kern_time.c revision 1.141 1 /* $NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #include <sys/kauth.h>
83
84 #include <sys/mount.h>
85 #include <sys/syscallargs.h>
86
87 #include <uvm/uvm_extern.h>
88
89 #include <sys/cpu.h>
90
91 kmutex_t time_lock;
92
93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94 &pool_allocator_nointr, IPL_NONE);
95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96 &pool_allocator_nointr, IPL_NONE);
97
98 /*
99 * Initialize timekeeping.
100 */
101 void
102 time_init(void)
103 {
104
105 mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 }
107
108 /* Time of day and interval timer support.
109 *
110 * These routines provide the kernel entry points to get and set
111 * the time-of-day and per-process interval timers. Subroutines
112 * here provide support for adding and subtracting timeval structures
113 * and decrementing interval timers, optionally reloading the interval
114 * timers when they expire.
115 */
116
117 /* This function is used by clock_settime and settimeofday */
118 static int
119 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
120 {
121 struct timeval delta, tv;
122 struct timeval now;
123 struct timespec ts1;
124 struct bintime btdelta;
125 lwp_t *l;
126 int s;
127
128 TIMESPEC_TO_TIMEVAL(&tv, ts);
129
130 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
131 s = splclock();
132 microtime(&now);
133 timersub(&tv, &now, &delta);
134
135 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
136 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
137 KAUTH_ARG(check_kauth ? false : true)) != 0) {
138 splx(s);
139 return (EPERM);
140 }
141
142 #ifdef notyet
143 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
144 splx(s);
145 return (EPERM);
146 }
147 #endif
148
149 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
150 tc_setclock(&ts1);
151
152 timeradd(&boottime, &delta, &boottime);
153
154 /*
155 * XXXSMP: There is a short race between setting the time above
156 * and adjusting LWP's run times. Fixing this properly means
157 * pausing all CPUs while we adjust the clock.
158 */
159 timeval2bintime(&delta, &btdelta);
160 mutex_enter(&proclist_lock);
161 LIST_FOREACH(l, &alllwp, l_list) {
162 lwp_lock(l);
163 bintime_add(&l->l_stime, &btdelta);
164 lwp_unlock(l);
165 }
166 mutex_exit(&proclist_lock);
167 resettodr();
168 splx(s);
169
170 return (0);
171 }
172
173 int
174 settime(struct proc *p, struct timespec *ts)
175 {
176 return (settime1(p, ts, true));
177 }
178
179 /* ARGSUSED */
180 int
181 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
182 register_t *retval)
183 {
184 /* {
185 syscallarg(clockid_t) clock_id;
186 syscallarg(struct timespec *) tp;
187 } */
188 clockid_t clock_id;
189 struct timespec ats;
190
191 clock_id = SCARG(uap, clock_id);
192 switch (clock_id) {
193 case CLOCK_REALTIME:
194 nanotime(&ats);
195 break;
196 case CLOCK_MONOTONIC:
197 nanouptime(&ats);
198 break;
199 default:
200 return (EINVAL);
201 }
202
203 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
204 }
205
206 /* ARGSUSED */
207 int
208 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
209 register_t *retval)
210 {
211 /* {
212 syscallarg(clockid_t) clock_id;
213 syscallarg(const struct timespec *) tp;
214 } */
215
216 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
217 true);
218 }
219
220
221 int
222 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
223 bool check_kauth)
224 {
225 struct timespec ats;
226 int error;
227
228 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
229 return (error);
230
231 switch (clock_id) {
232 case CLOCK_REALTIME:
233 if ((error = settime1(p, &ats, check_kauth)) != 0)
234 return (error);
235 break;
236 case CLOCK_MONOTONIC:
