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
545 switch (id) {
546 case CLOCK_REALTIME:
547 pt->pt_ev.sigev_signo = SIGALRM;
548 break;
549 case CLOCK_VIRTUAL:
550 pt->pt_ev.sigev_signo = SIGVTALRM;
551 break;
552 case CLOCK_PROF:
553 pt->pt_ev.sigev_signo = SIGPROF;
554 break;
555 }
556 pt->pt_ev.sigev_value.sival_int = timerid;
557 }
558 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
559 pt->pt_info.ksi_errno = 0;
560 pt->pt_info.ksi_code = 0;
561 pt->pt_info.ksi_pid = p->p_pid;
562 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
563 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
564
565 pt->pt_type = id;
566 pt->pt_proc = p;
567 pt->pt_overruns = 0;
568 pt->pt_poverruns = 0;
569 pt->pt_entry = timerid;
570 timerclear(&pt->pt_time.it_value);
571 if (id == CLOCK_REALTIME)
572 callout_init(&pt->pt_ch, 0);
573 else
574 pt->pt_active = 0;
575
576 p->p_timers->pts_timers[timerid] = pt;
577
578 return copyout(&timerid, tid, sizeof(timerid));
579 }
580
581 /* Delete a POSIX realtime timer */
582 int
583 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
584 register_t *retval)
585 {
586 /* {
587 syscallarg(timer_t) timerid;
588 } */
589 struct proc *p = l->l_proc;
590 timer_t timerid;
591 struct ptimer *pt, *ptn;
592 int s;
593
594 timerid = SCARG(uap, timerid);
595
596 if ((p->p_timers == NULL) ||
597 (timerid < 2) || (timerid >= TIMER_MAX) ||
598 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
599 return (EINVAL);
600
601 if (pt->pt_type == CLOCK_REALTIME) {
602 callout_stop(&pt->pt_ch);
603 callout_destroy(&pt->pt_ch);
604 } else if (pt->pt_active) {
605 s = splclock();
606 ptn = LIST_NEXT(pt, pt_list);
607 LIST_REMOVE(pt, pt_list);
608 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
609 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
610 &ptn->pt_time.it_value);
611 splx(s);
612 }
613
614 p->p_timers->pts_timers[timerid] = NULL;
615 pool_put(&ptimer_pool, pt);
616
617 return (0);
618 }
619
620 /*
621 * Set up the given timer. The value in pt->pt_time.it_value is taken
622 * to be an absolute time for CLOCK_REALTIME timers and a relative
623 * time for virtual timers.
624 * Must be called at splclock().
625 */
626 void
627 timer_settime(struct ptimer *pt)
628 {
629 struct ptimer *ptn, *pptn;
630 struct ptlist *ptl;
631
632 if (pt->pt_type == CLOCK_REALTIME) {
633 callout_stop(&pt->pt_ch);
634 if (timerisset(&pt->pt_time.it_value)) {
635 /*
636 * Don't need to check hzto() return value, here.
637 * callout_reset() does it for us.
638 */
639 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
640 realtimerexpire, pt);
641 }
642 } else {
643 if (pt->pt_active) {
644 ptn = LIST_NEXT(pt, pt_list);
645 LIST_REMOVE(pt, pt_list);
646 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
647 timeradd(&pt->pt_time.it_value,
648 &ptn->pt_time.it_value,
649 &ptn->pt_time.it_value);
650 }
651 if (timerisset(&pt->pt_time.it_value)) {
652 if (pt->pt_type == CLOCK_VIRTUAL)
653 ptl = &pt->pt_proc->p_timers->pts_virtual;
654 else
655 ptl = &pt->pt_proc->p_timers->pts_prof;
656
657 for (ptn = LIST_FIRST(ptl), pptn = NULL;
658 ptn && timercmp(&pt->pt_time.it_value,
659 &ptn->pt_time.it_value, >);
660 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
661 timersub(&pt->pt_time.it_value,
662 &ptn->pt_time.it_value,
663 &pt->pt_time.it_value);
664
665 if (pptn)
666 LIST_INSERT_AFTER(pptn, pt, pt_list);
667 else
668 LIST_INSERT_HEAD(ptl, pt, pt_list);
669
670 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
671 timersub(&ptn->pt_time.it_value,
672 &pt->pt_time.it_value,
673 &ptn->pt_time.it_value);
674
675 pt->pt_active = 1;
676 } else
677 pt->pt_active = 0;
678 }
679 }
680
681 void
682 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
683 {
684 struct timeval now;
685 struct ptimer *ptn;
686
687 *aitv = pt->pt_time;
688 if (pt->pt_type == CLOCK_REALTIME) {
689 /*
690 * Convert from absolute to relative time in .it_value
691 * part of real time timer. If time for real time
692 * timer has passed return 0, else return difference
693 * between current time and time for the timer to go
694 * off.
