Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.141
      1 /*	$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <sys/cpu.h>
     90 
     91 kmutex_t	time_lock;
     92 
     93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94     &pool_allocator_nointr, IPL_NONE);
     95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96     &pool_allocator_nointr, IPL_NONE);
     97 
     98 /*
     99  * Initialize timekeeping.
    100  */
    101 void
    102 time_init(void)
    103 {
    104 
    105 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106 }
    107 
    108 /* Time of day and interval timer support.
    109  *
    110  * These routines provide the kernel entry points to get and set
    111  * the time-of-day and per-process interval timers.  Subroutines
    112  * here provide support for adding and subtracting timeval structures
    113  * and decrementing interval timers, optionally reloading the interval
    114  * timers when they expire.
    115  */
    116 
    117 /* This function is used by clock_settime and settimeofday */
    118 static int
    119 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    120 {
    121 	struct timeval delta, tv;
    122 	struct timeval now;
    123 	struct timespec ts1;
    124 	struct bintime btdelta;
    125 	lwp_t *l;
    126 	int s;
    127 
    128 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    129 
    130 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    131 	s = splclock();
    132 	microtime(&now);
    133 	timersub(&tv, &now, &delta);
    134 
    135 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    136 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    137 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    138 		splx(s);
    139 		return (EPERM);
    140 	}
    141 
    142 #ifdef notyet
    143 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    144 		splx(s);
    145 		return (EPERM);
    146 	}
    147 #endif
    148 
    149 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    150 	tc_setclock(&ts1);
    151 
    152 	timeradd(&boottime, &delta, &boottime);
    153 
    154 	/*
    155 	 * XXXSMP: There is a short race between setting the time above
    156 	 * and adjusting LWP's run times.  Fixing this properly means
    157 	 * pausing all CPUs while we adjust the clock.
    158 	 */
    159 	timeval2bintime(&delta, &btdelta);
    160 	mutex_enter(&proclist_lock);
    161 	LIST_FOREACH(l, &alllwp, l_list) {
    162 		lwp_lock(l);
    163 		bintime_add(&l->l_stime, &btdelta);
    164 		lwp_unlock(l);
    165 	}
    166 	mutex_exit(&proclist_lock);
    167 	resettodr();
    168 	splx(s);
    169 
    170 	return (0);
    171 }
    172 
    173 int
    174 settime(struct proc *p, struct timespec *ts)
    175 {
    176 	return (settime1(p, ts, true));
    177 }
    178 
    179 /* ARGSUSED */
    180 int
    181 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    182     register_t *retval)
    183 {
    184 	/* {
    185 		syscallarg(clockid_t) clock_id;
    186 		syscallarg(struct timespec *) tp;
    187 	} */
    188 	clockid_t clock_id;
    189 	struct timespec ats;
    190 
    191 	clock_id = SCARG(uap, clock_id);
    192 	switch (clock_id) {
    193 	case CLOCK_REALTIME:
    194 		nanotime(&ats);
    195 		break;
    196 	case CLOCK_MONOTONIC:
    197 		nanouptime(&ats);
    198 		break;
    199 	default:
    200 		return (EINVAL);
    201 	}
    202 
    203 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    204 }
    205 
    206 /* ARGSUSED */
    207 int
    208 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    209     register_t *retval)
    210 {
    211 	/* {
    212 		syscallarg(clockid_t) clock_id;
    213 		syscallarg(const struct timespec *) tp;
    214 	} */
    215 
    216 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    217 	    true);
    218 }
    219 
    220 
    221 int
    222 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    223     bool check_kauth)
    224 {
    225 	struct timespec ats;
    226 	int error;
    227 
    228 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    229 		return (error);
    230 
    231 	switch (clock_id) {
    232 	case CLOCK_REALTIME:
    233 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    234 			return (error);
    235 		break;
    236 	case CLOCK_MONOTONIC:
    237 		return (EINVAL);	/* read-only clock */
    238 	default:
    239 		return (EINVAL);
    240 	}
    241 