237 return (EINVAL); /* read-only clock */
238 default:
239 return (EINVAL);
240 }
241
242 return 0;
243 }
244
245 int
246 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
247 register_t *retval)
248 {
249 /* {
250 syscallarg(clockid_t) clock_id;
251 syscallarg(struct timespec *) tp;
252 } */
253 clockid_t clock_id;
254 struct timespec ts;
255 int error = 0;
256
257 clock_id = SCARG(uap, clock_id);
258 switch (clock_id) {
259 case CLOCK_REALTIME:
260 case CLOCK_MONOTONIC:
261 ts.tv_sec = 0;
262 if (tc_getfrequency() > 1000000000)
263 ts.tv_nsec = 1;
264 else
265 ts.tv_nsec = 1000000000 / tc_getfrequency();
266 break;
267 default:
268 return (EINVAL);
269 }
270
271 if (SCARG(uap, tp))
272 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
273
274 return error;
275 }
276
277 /* ARGSUSED */
278 int
279 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
280 register_t *retval)
281 {
282 /* {
283 syscallarg(struct timespec *) rqtp;
284 syscallarg(struct timespec *) rmtp;
285 } */
286 struct timespec rmt, rqt;
287 int error, error1;
288
289 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290 if (error)
291 return (error);
292
293 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
294 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
295 return error;
296
297 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
298 return error1 ? error1 : error;
299 }
300
301 int
302 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
303 {
304 struct timespec rmtstart;
305 int error, timo;
306
307 if (itimespecfix(rqt))
308 return (EINVAL);
309
310 timo = tstohz(rqt);
311 /*
312 * Avoid inadvertantly sleeping forever
313 */
314 if (timo == 0)
315 timo = 1;
316 getnanouptime(&rmtstart);
317 again:
318 error = kpause("nanoslp", true, timo, NULL);
319 if (rmt != NULL || error == 0) {
320 struct timespec rmtend;
321 struct timespec t0;
322 struct timespec *t;
323
324 getnanouptime(&rmtend);
325 t = (rmt != NULL) ? rmt : &t0;
326 timespecsub(&rmtend, &rmtstart, t);
327 timespecsub(rqt, t, t);
328 if (t->tv_sec < 0)
329 timespecclear(t);
330 if (error == 0) {
331 timo = tstohz(t);
332 if (timo > 0)
333 goto again;
334 }
335 }
336
337 if (error == ERESTART)
338 error = EINTR;
339 if (error == EWOULDBLOCK)
340 error = 0;
341
342 return error;
343 }
344
345 /* ARGSUSED */
346 int
347 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
348 register_t *retval)
349 {
350 /* {
351 syscallarg(struct timeval *) tp;
352 syscallarg(void *) tzp; really "struct timezone *";
353 } */
354 struct timeval atv;
355 int error = 0;
356 struct timezone tzfake;
357
358 if (SCARG(uap, tp)) {
359 microtime(&atv);
360 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
361 if (error)
362 return (error);
363 }
364 if (SCARG(uap, tzp)) {
365 /*
366 * NetBSD has no kernel notion of time zone, so we just
367 * fake up a timezone struct and return it if demanded.
368 */
369 tzfake.tz_minuteswest = 0;
370 tzfake.tz_dsttime = 0;
371 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
372 }
373 return (error);
374 }
375
376 /* ARGSUSED */
377 int
378 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
379 register_t *retval)
380 {
381 /* {
382 syscallarg(const struct timeval *) tv;
383 syscallarg(const void *) tzp; really "const struct timezone *";
384 } */
385
386 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
387 }
388
389 int
390 settimeofday1(const struct timeval *utv, bool userspace,
391 const void *utzp, struct lwp *l, bool check_kauth)
392 {
393 struct timeval atv;
394 struct timespec ts;
395 int error;
396
397 /* Verify all parameters before changing time. */
398
399 /*
400 * NetBSD has no kernel notion of time zone, and only an
401 * obsolete program would try to set it, so we log a warning.