695 */
696 if (timerisset(&aitv->it_value)) {
697 getmicrotime(&now);
698 if (timercmp(&aitv->it_value, &now, <))
699 timerclear(&aitv->it_value);
700 else
701 timersub(&aitv->it_value, &now,
702 &aitv->it_value);
703 }
704 } else if (pt->pt_active) {
705 if (pt->pt_type == CLOCK_VIRTUAL)
706 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
707 else
708 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
709 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
710 timeradd(&aitv->it_value,
711 &ptn->pt_time.it_value, &aitv->it_value);
712 KASSERT(ptn != NULL); /* pt should be findable on the list */
713 } else
714 timerclear(&aitv->it_value);
715 }
716
717
718
719 /* Set and arm a POSIX realtime timer */
720 int
721 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
722 register_t *retval)
723 {
724 /* {
725 syscallarg(timer_t) timerid;
726 syscallarg(int) flags;
727 syscallarg(const struct itimerspec *) value;
728 syscallarg(struct itimerspec *) ovalue;
729 } */
730 int error;
731 struct itimerspec value, ovalue, *ovp = NULL;
732
733 if ((error = copyin(SCARG(uap, value), &value,
734 sizeof(struct itimerspec))) != 0)
735 return (error);
736
737 if (SCARG(uap, ovalue))
738 ovp = &ovalue;
739
740 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
741 SCARG(uap, flags), l->l_proc)) != 0)
742 return error;
743
744 if (ovp)
745 return copyout(&ovalue, SCARG(uap, ovalue),
746 sizeof(struct itimerspec));
747 return 0;
748 }
749
750 int
751 dotimer_settime(int timerid, struct itimerspec *value,
752 struct itimerspec *ovalue, int flags, struct proc *p)
753 {
754 struct timeval now;
755 struct itimerval val, oval;
756 struct ptimer *pt;
757 int s;
758
759 if ((p->p_timers == NULL) ||
760 (timerid < 2) || (timerid >= TIMER_MAX) ||
761 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
762 return (EINVAL);
763
764 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
765 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
766 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
767 return (EINVAL);
768
769 oval = pt->pt_time;
770 pt->pt_time = val;
771
772 s = splclock();
773 /*
774 * If we've been passed a relative time for a realtime timer,
775 * convert it to absolute; if an absolute time for a virtual
776 * timer, convert it to relative and make sure we don't set it
777 * to zero, which would cancel the timer, or let it go
778 * negative, which would confuse the comparison tests.
779 */
780 if (timerisset(&pt->pt_time.it_value)) {
781 if (pt->pt_type == CLOCK_REALTIME) {
782 if ((flags & TIMER_ABSTIME) == 0) {
783 getmicrotime(&now);
784 timeradd(&pt->pt_time.it_value, &now,
785 &pt->pt_time.it_value);
786 }
787 } else {
788 if ((flags & TIMER_ABSTIME) != 0) {
789 getmicrotime(&now);
790 timersub(&pt->pt_time.it_value, &now,
791 &pt->pt_time.it_value);
792 if (!timerisset(&pt->pt_time.it_value) ||
793 pt->pt_time.it_value.tv_sec < 0) {
794 pt->pt_time.it_value.tv_sec = 0;
795 pt->pt_time.it_value.tv_usec = 1;
796 }
797 }
798 }
799 }
800
801 timer_settime(pt);
802 splx(s);
803
804 if (ovalue) {
805 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
806 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
807 }
808
809 return (0);
810 }
811
812 /* Return the time remaining until a POSIX timer fires. */
813 int
814 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
815 register_t *retval)
816 {
817 /* {
818 syscallarg(timer_t) timerid;
819 syscallarg(struct itimerspec *) value;
820 } */
821 struct itimerspec its;
822 int error;
823
824 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
825 &its)) != 0)
826 return error;
827
828 return copyout(&its, SCARG(uap, value), sizeof(its));
829 }
830
831 int
832 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
833 {
834 int s;
835 struct ptimer *pt;
836 struct itimerval aitv;
837
838 if ((p->p_timers == NULL) ||
839 (timerid < 2) || (timerid >= TIMER_MAX) ||
840 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
841 return (EINVAL);
842
843 s = splclock();
844 timer_gettime(pt, &aitv);
845 splx(s);
846
847 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
848 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
849
850 return 0;
851 }
852
853 /*
854 * Return the count of the number of times a periodic timer expired
855 * while a notification was already pending. The counter is reset when
856 * a timer expires and a notification can be posted.