    242 	return 0;
    243 }
    244 
    245 int
    246 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    247     register_t *retval)
    248 {
    249 	/* {
    250 		syscallarg(clockid_t) clock_id;
    251 		syscallarg(struct timespec *) tp;
    252 	} */
    253 	clockid_t clock_id;
    254 	struct timespec ts;
    255 	int error = 0;
    256 
    257 	clock_id = SCARG(uap, clock_id);
    258 	switch (clock_id) {
    259 	case CLOCK_REALTIME:
    260 	case CLOCK_MONOTONIC:
    261 		ts.tv_sec = 0;
    262 		if (tc_getfrequency() > 1000000000)
    263 			ts.tv_nsec = 1;
    264 		else
    265 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    266 		break;
    267 	default:
    268 		return (EINVAL);
    269 	}
    270 
    271 	if (SCARG(uap, tp))
    272 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    273 
    274 	return error;
    275 }
    276 
    277 /* ARGSUSED */
    278 int
    279 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    280     register_t *retval)
    281 {
    282 	/* {
    283 		syscallarg(struct timespec *) rqtp;
    284 		syscallarg(struct timespec *) rmtp;
    285 	} */
    286 	struct timespec rmt, rqt;
    287 	int error, error1;
    288 
    289 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    290 	if (error)
    291 		return (error);
    292 
    293 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    294 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    295 		return error;
    296 
    297 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    298 	return error1 ? error1 : error;
    299 }
    300 
    301 int
    302 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    303 {
    304 	struct timespec rmtstart;
    305 	int error, timo;
    306 
    307 	if (itimespecfix(rqt))
    308 		return (EINVAL);
    309 
    310 	timo = tstohz(rqt);
    311 	/*
    312 	 * Avoid inadvertantly sleeping forever
    313 	 */
    314 	if (timo == 0)
    315 		timo = 1;
    316 	getnanouptime(&rmtstart);
    317 again:
    318 	error = kpause("nanoslp", true, timo, NULL);
    319 	if (rmt != NULL || error == 0) {
    320 		struct timespec rmtend;
    321 		struct timespec t0;
    322 		struct timespec *t;
    323 
    324 		getnanouptime(&rmtend);
    325 		t = (rmt != NULL) ? rmt : &t0;
    326 		timespecsub(&rmtend, &rmtstart, t);
    327 		timespecsub(rqt, t, t);
    328 		if (t->tv_sec < 0)
    329 			timespecclear(t);
    330 		if (error == 0) {
    331 			timo = tstohz(t);
    332 			if (timo > 0)
    333 				goto again;
    334 		}
    335 	}
    336 
    337 	if (error == ERESTART)
    338 		error = EINTR;
    339 	if (error == EWOULDBLOCK)
    340 		error = 0;
    341 
    342 	return error;
    343 }
    344 
    345 /* ARGSUSED */
    346 int
    347 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    348     register_t *retval)
    349 {
    350 	/* {
    351 		syscallarg(struct timeval *) tp;
    352 		syscallarg(void *) tzp;		really "struct timezone *";
    353 	} */
    354 	struct timeval atv;
    355 	int error = 0;
    356 	struct timezone tzfake;
    357 
    358 	if (SCARG(uap, tp)) {
    359 		microtime(&atv);
    360 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    361 		if (error)
    362 			return (error);
    363 	}
    364 	if (SCARG(uap, tzp)) {
    365 		/*
    366 		 * NetBSD has no kernel notion of time zone, so we just
    367 		 * fake up a timezone struct and return it if demanded.
    368 		 */
    369 		tzfake.tz_minuteswest = 0;
    370 		tzfake.tz_dsttime = 0;
    371 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    372 	}
    373 	return (error);
    374 }
    375 
    376 /* ARGSUSED */
    377 int
    378 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    379     register_t *retval)
    380 {
    381 	/* {
    382 		syscallarg(const struct timeval *) tv;
    383 		syscallarg(const void *) tzp; really "const struct timezone *";
    384 	} */
    385 
    386 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    387 }
    388 
    389 int
    390 settimeofday1(const struct timeval *utv, bool userspace,
    391     const void *utzp, struct lwp *l, bool check_kauth)
    392 {
    393 	struct timeval atv;
    394 	struct timespec ts;
    395 	int error;
    396 
    397 	/* Verify all parameters before changing time. */
    398 
    399 	/*
    400 	 * NetBSD has no kernel notion of time zone, and only an
    401 	 * obsolete program would try to set it, so we log a warning.