402 */
403 if (utzp)
404 log(LOG_WARNING, "pid %d attempted to set the "
405 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
406
407 if (utv == NULL)
408 return 0;
409
410 if (userspace) {
411 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
412 return error;
413 utv = &atv;
414 }
415
416 TIMEVAL_TO_TIMESPEC(utv, &ts);
417 return settime1(l->l_proc, &ts, check_kauth);
418 }
419
420 int time_adjusted; /* set if an adjustment is made */
421
422 /* ARGSUSED */
423 int
424 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
425 register_t *retval)
426 {
427 /* {
428 syscallarg(const struct timeval *) delta;
429 syscallarg(struct timeval *) olddelta;
430 } */
431 int error;
432
433 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
434 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
435 return (error);
436
437 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
438 }
439
440 int
441 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
442 {
443 struct timeval atv;
444 int error = 0;
445
446 extern int64_t time_adjtime; /* in kern_ntptime.c */
447
448 if (olddelta) {
449 atv.tv_sec = time_adjtime / 1000000;
450 atv.tv_usec = time_adjtime % 1000000;
451 if (atv.tv_usec < 0) {
452 atv.tv_usec += 1000000;
453 atv.tv_sec--;
454 }
455 error = copyout(&atv, olddelta, sizeof(struct timeval));
456 if (error)
457 return (error);
458 }
459
460 if (delta) {
461 error = copyin(delta, &atv, sizeof(struct timeval));
462 if (error)
463 return (error);
464
465 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
466 atv.tv_usec;
467
468 if (time_adjtime)
469 /* We need to save the system time during shutdown */
470 time_adjusted |= 1;
471 }
472
473 return error;
474 }
475
476 /*
477 * Interval timer support. Both the BSD getitimer() family and the POSIX
478 * timer_*() family of routines are supported.
479 *
480 * All timers are kept in an array pointed to by p_timers, which is
481 * allocated on demand - many processes don't use timers at all. The
482 * first three elements in this array are reserved for the BSD timers:
483 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
484 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
485 * syscall.
486 *
487 * Realtime timers are kept in the ptimer structure as an absolute
488 * time; virtual time timers are kept as a linked list of deltas.
489 * Virtual time timers are processed in the hardclock() routine of
490 * kern_clock.c. The real time timer is processed by a callout
491 * routine, called from the softclock() routine. Since a callout may
492 * be delayed in real time due to interrupt processing in the system,
493 * it is possible for the real time timeout routine (realtimeexpire,
494 * given below), to be delayed in real time past when it is supposed
495 * to occur. It does not suffice, therefore, to reload the real timer
496 * .it_value from the real time timers .it_interval. Rather, we
497 * compute the next time in absolute time the timer should go off. */
498
499 /* Allocate a POSIX realtime timer. */
500 int
501 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
502 register_t *retval)
503 {
504 /* {
505 syscallarg(clockid_t) clock_id;
506 syscallarg(struct sigevent *) evp;
507 syscallarg(timer_t *) timerid;
508 } */
509
510 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
511 SCARG(uap, evp), copyin, l);
512 }
513
514 int
515 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
516 copyin_t fetch_event, struct lwp *l)
517 {
518 int error;
519 timer_t timerid;
520 struct ptimer *pt;
521 struct proc *p;
522
523 p = l->l_proc;
524
525 if (id < CLOCK_REALTIME ||
526 id > CLOCK_PROF)
527 return (EINVAL);
528
529 if (p->p_timers == NULL)
530 timers_alloc(p);
531
532 /* Find a free timer slot, skipping those reserved for setitimer(). */
533 for (timerid = 3; timerid < TIMER_MAX; timerid++)
534 if (p->p_timers->pts_timers[timerid] == NULL)
535 break;
536
537 if (timerid == TIMER_MAX)
538 return EAGAIN;
539
540 pt = pool_get(&ptimer_pool, PR_WAITOK);
541 if (evp) {
542 if (((error =
543 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
544 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
545 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