857 */
858 int
859 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
860 register_t *retval)
861 {
862 /* {
863 syscallarg(timer_t) timerid;
864 } */
865 struct proc *p = l->l_proc;
866 int timerid;
867 struct ptimer *pt;
868
869 timerid = SCARG(uap, timerid);
870
871 if ((p->p_timers == NULL) ||
872 (timerid < 2) || (timerid >= TIMER_MAX) ||
873 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
874 return (EINVAL);
875
876 *retval = pt->pt_poverruns;
877
878 return (0);
879 }
880
881 /*
882 * Real interval timer expired:
883 * send process whose timer expired an alarm signal.
884 * If time is not set up to reload, then just return.
885 * Else compute next time timer should go off which is > current time.
886 * This is where delay in processing this timeout causes multiple
887 * SIGALRM calls to be compressed into one.
888 */
889 void
890 realtimerexpire(void *arg)
891 {
892 struct timeval now;
893 struct ptimer *pt;
894 int s;
895
896 pt = (struct ptimer *)arg;
897
898 itimerfire(pt);
899
900 if (!timerisset(&pt->pt_time.it_interval)) {
901 timerclear(&pt->pt_time.it_value);
902 return;
903 }
904 for (;;) {
905 s = splclock(); /* XXX need spl now? */
906 timeradd(&pt->pt_time.it_value,
907 &pt->pt_time.it_interval, &pt->pt_time.it_value);
908 getmicrotime(&now);
909 if (timercmp(&pt->pt_time.it_value, &now, >)) {
910 /*
911 * Don't need to check hzto() return value, here.
912 * callout_reset() does it for us.
913 */
914 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
915 realtimerexpire, pt);
916 splx(s);
917 return;
918 }
919 splx(s);
920 pt->pt_overruns++;
921 }
922 }
923
924 /* BSD routine to get the value of an interval timer. */
925 /* ARGSUSED */
926 int
927 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
928 register_t *retval)
929 {
930 /* {
931 syscallarg(int) which;
932 syscallarg(struct itimerval *) itv;
933 } */
934 struct proc *p = l->l_proc;
935 struct itimerval aitv;
936 int error;
937
938 error = dogetitimer(p, SCARG(uap, which), &aitv);
939 if (error)
940 return error;
941 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
942 }
943
944 int
945 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
946 {
947 int s;
948
949 if ((u_int)which > ITIMER_PROF)
950 return (EINVAL);
951
952 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
953 timerclear(&itvp->it_value);
954 timerclear(&itvp->it_interval);
955 } else {
956 s = splclock();
957 timer_gettime(p->p_timers->pts_timers[which], itvp);
958 splx(s);
959 }
960
961 return 0;
962 }
963
964 /* BSD routine to set/arm an interval timer. */
965 /* ARGSUSED */
966 int
967 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
968 register_t *retval)
969 {
970 /* {
971 syscallarg(int) which;
972 syscallarg(const struct itimerval *) itv;
973 syscallarg(struct itimerval *) oitv;
974 } */
975 struct proc *p = l->l_proc;
976 int which = SCARG(uap, which);
977 struct sys_getitimer_args getargs;
978 const struct itimerval *itvp;
979 struct itimerval aitv;
980 int error;
981
982 if ((u_int)which > ITIMER_PROF)
983 return (EINVAL);
984 itvp = SCARG(uap, itv);
985 if (itvp &&
986 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
987 return (error);
988 if (SCARG(uap, oitv) != NULL) {
989 SCARG(&getargs, which) = which;
990 SCARG(&getargs, itv) = SCARG(uap, oitv);
991 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
992 return (error);
993 }
994 if (itvp == 0)
995 return (0);
996
997 return dosetitimer(p, which, &aitv);
998 }
999
1000 int
1001 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1002 {
1003 struct timeval now;
1004 struct ptimer *pt;
1005 int s;
1006
1007 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1008 return (EINVAL);
1009
1010 /*
1011 * Don't bother allocating data structures if the process just
1012 * wants to clear the timer.