    402 	 */
    403 	if (utzp)
    404 		log(LOG_WARNING, "pid %d attempted to set the "
    405 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    406 
    407 	if (utv == NULL)
    408 		return 0;
    409 
    410 	if (userspace) {
    411 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    412 			return error;
    413 		utv = &atv;
    414 	}
    415 
    416 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    417 	return settime1(l->l_proc, &ts, check_kauth);
    418 }
    419 
    420 int	time_adjusted;			/* set if an adjustment is made */
    421 
    422 /* ARGSUSED */
    423 int
    424 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    425     register_t *retval)
    426 {
    427 	/* {
    428 		syscallarg(const struct timeval *) delta;
    429 		syscallarg(struct timeval *) olddelta;
    430 	} */
    431 	int error;
    432 
    433 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    434 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    435 		return (error);
    436 
    437 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    438 }
    439 
    440 int
    441 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    442 {
    443 	struct timeval atv;
    444 	int error = 0;
    445 
    446 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    447 
    448 	if (olddelta) {
    449 		atv.tv_sec = time_adjtime / 1000000;
    450 		atv.tv_usec = time_adjtime % 1000000;
    451 		if (atv.tv_usec < 0) {
    452 			atv.tv_usec += 1000000;
    453 			atv.tv_sec--;
    454 		}
    455 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    456 		if (error)
    457 			return (error);
    458 	}
    459 
    460 	if (delta) {
    461 		error = copyin(delta, &atv, sizeof(struct timeval));
    462 		if (error)
    463 			return (error);
    464 
    465 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    466 			atv.tv_usec;
    467 
    468 		if (time_adjtime)
    469 			/* We need to save the system time during shutdown */
    470 			time_adjusted |= 1;
    471 	}
    472 
    473 	return error;
    474 }
    475 
    476 /*
    477  * Interval timer support. Both the BSD getitimer() family and the POSIX
    478  * timer_*() family of routines are supported.
    479  *
    480  * All timers are kept in an array pointed to by p_timers, which is
    481  * allocated on demand - many processes don't use timers at all. The
    482  * first three elements in this array are reserved for the BSD timers:
    483  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    484  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    485  * syscall.
    486  *
    487  * Realtime timers are kept in the ptimer structure as an absolute
    488  * time; virtual time timers are kept as a linked list of deltas.
    489  * Virtual time timers are processed in the hardclock() routine of
    490  * kern_clock.c.  The real time timer is processed by a callout
    491  * routine, called from the softclock() routine.  Since a callout may
    492  * be delayed in real time due to interrupt processing in the system,
    493  * it is possible for the real time timeout routine (realtimeexpire,
    494  * given below), to be delayed in real time past when it is supposed
    495  * to occur.  It does not suffice, therefore, to reload the real timer
    496  * .it_value from the real time timers .it_interval.  Rather, we
    497  * compute the next time in absolute time the timer should go off.  */
    498 
    499 /* Allocate a POSIX realtime timer. */
    500 int
    501 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    502     register_t *retval)
    503 {
    504 	/* {
    505 		syscallarg(clockid_t) clock_id;
    506 		syscallarg(struct sigevent *) evp;
    507 		syscallarg(timer_t *) timerid;
    508 	} */
    509 
    510 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    511 	    SCARG(uap, evp), copyin, l);
    512 }
    513 
    514 int
    515 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    516     copyin_t fetch_event, struct lwp *l)
    517 {
    518 	int error;
    519 	timer_t timerid;
    520 	struct ptimer *pt;
    521 	struct proc *p;
    522 
    523 	p = l->l_proc;
    524 
    525 	if (id < CLOCK_REALTIME ||
    526 	    id > CLOCK_PROF)
    527 		return (EINVAL);
    528 
    529 	if (p->p_timers == NULL)
    530 		timers_alloc(p);
    531 
    532 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    533 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    534 		if (p->p_timers->pts_timers[timerid] == NULL)
    535 			break;
    536 
    537 	if (timerid == TIMER_MAX)
    538 		return EAGAIN;
    539 
    540 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    541 	if (evp) {
    542 		if (((error =
    543 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    544 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    545 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    546 			pool_put(&ptimer_pool, pt);
    547 			return (error ? error : EINVAL);
    548 		}