546 pool_put(&ptimer_pool, pt);
547 return (error ? error : EINVAL);
548 }
549 } else {
550 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
551 switch (id) {
552 case CLOCK_REALTIME:
553 pt->pt_ev.sigev_signo = SIGALRM;
554 break;
555 case CLOCK_VIRTUAL:
556 pt->pt_ev.sigev_signo = SIGVTALRM;
557 break;
558 case CLOCK_PROF:
559 pt->pt_ev.sigev_signo = SIGPROF;
560 break;
561 }
562 pt->pt_ev.sigev_value.sival_int = timerid;
563 }
564 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
565 pt->pt_info.ksi_errno = 0;
566 pt->pt_info.ksi_code = 0;
567 pt->pt_info.ksi_pid = p->p_pid;
568 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
569 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
570
571 pt->pt_type = id;
572 pt->pt_proc = p;
573 pt->pt_overruns = 0;
574 pt->pt_poverruns = 0;
575 pt->pt_entry = timerid;
576 timerclear(&pt->pt_time.it_value);
577 if (id == CLOCK_REALTIME)
578 callout_init(&pt->pt_ch, 0);
579 else
580 pt->pt_active = 0;
581
582 p->p_timers->pts_timers[timerid] = pt;
583
584 return copyout(&timerid, tid, sizeof(timerid));
585 }
586
587 /* Delete a POSIX realtime timer */
588 int
589 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
590 register_t *retval)
591 {
592 /* {
593 syscallarg(timer_t) timerid;
594 } */
595 struct proc *p = l->l_proc;
596 timer_t timerid;
597 struct ptimer *pt, *ptn;
598 int s;
599
600 timerid = SCARG(uap, timerid);
601
602 if ((p->p_timers == NULL) ||
603 (timerid < 2) || (timerid >= TIMER_MAX) ||
604 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
605 return (EINVAL);
606
607 if (pt->pt_type == CLOCK_REALTIME) {
608 callout_stop(&pt->pt_ch);
609 callout_destroy(&pt->pt_ch);
610 } else if (pt->pt_active) {
611 s = splclock();
612 ptn = LIST_NEXT(pt, pt_list);
613 LIST_REMOVE(pt, pt_list);
614 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
615 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
616 &ptn->pt_time.it_value);
617 splx(s);
618 }
619
620 p->p_timers->pts_timers[timerid] = NULL;
621 pool_put(&ptimer_pool, pt);
622
623 return (0);
624 }
625
626 /*
627 * Set up the given timer. The value in pt->pt_time.it_value is taken
628 * to be an absolute time for CLOCK_REALTIME timers and a relative
629 * time for virtual timers.
630 * Must be called at splclock().
631 */
632 void
633 timer_settime(struct ptimer *pt)
634 {
635 struct ptimer *ptn, *pptn;
636 struct ptlist *ptl;
637
638 if (pt->pt_type == CLOCK_REALTIME) {
639 callout_stop(&pt->pt_ch);
640 if (timerisset(&pt->pt_time.it_value)) {
641 /*
642 * Don't need to check hzto() return value, here.
643 * callout_reset() does it for us.
644 */
645 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
646 realtimerexpire, pt);
647 }
648 } else {
649 if (pt->pt_active) {
650 ptn = LIST_NEXT(pt, pt_list);
651 LIST_REMOVE(pt, pt_list);
652 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
653 timeradd(&pt->pt_time.it_value,
654 &ptn->pt_time.it_value,
655 &ptn->pt_time.it_value);
656 }
657 if (timerisset(&pt->pt_time.it_value)) {
658 if (pt->pt_type == CLOCK_VIRTUAL)
659 ptl = &pt->pt_proc->p_timers->pts_virtual;
660 else
661 ptl = &pt->pt_proc->p_timers->pts_prof;
662
663 for (ptn = LIST_FIRST(ptl), pptn = NULL;
664 ptn && timercmp(&pt->pt_time.it_value,
665 &ptn->pt_time.it_value, >);
666 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
667 timersub(&pt->pt_time.it_value,
668 &ptn->pt_time.it_value,
669 &pt->pt_time.it_value);
670
671 if (pptn)
672 LIST_INSERT_AFTER(pptn, pt, pt_list);
673 else
674 LIST_INSERT_HEAD(ptl, pt, pt_list);
675
676 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
677 timersub(&ptn->pt_time.it_value,
678 &pt->pt_time.it_value,
679 &ptn->pt_time.it_value);
680
681 pt->pt_active = 1;
682 } else
683 pt->pt_active = 0;
684 }
685 }
686
687 void
688 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
689 {
690 struct timeval now;
691 struct ptimer *ptn;
692
693 *aitv = pt->pt_time;
694 if (pt->pt_type == CLOCK_REALTIME) {
695 /*
696 * Convert from absolute to relative time in .it_value
697 * part of real time timer. If time for real time
698 * timer has passed return 0, else return difference
699 * between current time and time for the timer to go
700 * off.