1013 */
1014 if (!timerisset(&itvp->it_value) &&
1015 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1016 return (0);
1017
1018 if (p->p_timers == NULL)
1019 timers_alloc(p);
1020 if (p->p_timers->pts_timers[which] == NULL) {
1021 pt = pool_get(&ptimer_pool, PR_WAITOK);
1022 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1023 pt->pt_ev.sigev_value.sival_int = which;
1024 pt->pt_overruns = 0;
1025 pt->pt_proc = p;
1026 pt->pt_type = which;
1027 pt->pt_entry = which;
1028 switch (which) {
1029 case ITIMER_REAL:
1030 callout_init(&pt->pt_ch, 0);
1031 pt->pt_ev.sigev_signo = SIGALRM;
1032 break;
1033 case ITIMER_VIRTUAL:
1034 pt->pt_active = 0;
1035 pt->pt_ev.sigev_signo = SIGVTALRM;
1036 break;
1037 case ITIMER_PROF:
1038 pt->pt_active = 0;
1039 pt->pt_ev.sigev_signo = SIGPROF;
1040 break;
1041 }
1042 } else
1043 pt = p->p_timers->pts_timers[which];
1044
1045 pt->pt_time = *itvp;
1046 p->p_timers->pts_timers[which] = pt;
1047
1048 s = splclock();
1049 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1050 /* Convert to absolute time */
1051 /* XXX need to wrap in splclock for timecounters case? */
1052 getmicrotime(&now);
1053 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1054 }
1055 timer_settime(pt);
1056 splx(s);
1057
1058 return (0);
1059 }
1060
1061 /* Utility routines to manage the array of pointers to timers. */
1062 void
1063 timers_alloc(struct proc *p)
1064 {
1065 int i;
1066 struct ptimers *pts;
1067
1068 pts = pool_get(&ptimers_pool, PR_WAITOK);
1069 LIST_INIT(&pts->pts_virtual);
1070 LIST_INIT(&pts->pts_prof);
1071 for (i = 0; i < TIMER_MAX; i++)
1072 pts->pts_timers[i] = NULL;
1073 pts->pts_fired = 0;
1074 p->p_timers = pts;
1075 }
1076
1077 /*
1078 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1079 * then clean up all timers and free all the data structures. If
1080 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1081 * by timer_create(), not the BSD setitimer() timers, and only free the
1082 * structure if none of those remain.
1083 */
1084 void
1085 timers_free(struct proc *p, int which)
1086 {
1087 int i, s;
1088 struct ptimers *pts;
1089 struct ptimer *pt, *ptn;
1090 struct timeval tv;
1091
1092 if (p->p_timers) {
1093 pts = p->p_timers;
1094 if (which == TIMERS_ALL)
1095 i = 0;
1096 else {
1097 s = splclock();
1098 timerclear(&tv);
1099 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1100 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1101 ptn = LIST_NEXT(ptn, pt_list))
1102 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1103 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1104 if (ptn) {
1105 timeradd(&tv, &ptn->pt_time.it_value,
1106 &ptn->pt_time.it_value);
1107 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1108 ptn, pt_list);
1109 }
1110
1111 timerclear(&tv);
1112 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1113 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1114 ptn = LIST_NEXT(ptn, pt_list))
1115 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1116 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1117 if (ptn) {
1118 timeradd(&tv, &ptn->pt_time.it_value,
1119 &ptn->pt_time.it_value);
1120 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1121 pt_list);
1122 }
1123 splx(s);
1124 i = 3;
1125 }
1126 for ( ; i < TIMER_MAX; i++)
1127 if ((pt = pts->pts_timers[i]) != NULL) {
1128 if (pt->pt_type == CLOCK_REALTIME) {
1129 callout_stop(&pt->pt_ch);
1130 callout_destroy(&pt->pt_ch);
1131 }
1132 pts->pts_timers[i] = NULL;
1133 pool_put(&ptimer_pool, pt);
1134 }
1135 if ((pts->pts_timers[0] == NULL) &&
1136 (pts->pts_timers[1] == NULL) &&
1137 (pts->pts_timers[2] == NULL)) {
1138 p->p_timers = NULL;
1139 pool_put(&ptimers_pool, pts);
1140 }
1141 }
1142 }
1143
1144 /*
1145 * Decrement an interval timer by a specified number
1146 * of microseconds, which must be less than a second,
1147 * i.e. < 1000000. If the timer expires, then reload
1148 * it. In this case, carry over (usec - old value) to
1149 * reduce the value reloaded into the timer so that
1150 * the timer does not drift. This routine assumes
1151 * that it is called in a context where the timers
1152 * on which it is operating cannot change in value.