    549 	} else {
    550 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    551 		switch (id) {
    552 		case CLOCK_REALTIME:
    553 			pt->pt_ev.sigev_signo = SIGALRM;
    554 			break;
    555 		case CLOCK_VIRTUAL:
    556 			pt->pt_ev.sigev_signo = SIGVTALRM;
    557 			break;
    558 		case CLOCK_PROF:
    559 			pt->pt_ev.sigev_signo = SIGPROF;
    560 			break;
    561 		}
    562 		pt->pt_ev.sigev_value.sival_int = timerid;
    563 	}
    564 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    565 	pt->pt_info.ksi_errno = 0;
    566 	pt->pt_info.ksi_code = 0;
    567 	pt->pt_info.ksi_pid = p->p_pid;
    568 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    569 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    570 
    571 	pt->pt_type = id;
    572 	pt->pt_proc = p;
    573 	pt->pt_overruns = 0;
    574 	pt->pt_poverruns = 0;
    575 	pt->pt_entry = timerid;
    576 	timerclear(&pt->pt_time.it_value);
    577 	if (id == CLOCK_REALTIME)
    578 		callout_init(&pt->pt_ch, 0);
    579 	else
    580 		pt->pt_active = 0;
    581 
    582 	p->p_timers->pts_timers[timerid] = pt;
    583 
    584 	return copyout(&timerid, tid, sizeof(timerid));
    585 }
    586 
    587 /* Delete a POSIX realtime timer */
    588 int
    589 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    590     register_t *retval)
    591 {
    592 	/* {
    593 		syscallarg(timer_t) timerid;
    594 	} */
    595 	struct proc *p = l->l_proc;
    596 	timer_t timerid;
    597 	struct ptimer *pt, *ptn;
    598 	int s;
    599 
    600 	timerid = SCARG(uap, timerid);
    601 
    602 	if ((p->p_timers == NULL) ||
    603 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    604 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    605 		return (EINVAL);
    606 
    607 	if (pt->pt_type == CLOCK_REALTIME) {
    608 		callout_stop(&pt->pt_ch);
    609 		callout_destroy(&pt->pt_ch);
    610 	} else if (pt->pt_active) {
    611 		s = splclock();
    612 		ptn = LIST_NEXT(pt, pt_list);
    613 		LIST_REMOVE(pt, pt_list);
    614 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    615 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    616 			    &ptn->pt_time.it_value);
    617 		splx(s);
    618 	}
    619 
    620 	p->p_timers->pts_timers[timerid] = NULL;
    621 	pool_put(&ptimer_pool, pt);
    622 
    623 	return (0);
    624 }
    625 
    626 /*
    627  * Set up the given timer. The value in pt->pt_time.it_value is taken
    628  * to be an absolute time for CLOCK_REALTIME timers and a relative
    629  * time for virtual timers.
    630  * Must be called at splclock().
    631  */
    632 void
    633 timer_settime(struct ptimer *pt)
    634 {
    635 	struct ptimer *ptn, *pptn;
    636 	struct ptlist *ptl;
    637 
    638 	if (pt->pt_type == CLOCK_REALTIME) {
    639 		callout_stop(&pt->pt_ch);
    640 		if (timerisset(&pt->pt_time.it_value)) {
    641 			/*
    642 			 * Don't need to check hzto() return value, here.
    643 			 * callout_reset() does it for us.
    644 			 */
    645 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    646 			    realtimerexpire, pt);
    647 		}
    648 	} else {
    649 		if (pt->pt_active) {
    650 			ptn = LIST_NEXT(pt, pt_list);
    651 			LIST_REMOVE(pt, pt_list);
    652 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    653 				timeradd(&pt->pt_time.it_value,
    654 				    &ptn->pt_time.it_value,
    655 				    &ptn->pt_time.it_value);
    656 		}
    657 		if (timerisset(&pt->pt_time.it_value)) {
    658 			if (pt->pt_type == CLOCK_VIRTUAL)
    659 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    660 			else
    661 				ptl = &pt->pt_proc->p_timers->pts_prof;
    662 
    663 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    664 			     ptn && timercmp(&pt->pt_time.it_value,
    665 				 &ptn->pt_time.it_value, >);
    666 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    667 				timersub(&pt->pt_time.it_value,
    668 				    &ptn->pt_time.it_value,
    669 				    &pt->pt_time.it_value);
    670 
    671 			if (pptn)
    672 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    673 			else
    674 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    675 
    676 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    677 				timersub(&ptn->pt_time.it_value,
    678 				    &pt->pt_time.it_value,
    679 				    &ptn->pt_time.it_value);
    680 
    681 			pt->pt_active = 1;
    682 		} else
    683 			pt->pt_active = 0;
    684 	}
    685 }
    686 
    687 void
    688 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    689 {
    690 	struct timeval now;
    691 	struct ptimer *ptn;
    692 
    693 	*aitv = pt->pt_time;
    694 	if (pt->pt_type == CLOCK_REALTIME) {
    695 		/*
    696 		 * Convert from absolute to relative time in .it_value
    697 		 * part of real time timer.  If time for real time
    698 		 * timer has passed return 0, else return difference
    699 		 * between current time and time for the timer to go
    700 		 * off.