701 */
702 if (timerisset(&aitv->it_value)) {
703 getmicrotime(&now);
704 if (timercmp(&aitv->it_value, &now, <))
705 timerclear(&aitv->it_value);
706 else
707 timersub(&aitv->it_value, &now,
708 &aitv->it_value);
709 }
710 } else if (pt->pt_active) {
711 if (pt->pt_type == CLOCK_VIRTUAL)
712 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
713 else
714 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
715 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
716 timeradd(&aitv->it_value,
717 &ptn->pt_time.it_value, &aitv->it_value);
718 KASSERT(ptn != NULL); /* pt should be findable on the list */
719 } else
720 timerclear(&aitv->it_value);
721 }
722
723
724
725 /* Set and arm a POSIX realtime timer */
726 int
727 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
728 register_t *retval)
729 {
730 /* {
731 syscallarg(timer_t) timerid;
732 syscallarg(int) flags;
733 syscallarg(const struct itimerspec *) value;
734 syscallarg(struct itimerspec *) ovalue;
735 } */
736 int error;
737 struct itimerspec value, ovalue, *ovp = NULL;
738
739 if ((error = copyin(SCARG(uap, value), &value,
740 sizeof(struct itimerspec))) != 0)
741 return (error);
742
743 if (SCARG(uap, ovalue))
744 ovp = &ovalue;
745
746 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
747 SCARG(uap, flags), l->l_proc)) != 0)
748 return error;
749
750 if (ovp)
751 return copyout(&ovalue, SCARG(uap, ovalue),
752 sizeof(struct itimerspec));
753 return 0;
754 }
755
756 int
757 dotimer_settime(int timerid, struct itimerspec *value,
758 struct itimerspec *ovalue, int flags, struct proc *p)
759 {
760 struct timeval now;
761 struct itimerval val, oval;
762 struct ptimer *pt;
763 int s;
764
765 if ((p->p_timers == NULL) ||
766 (timerid < 2) || (timerid >= TIMER_MAX) ||
767 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
768 return (EINVAL);
769
770 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
771 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
772 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
773 return (EINVAL);
774
775 oval = pt->pt_time;
776 pt->pt_time = val;
777
778 s = splclock();
779 /*
780 * If we've been passed a relative time for a realtime timer,
781 * convert it to absolute; if an absolute time for a virtual
782 * timer, convert it to relative and make sure we don't set it
783 * to zero, which would cancel the timer, or let it go
784 * negative, which would confuse the comparison tests.
785 */
786 if (timerisset(&pt->pt_time.it_value)) {
787 if (pt->pt_type == CLOCK_REALTIME) {
788 if ((flags & TIMER_ABSTIME) == 0) {
789 getmicrotime(&now);
790 timeradd(&pt->pt_time.it_value, &now,
791 &pt->pt_time.it_value);
792 }
793 } else {
794 if ((flags & TIMER_ABSTIME) != 0) {
795 getmicrotime(&now);
796 timersub(&pt->pt_time.it_value, &now,
797 &pt->pt_time.it_value);
798 if (!timerisset(&pt->pt_time.it_value) ||
799 pt->pt_time.it_value.tv_sec < 0) {
800 pt->pt_time.it_value.tv_sec = 0;
801 pt->pt_time.it_value.tv_usec = 1;
802 }
803 }
804 }
805 }
806
807 timer_settime(pt);
808 splx(s);
809
810 if (ovalue) {
811 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
812 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
813 }
814
815 return (0);
816 }
817
818 /* Return the time remaining until a POSIX timer fires. */
819 int
820 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
821 register_t *retval)
822 {
823 /* {
824 syscallarg(timer_t) timerid;
825 syscallarg(struct itimerspec *) value;
826 } */
827 struct itimerspec its;
828 int error;
829
830 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
831 &its)) != 0)
832 return error;
833
834 return copyout(&its, SCARG(uap, value), sizeof(its));
835 }
836
837 int
838 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
839 {
840 int s;
841 struct ptimer *pt;
842 struct itimerval aitv;
843
844 if ((p->p_timers == NULL) ||
845 (timerid < 2) || (timerid >= TIMER_MAX) ||
846 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
847 return (EINVAL);
848
849 s = splclock();
850 timer_gettime(pt, &aitv);
851 splx(s);
852
853 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
854 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
855
856 return 0;
857 }
858
859 /*
860 * Return the count of the number of times a periodic timer expired
861 * while a notification was already pending. The counter is reset when
862 * a timer expires and a notification can be posted.