1153 */
1154 int
1155 itimerdecr(struct ptimer *pt, int usec)
1156 {
1157 struct itimerval *itp;
1158
1159 itp = &pt->pt_time;
1160 if (itp->it_value.tv_usec < usec) {
1161 if (itp->it_value.tv_sec == 0) {
1162 /* expired, and already in next interval */
1163 usec -= itp->it_value.tv_usec;
1164 goto expire;
1165 }
1166 itp->it_value.tv_usec += 1000000;
1167 itp->it_value.tv_sec--;
1168 }
1169 itp->it_value.tv_usec -= usec;
1170 usec = 0;
1171 if (timerisset(&itp->it_value))
1172 return (1);
1173 /* expired, exactly at end of interval */
1174 expire:
1175 if (timerisset(&itp->it_interval)) {
1176 itp->it_value = itp->it_interval;
1177 itp->it_value.tv_usec -= usec;
1178 if (itp->it_value.tv_usec < 0) {
1179 itp->it_value.tv_usec += 1000000;
1180 itp->it_value.tv_sec--;
1181 }
1182 timer_settime(pt);
1183 } else
1184 itp->it_value.tv_usec = 0; /* sec is already 0 */
1185 return (0);
1186 }
1187
1188 void
1189 itimerfire(struct ptimer *pt)
1190 {
1191 struct proc *p = pt->pt_proc;
1192
1193 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1194 /*
1195 * No RT signal infrastructure exists at this time;
1196 * just post the signal number and throw away the
1197 * value.
1198 */
1199 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1200 pt->pt_overruns++;
1201 else {
1202 ksiginfo_t ksi;
1203 KSI_INIT(&ksi);
1204 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1205 ksi.ksi_code = SI_TIMER;
1206 ksi.ksi_value = pt->pt_ev.sigev_value;
1207 pt->pt_poverruns = pt->pt_overruns;
1208 pt->pt_overruns = 0;
1209 mutex_enter(&proclist_mutex);
1210 kpsignal(p, &ksi, NULL);
1211 mutex_exit(&proclist_mutex);
1212 }
1213 }
1214 }
1215
1216 /*
1217 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1218 * for usage and rationale.
1219 */
1220 int
1221 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1222 {
1223 struct timeval tv, delta;
1224 int rv = 0;
1225
1226 getmicrouptime(&tv);
1227 timersub(&tv, lasttime, &delta);
1228
1229 /*
1230 * check for 0,0 is so that the message will be seen at least once,
1231 * even if interval is huge.
1232 */
1233 if (timercmp(&delta, mininterval, >=) ||
1234 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1235 *lasttime = tv;
1236 rv = 1;
1237 }
1238
1239 return (rv);
1240 }
1241
1242 /*
1243 * ppsratecheck(): packets (or events) per second limitation.
1244 */
1245 int
1246 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1247 {
1248 struct timeval tv, delta;
1249 int rv;
1250
1251 getmicrouptime(&tv);
1252 timersub(&tv, lasttime, &delta);
1253
1254 /*
1255 * check for 0,0 is so that the message will be seen at least once.
1256 * if more than one second have passed since the last update of
1257 * lasttime, reset the counter.
1258 *
1259 * we do increment *curpps even in *curpps < maxpps case, as some may
1260 * try to use *curpps for stat purposes as well.
1261 */
1262 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1263 delta.tv_sec >= 1) {
1264 *lasttime = tv;
1265 *curpps = 0;
1266 }
1267 if (maxpps < 0)
1268 rv = 1;
1269 else if (*curpps < maxpps)
1270 rv = 1;
1271 else
1272 rv = 0;
1273
1274 #if 1 /*DIAGNOSTIC?*/
1275 /* be careful about wrap-around */
1276 if (*curpps + 1 > *curpps)
1277 *curpps = *curpps + 1;
1278 #else
1279 /*
1280 * assume that there's not too many calls to this function.
1281 * not sure if the assumption holds, as it depends on *caller's*
1282 * behavior, not the behavior of this function.
1283 * IMHO it is wrong to make assumption on the caller's behavior,
1284 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1285 */
1286 *curpps = *curpps + 1;
1287 #endif
1288
1289 return (rv);
1290 }
1291