    701 		 */
    702 		if (timerisset(&aitv->it_value)) {
    703 			getmicrotime(&now);
    704 			if (timercmp(&aitv->it_value, &now, <))
    705 				timerclear(&aitv->it_value);
    706 			else
    707 				timersub(&aitv->it_value, &now,
    708 				    &aitv->it_value);
    709 		}
    710 	} else if (pt->pt_active) {
    711 		if (pt->pt_type == CLOCK_VIRTUAL)
    712 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    713 		else
    714 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    715 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    716 			timeradd(&aitv->it_value,
    717 			    &ptn->pt_time.it_value, &aitv->it_value);
    718 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    719 	} else
    720 		timerclear(&aitv->it_value);
    721 }
    722 
    723 
    724 
    725 /* Set and arm a POSIX realtime timer */
    726 int
    727 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    728     register_t *retval)
    729 {
    730 	/* {
    731 		syscallarg(timer_t) timerid;
    732 		syscallarg(int) flags;
    733 		syscallarg(const struct itimerspec *) value;
    734 		syscallarg(struct itimerspec *) ovalue;
    735 	} */
    736 	int error;
    737 	struct itimerspec value, ovalue, *ovp = NULL;
    738 
    739 	if ((error = copyin(SCARG(uap, value), &value,
    740 	    sizeof(struct itimerspec))) != 0)
    741 		return (error);
    742 
    743 	if (SCARG(uap, ovalue))
    744 		ovp = &ovalue;
    745 
    746 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    747 	    SCARG(uap, flags), l->l_proc)) != 0)
    748 		return error;
    749 
    750 	if (ovp)
    751 		return copyout(&ovalue, SCARG(uap, ovalue),
    752 		    sizeof(struct itimerspec));
    753 	return 0;
    754 }
    755 
    756 int
    757 dotimer_settime(int timerid, struct itimerspec *value,
    758     struct itimerspec *ovalue, int flags, struct proc *p)
    759 {
    760 	struct timeval now;
    761 	struct itimerval val, oval;
    762 	struct ptimer *pt;
    763 	int s;
    764 
    765 	if ((p->p_timers == NULL) ||
    766 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    767 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    768 		return (EINVAL);
    769 
    770 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    771 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    772 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    773 		return (EINVAL);
    774 
    775 	oval = pt->pt_time;
    776 	pt->pt_time = val;
    777 
    778 	s = splclock();
    779 	/*
    780 	 * If we've been passed a relative time for a realtime timer,
    781 	 * convert it to absolute; if an absolute time for a virtual
    782 	 * timer, convert it to relative and make sure we don't set it
    783 	 * to zero, which would cancel the timer, or let it go
    784 	 * negative, which would confuse the comparison tests.
    785 	 */
    786 	if (timerisset(&pt->pt_time.it_value)) {
    787 		if (pt->pt_type == CLOCK_REALTIME) {
    788 			if ((flags & TIMER_ABSTIME) == 0) {
    789 				getmicrotime(&now);
    790 				timeradd(&pt->pt_time.it_value, &now,
    791 				    &pt->pt_time.it_value);
    792 			}
    793 		} else {
    794 			if ((flags & TIMER_ABSTIME) != 0) {
    795 				getmicrotime(&now);
    796 				timersub(&pt->pt_time.it_value, &now,
    797 				    &pt->pt_time.it_value);
    798 				if (!timerisset(&pt->pt_time.it_value) ||
    799 				    pt->pt_time.it_value.tv_sec < 0) {
    800 					pt->pt_time.it_value.tv_sec = 0;
    801 					pt->pt_time.it_value.tv_usec = 1;
    802 				}
    803 			}
    804 		}
    805 	}
    806 
    807 	timer_settime(pt);
    808 	splx(s);
    809 
    810 	if (ovalue) {
    811 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    812 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    813 	}
    814 
    815 	return (0);
    816 }
    817 
    818 /* Return the time remaining until a POSIX timer fires. */
    819 int
    820 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    821     register_t *retval)
    822 {
    823 	/* {
    824 		syscallarg(timer_t) timerid;
    825 		syscallarg(struct itimerspec *) value;
    826 	} */
    827 	struct itimerspec its;
    828 	int error;
    829 
    830 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    831 	    &its)) != 0)
    832 		return error;
    833 
    834 	return copyout(&its, SCARG(uap, value), sizeof(its));
    835 }
    836 
    837 int
    838 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    839 {
    840 	int s;
    841 	struct ptimer *pt;
    842 	struct itimerval aitv;
    843 
    844 	if ((p->p_timers == NULL) ||
    845 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    846 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    847 		return (EINVAL);
    848 
    849 	s = splclock();
    850 	timer_gettime(pt, &aitv);
    851 	splx(s);
    852 
    853 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    854 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    855 
    856 	return 0;
    857 }
    858 
    859 /*
    860  * Return the count of the number of times a periodic timer expired
    861  * while a notification was already pending. The counter is reset when
    862  * a timer expires and a notification can be posted.