863 */
864 int
865 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
866 register_t *retval)
867 {
868 /* {
869 syscallarg(timer_t) timerid;
870 } */
871 struct proc *p = l->l_proc;
872 int timerid;
873 struct ptimer *pt;
874
875 timerid = SCARG(uap, timerid);
876
877 if ((p->p_timers == NULL) ||
878 (timerid < 2) || (timerid >= TIMER_MAX) ||
879 ((pt = p->p_timers->pts_timers[timerid]) == NULL))
880 return (EINVAL);
881
882 *retval = pt->pt_poverruns;
883
884 return (0);
885 }
886
887 /*
888 * Real interval timer expired:
889 * send process whose timer expired an alarm signal.
890 * If time is not set up to reload, then just return.
891 * Else compute next time timer should go off which is > current time.
892 * This is where delay in processing this timeout causes multiple
893 * SIGALRM calls to be compressed into one.
894 */
895 void
896 realtimerexpire(void *arg)
897 {
898 struct timeval now;
899 struct ptimer *pt;
900 int s;
901
902 pt = (struct ptimer *)arg;
903
904 itimerfire(pt);
905
906 if (!timerisset(&pt->pt_time.it_interval)) {
907 timerclear(&pt->pt_time.it_value);
908 return;
909 }
910 for (;;) {
911 s = splclock(); /* XXX need spl now? */
912 timeradd(&pt->pt_time.it_value,
913 &pt->pt_time.it_interval, &pt->pt_time.it_value);
914 getmicrotime(&now);
915 if (timercmp(&pt->pt_time.it_value, &now, >)) {
916 /*
917 * Don't need to check hzto() return value, here.
918 * callout_reset() does it for us.
919 */
920 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
921 realtimerexpire, pt);
922 splx(s);
923 return;
924 }
925 splx(s);
926 pt->pt_overruns++;
927 }
928 }
929
930 /* BSD routine to get the value of an interval timer. */
931 /* ARGSUSED */
932 int
933 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
934 register_t *retval)
935 {
936 /* {
937 syscallarg(int) which;
938 syscallarg(struct itimerval *) itv;
939 } */
940 struct proc *p = l->l_proc;
941 struct itimerval aitv;
942 int error;
943
944 error = dogetitimer(p, SCARG(uap, which), &aitv);
945 if (error)
946 return error;
947 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
948 }
949
950 int
951 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
952 {
953 int s;
954
955 if ((u_int)which > ITIMER_PROF)
956 return (EINVAL);
957
958 if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
959 timerclear(&itvp->it_value);
960 timerclear(&itvp->it_interval);
961 } else {
962 s = splclock();
963 timer_gettime(p->p_timers->pts_timers[which], itvp);
964 splx(s);
965 }
966
967 return 0;
968 }
969
970 /* BSD routine to set/arm an interval timer. */
971 /* ARGSUSED */
972 int
973 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
974 register_t *retval)
975 {
976 /* {
977 syscallarg(int) which;
978 syscallarg(const struct itimerval *) itv;
979 syscallarg(struct itimerval *) oitv;
980 } */
981 struct proc *p = l->l_proc;
982 int which = SCARG(uap, which);
983 struct sys_getitimer_args getargs;
984 const struct itimerval *itvp;
985 struct itimerval aitv;
986 int error;
987
988 if ((u_int)which > ITIMER_PROF)
989 return (EINVAL);
990 itvp = SCARG(uap, itv);
991 if (itvp &&
992 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
993 return (error);
994 if (SCARG(uap, oitv) != NULL) {
995 SCARG(&getargs, which) = which;
996 SCARG(&getargs, itv) = SCARG(uap, oitv);
997 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
998 return (error);
999 }
1000 if (itvp == 0)
1001 return (0);
1002
1003 return dosetitimer(p, which, &aitv);
1004 }
1005
1006 int
1007 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1008 {
1009 struct timeval now;
1010 struct ptimer *pt;
1011 int s;
1012
1013 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1014 return (EINVAL);
1015
1016 /*
1017 * Don't bother allocating data structures if the process just
1018 * wants to clear the timer.