    863  */
    864 int
    865 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    866     register_t *retval)
    867 {
    868 	/* {
    869 		syscallarg(timer_t) timerid;
    870 	} */
    871 	struct proc *p = l->l_proc;
    872 	int timerid;
    873 	struct ptimer *pt;
    874 
    875 	timerid = SCARG(uap, timerid);
    876 
    877 	if ((p->p_timers == NULL) ||
    878 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    879 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    880 		return (EINVAL);
    881 
    882 	*retval = pt->pt_poverruns;
    883 
    884 	return (0);
    885 }
    886 
    887 /*
    888  * Real interval timer expired:
    889  * send process whose timer expired an alarm signal.
    890  * If time is not set up to reload, then just return.
    891  * Else compute next time timer should go off which is > current time.
    892  * This is where delay in processing this timeout causes multiple
    893  * SIGALRM calls to be compressed into one.
    894  */
    895 void
    896 realtimerexpire(void *arg)
    897 {
    898 	struct timeval now;
    899 	struct ptimer *pt;
    900 	int s;
    901 
    902 	pt = (struct ptimer *)arg;
    903 
    904 	itimerfire(pt);
    905 
    906 	if (!timerisset(&pt->pt_time.it_interval)) {
    907 		timerclear(&pt->pt_time.it_value);
    908 		return;
    909 	}
    910 	for (;;) {
    911 		s = splclock();	/* XXX need spl now? */
    912 		timeradd(&pt->pt_time.it_value,
    913 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    914 		getmicrotime(&now);
    915 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    916 			/*
    917 			 * Don't need to check hzto() return value, here.
    918 			 * callout_reset() does it for us.
    919 			 */
    920 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    921 			    realtimerexpire, pt);
    922 			splx(s);
    923 			return;
    924 		}
    925 		splx(s);
    926 		pt->pt_overruns++;
    927 	}
    928 }
    929 
    930 /* BSD routine to get the value of an interval timer. */
    931 /* ARGSUSED */
    932 int
    933 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
    934     register_t *retval)
    935 {
    936 	/* {
    937 		syscallarg(int) which;
    938 		syscallarg(struct itimerval *) itv;
    939 	} */
    940 	struct proc *p = l->l_proc;
    941 	struct itimerval aitv;
    942 	int error;
    943 
    944 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    945 	if (error)
    946 		return error;
    947 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    948 }
    949 
    950 int
    951 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    952 {
    953 	int s;
    954 
    955 	if ((u_int)which > ITIMER_PROF)
    956 		return (EINVAL);
    957 
    958 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    959 		timerclear(&itvp->it_value);
    960 		timerclear(&itvp->it_interval);
    961 	} else {
    962 		s = splclock();
    963 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    964 		splx(s);
    965 	}
    966 
    967 	return 0;
    968 }
    969 
    970 /* BSD routine to set/arm an interval timer. */
    971 /* ARGSUSED */
    972 int
    973 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
    974     register_t *retval)
    975 {
    976 	/* {
    977 		syscallarg(int) which;
    978 		syscallarg(const struct itimerval *) itv;
    979 		syscallarg(struct itimerval *) oitv;
    980 	} */
    981 	struct proc *p = l->l_proc;
    982 	int which = SCARG(uap, which);
    983 	struct sys_getitimer_args getargs;
    984 	const struct itimerval *itvp;
    985 	struct itimerval aitv;
    986 	int error;
    987 
    988 	if ((u_int)which > ITIMER_PROF)
    989 		return (EINVAL);
    990 	itvp = SCARG(uap, itv);
    991 	if (itvp &&
    992 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    993 		return (error);
    994 	if (SCARG(uap, oitv) != NULL) {
    995 		SCARG(&getargs, which) = which;
    996 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    997 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    998 			return (error);
    999 	}
   1000 	if (itvp == 0)
   1001 		return (0);
   1002 
   1003 	return dosetitimer(p, which, &aitv);
   1004 }
   1005 
   1006 int
   1007 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1008 {
   1009 	struct timeval now;
   1010 	struct ptimer *pt;
   1011 	int s;
   1012 
   1013 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1014 		return (EINVAL);
   1015 
   1016 	/*
   1017 	 * Don't bother allocating data structures if the process just
   1018 	 * wants to clear the timer.
   1019 	 */
   1020 	if (!timerisset(&itvp->it_value) &&
   1021 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1022 		return (0);
   1023 
   1024 	if (p->p_timers == NULL)
   1025 		timers_alloc(p);
   1026 	if (p->p_timers->pts_timers[which] == NULL) {
   1027 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1028 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1029 		pt->pt_ev.sigev_value.sival_int = which;
   1030 		pt->pt_overruns = 0;
   1031 		pt->pt_proc = p;
   1032 		pt->pt_type = which;
   1033 		pt->pt_entry = which;
   1034 		switch (which) {
   1035 		case ITIMER_REAL:
   1036 			callout_init(&pt->pt_ch, 0);
   1037 			pt->pt_ev.sigev_signo = SIGALRM;
   1038 			break;
   1039 		case ITIMER_VIRTUAL:
   1040 			pt->pt_active = 0;
   1041 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1042 			break;
   1043 		case ITIMER_PROF:
   1044 			pt->pt_active = 0;
   1045 			pt->pt_ev.sigev_signo = SIGPROF;
   1046 			break;
   1047 		}
   1048 	} else
   1049 		pt = p->p_timers->pts_timers[which];
   1050 
   1051 	pt->pt_time = *itvp;
   1052 	p->p_timers->pts_timers[which] = pt;
   1053 
   1054 	s = splclock();
   1055 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1056 		/* Convert to absolute time */
   1057 		/* XXX need to wrap in splclock for timecounters case? */
   1058 		getmicrotime(&now);
   1059 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1060 	}
   1061 	timer_settime(pt);
   1062 	splx(s);
   1063 
   1064 	return (0);
   1065 }
   1066 
   1067 /* Utility routines to manage the array of pointers to timers. */
   1068 void
   1069 timers_alloc(struct proc *p)
   1070 {
   1071 	int i;
   1072 	struct ptimers *pts;
   1073 
   1074 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1075 	LIST_INIT(&pts->pts_virtual);
   1076 	LIST_INIT(&pts->pts_prof);
   1077 	for (i = 0; i < TIMER_MAX; i++)
   1078 		pts->pts_timers[i] = NULL;
   1079 	pts->pts_fired = 0;
   1080 	p->p_timers = pts;
   1081 }
   1082 
   1083 /*
   1084  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1085  * then clean up all timers and free all the data structures. If
   1086  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1087  * by timer_create(), not the BSD setitimer() timers, and only free the
   1088  * structure if none of those remain.
   1089  */
   1090 void
   1091 timers_free(struct proc *p, int which)
   1092 {
   1093 	int i, s;
   1094 	struct ptimers *pts;
   1095 	struct ptimer *pt, *ptn;
   1096 	struct timeval tv;
   1097 
   1098 	if (p->p_timers) {
   1099 		pts = p->p_timers;
   1100 		if (which == TIMERS_ALL)
   1101 			i = 0;
   1102 		else {
   1103 			s = splclock();
   1104 			timerclear(&tv);
   1105 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1106 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1107 			     ptn = LIST_NEXT(ptn, pt_list))
   1108 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1109 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1110 			if (ptn) {
   1111 				timeradd(&tv, &ptn->pt_time.it_value,
   1112 				    &ptn->pt_time.it_value);
   1113 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1114 				    ptn, pt_list);
   1115 			}
   1116 
   1117 			timerclear(&tv);
   1118 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1119 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1120 			     ptn = LIST_NEXT(ptn, pt_list))
   1121 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1122 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1123 			if (ptn) {
   1124 				timeradd(&tv, &ptn->pt_time.it_value,
   1125 				    &ptn->pt_time.it_value);
   1126 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1127 				    pt_list);
   1128 			}
   1129 			splx(s);
   1130 			i = 3;
   1131 		}
   1132 		for ( ; i < TIMER_MAX; i++)
   1133 			if ((pt = pts->pts_timers[i]) != NULL) {
   1134 				if (pt->pt_type == CLOCK_REALTIME) {
   1135 					callout_stop(&pt->pt_ch);
   1136 					callout_destroy(&pt->pt_ch);
   1137 				}
   1138 				pts->pts_timers[i] = NULL;
   1139 				pool_put(&ptimer_pool, pt);
   1140 			}
   1141 		if ((pts->pts_timers[0] == NULL) &&
   1142 		    (pts->pts_timers[1] == NULL) &&
   1143 		    (pts->pts_timers[2] == NULL)) {
   1144 			p->p_timers = NULL;
   1145 			pool_put(&ptimers_pool, pts);
   1146 		}
   1147 	}
   1148 }
   1149 
   1150 /*
   1151  * Decrement an interval timer by a specified number
   1152  * of microseconds, which must be less than a second,
   1153  * i.e. < 1000000.  If the timer expires, then reload
   1154  * it.  In this case, carry over (usec - old value) to
   1155  * reduce the value reloaded into the timer so that
   1156  * the timer does not drift.  This routine assumes
   1157  * that it is called in a context where the timers
   1158  * on which it is operating cannot change in value.