1019 */
1020 if (!timerisset(&itvp->it_value) &&
1021 ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1022 return (0);
1023
1024 if (p->p_timers == NULL)
1025 timers_alloc(p);
1026 if (p->p_timers->pts_timers[which] == NULL) {
1027 pt = pool_get(&ptimer_pool, PR_WAITOK);
1028 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1029 pt->pt_ev.sigev_value.sival_int = which;
1030 pt->pt_overruns = 0;
1031 pt->pt_proc = p;
1032 pt->pt_type = which;
1033 pt->pt_entry = which;
1034 switch (which) {
1035 case ITIMER_REAL:
1036 callout_init(&pt->pt_ch, 0);
1037 pt->pt_ev.sigev_signo = SIGALRM;
1038 break;
1039 case ITIMER_VIRTUAL:
1040 pt->pt_active = 0;
1041 pt->pt_ev.sigev_signo = SIGVTALRM;
1042 break;
1043 case ITIMER_PROF:
1044 pt->pt_active = 0;
1045 pt->pt_ev.sigev_signo = SIGPROF;
1046 break;
1047 }
1048 } else
1049 pt = p->p_timers->pts_timers[which];
1050
1051 pt->pt_time = *itvp;
1052 p->p_timers->pts_timers[which] = pt;
1053
1054 s = splclock();
1055 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1056 /* Convert to absolute time */
1057 /* XXX need to wrap in splclock for timecounters case? */
1058 getmicrotime(&now);
1059 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1060 }
1061 timer_settime(pt);
1062 splx(s);
1063
1064 return (0);
1065 }
1066
1067 /* Utility routines to manage the array of pointers to timers. */
1068 void
1069 timers_alloc(struct proc *p)
1070 {
1071 int i;
1072 struct ptimers *pts;
1073
1074 pts = pool_get(&ptimers_pool, PR_WAITOK);
1075 LIST_INIT(&pts->pts_virtual);
1076 LIST_INIT(&pts->pts_prof);
1077 for (i = 0; i < TIMER_MAX; i++)
1078 pts->pts_timers[i] = NULL;
1079 pts->pts_fired = 0;
1080 p->p_timers = pts;
1081 }
1082
1083 /*
1084 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1085 * then clean up all timers and free all the data structures. If
1086 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1087 * by timer_create(), not the BSD setitimer() timers, and only free the
1088 * structure if none of those remain.
1089 */
1090 void
1091 timers_free(struct proc *p, int which)
1092 {
1093 int i, s;
1094 struct ptimers *pts;
1095 struct ptimer *pt, *ptn;
1096 struct timeval tv;
1097
1098 if (p->p_timers) {
1099 pts = p->p_timers;
1100 if (which == TIMERS_ALL)
1101 i = 0;
1102 else {
1103 s = splclock();
1104 timerclear(&tv);
1105 for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1106 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1107 ptn = LIST_NEXT(ptn, pt_list))
1108 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1109 LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1110 if (ptn) {
1111 timeradd(&tv, &ptn->pt_time.it_value,
1112 &ptn->pt_time.it_value);
1113 LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1114 ptn, pt_list);
1115 }
1116
1117 timerclear(&tv);
1118 for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1119 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1120 ptn = LIST_NEXT(ptn, pt_list))
1121 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1122 LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1123 if (ptn) {
1124 timeradd(&tv, &ptn->pt_time.it_value,
1125 &ptn->pt_time.it_value);
1126 LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1127 pt_list);
1128 }
1129 splx(s);
1130 i = 3;
1131 }
1132 for ( ; i < TIMER_MAX; i++)
1133 if ((pt = pts->pts_timers[i]) != NULL) {
1134 if (pt->pt_type == CLOCK_REALTIME) {
1135 callout_stop(&pt->pt_ch);
1136 callout_destroy(&pt->pt_ch);
1137 }
1138 pts->pts_timers[i] = NULL;
1139 pool_put(&ptimer_pool, pt);
1140 }
1141 if ((pts->pts_timers[0] == NULL) &&
1142 (pts->pts_timers[1] == NULL) &&
1143 (pts->pts_timers[2] == NULL)) {
1144 p->p_timers = NULL;
1145 pool_put(&ptimers_pool, pts);
1146 }
1147 }
1148 }
1149
1150 /*
1151 * Decrement an interval timer by a specified number
1152 * of microseconds, which must be less than a second,
1153 * i.e. < 1000000. If the timer expires, then reload
1154 * it. In this case, carry over (usec - old value) to
1155 * reduce the value reloaded into the timer so that
1156 * the timer does not drift. This routine assumes
1157 * that it is called in a context where the timers
1158 * on which it is operating cannot change in value.