   1159  */
   1160 int
   1161 itimerdecr(struct ptimer *pt, int usec)
   1162 {
   1163 	struct itimerval *itp;
   1164 
   1165 	itp = &pt->pt_time;
   1166 	if (itp->it_value.tv_usec < usec) {
   1167 		if (itp->it_value.tv_sec == 0) {
   1168 			/* expired, and already in next interval */
   1169 			usec -= itp->it_value.tv_usec;
   1170 			goto expire;
   1171 		}
   1172 		itp->it_value.tv_usec += 1000000;
   1173 		itp->it_value.tv_sec--;
   1174 	}
   1175 	itp->it_value.tv_usec -= usec;
   1176 	usec = 0;
   1177 	if (timerisset(&itp->it_value))
   1178 		return (1);
   1179 	/* expired, exactly at end of interval */
   1180 expire:
   1181 	if (timerisset(&itp->it_interval)) {
   1182 		itp->it_value = itp->it_interval;
   1183 		itp->it_value.tv_usec -= usec;
   1184 		if (itp->it_value.tv_usec < 0) {
   1185 			itp->it_value.tv_usec += 1000000;
   1186 			itp->it_value.tv_sec--;
   1187 		}
   1188 		timer_settime(pt);
   1189 	} else
   1190 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1191 	return (0);
   1192 }
   1193 
   1194 void
   1195 itimerfire(struct ptimer *pt)
   1196 {
   1197 	struct proc *p = pt->pt_proc;
   1198 
   1199 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1200 		/*
   1201 		 * No RT signal infrastructure exists at this time;
   1202 		 * just post the signal number and throw away the
   1203 		 * value.
   1204 		 */
   1205 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1206 			pt->pt_overruns++;
   1207 		else {
   1208 			ksiginfo_t ksi;
   1209 			KSI_INIT(&ksi);
   1210 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1211 			ksi.ksi_code = SI_TIMER;
   1212 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1213 			pt->pt_poverruns = pt->pt_overruns;
   1214 			pt->pt_overruns = 0;
   1215 			mutex_enter(&proclist_mutex);
   1216 			kpsignal(p, &ksi, NULL);
   1217 			mutex_exit(&proclist_mutex);
   1218 		}
   1219 	}
   1220 }
   1221 
   1222 /*
   1223  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1224  * for usage and rationale.
   1225  */
   1226 int
   1227 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1228 {
   1229 	struct timeval tv, delta;
   1230 	int rv = 0;
   1231 
   1232 	getmicrouptime(&tv);
   1233 	timersub(&tv, lasttime, &delta);
   1234 
   1235 	/*
   1236 	 * check for 0,0 is so that the message will be seen at least once,
   1237 	 * even if interval is huge.
   1238 	 */
   1239 	if (timercmp(&delta, mininterval, >=) ||
   1240 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1241 		*lasttime = tv;
   1242 		rv = 1;
   1243 	}
   1244 
   1245 	return (rv);
   1246 }
   1247 
   1248 /*
   1249  * ppsratecheck(): packets (or events) per second limitation.
   1250  */
   1251 int
   1252 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1253 {
   1254 	struct timeval tv, delta;
   1255 	int rv;
   1256 
   1257 	getmicrouptime(&tv);
   1258 	timersub(&tv, lasttime, &delta);
   1259 
   1260 	/*
   1261 	 * check for 0,0 is so that the message will be seen at least once.
   1262 	 * if more than one second have passed since the last update of
   1263 	 * lasttime, reset the counter.
   1264 	 *
   1265 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1266 	 * try to use *curpps for stat purposes as well.
   1267 	 */
   1268 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1269 	    delta.tv_sec >= 1) {
   1270 		*lasttime = tv;
   1271 		*curpps = 0;
   1272 	}
   1273 	if (maxpps < 0)
   1274 		rv = 1;
   1275 	else if (*curpps < maxpps)
   1276 		rv = 1;
   1277 	else
   1278 		rv = 0;
   1279 
   1280 #if 1 /*DIAGNOSTIC?*/
   1281 	/* be careful about wrap-around */
   1282 	if (*curpps + 1 > *curpps)
   1283 		*curpps = *curpps + 1;
   1284 #else
   1285 	/*
   1286 	 * assume that there's not too many calls to this function.
   1287 	 * not sure if the assumption holds, as it depends on *caller's*
   1288 	 * behavior, not the behavior of this function.
   1289 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1290 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1291 	 */
   1292 	*curpps = *curpps + 1;
   1293 #endif
   1294 
   1295 	return (rv);
   1296 }
   1297