1159 */
1160 int
1161 itimerdecr(struct ptimer *pt, int usec)
1162 {
1163 struct itimerval *itp;
1164
1165 itp = &pt->pt_time;
1166 if (itp->it_value.tv_usec < usec) {
1167 if (itp->it_value.tv_sec == 0) {
1168 /* expired, and already in next interval */
1169 usec -= itp->it_value.tv_usec;
1170 goto expire;
1171 }
1172 itp->it_value.tv_usec += 1000000;
1173 itp->it_value.tv_sec--;
1174 }
1175 itp->it_value.tv_usec -= usec;
1176 usec = 0;
1177 if (timerisset(&itp->it_value))
1178 return (1);
1179 /* expired, exactly at end of interval */
1180 expire:
1181 if (timerisset(&itp->it_interval)) {
1182 itp->it_value = itp->it_interval;
1183 itp->it_value.tv_usec -= usec;
1184 if (itp->it_value.tv_usec < 0) {
1185 itp->it_value.tv_usec += 1000000;
1186 itp->it_value.tv_sec--;
1187 }
1188 timer_settime(pt);
1189 } else
1190 itp->it_value.tv_usec = 0; /* sec is already 0 */
1191 return (0);
1192 }
1193
1194 void
1195 itimerfire(struct ptimer *pt)
1196 {
1197 struct proc *p = pt->pt_proc;
1198
1199 if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1200 /*
1201 * No RT signal infrastructure exists at this time;
1202 * just post the signal number and throw away the
1203 * value.
1204 */
1205 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1206 pt->pt_overruns++;
1207 else {
1208 ksiginfo_t ksi;
1209 KSI_INIT(&ksi);
1210 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1211 ksi.ksi_code = SI_TIMER;
1212 ksi.ksi_value = pt->pt_ev.sigev_value;
1213 pt->pt_poverruns = pt->pt_overruns;
1214 pt->pt_overruns = 0;
1215 mutex_enter(&proclist_mutex);
1216 kpsignal(p, &ksi, NULL);
1217 mutex_exit(&proclist_mutex);
1218 }
1219 }
1220 }
1221
1222 /*
1223 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1224 * for usage and rationale.
1225 */
1226 int
1227 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1228 {
1229 struct timeval tv, delta;
1230 int rv = 0;
1231
1232 getmicrouptime(&tv);
1233 timersub(&tv, lasttime, &delta);
1234
1235 /*
1236 * check for 0,0 is so that the message will be seen at least once,
1237 * even if interval is huge.
1238 */
1239 if (timercmp(&delta, mininterval, >=) ||
1240 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1241 *lasttime = tv;
1242 rv = 1;
1243 }
1244
1245 return (rv);
1246 }
1247
1248 /*
1249 * ppsratecheck(): packets (or events) per second limitation.
1250 */
1251 int
1252 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1253 {
1254 struct timeval tv, delta;
1255 int rv;
1256
1257 getmicrouptime(&tv);
1258 timersub(&tv, lasttime, &delta);
1259
1260 /*
1261 * check for 0,0 is so that the message will be seen at least once.
1262 * if more than one second have passed since the last update of
1263 * lasttime, reset the counter.
1264 *
1265 * we do increment *curpps even in *curpps < maxpps case, as some may
1266 * try to use *curpps for stat purposes as well.
1267 */
1268 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1269 delta.tv_sec >= 1) {
1270 *lasttime = tv;
1271 *curpps = 0;
1272 }
1273 if (maxpps < 0)
1274 rv = 1;
1275 else if (*curpps < maxpps)
1276 rv = 1;
1277 else
1278 rv = 0;
1279
1280 #if 1 /*DIAGNOSTIC?*/
1281 /* be careful about wrap-around */
1282 if (*curpps + 1 > *curpps)
1283 *curpps = *curpps + 1;
1284 #else
1285 /*
1286 * assume that there's not too many calls to this function.
1287 * not sure if the assumption holds, as it depends on *caller's*
1288 * behavior, not the behavior of this function.
1289 * IMHO it is wrong to make assumption on the caller's behavior,
1290 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1291 */
1292 *curpps = *curpps + 1;
1293 #endif
1294
1295 return (rv);
1296 }
1297