Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.141.2.1
      1 /*	$NetBSD: kern_time.c,v 1.141.2.1 2008/03/29 20:47:00 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141.2.1 2008/03/29 20:47:00 christos Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 
     87 #include <uvm/uvm_extern.h>
     88 
     89 #include <sys/cpu.h>
     90 
     91 kmutex_t	time_lock;
     92 
     93 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94     &pool_allocator_nointr, IPL_NONE);
     95 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96     &pool_allocator_nointr, IPL_NONE);
     97 
     98 /*
     99  * Initialize timekeeping.
    100  */
    101 void
    102 time_init(void)
    103 {
    104 
    105 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106 }
    107 
    108 /* Time of day and interval timer support.
    109  *
    110  * These routines provide the kernel entry points to get and set
    111  * the time-of-day and per-process interval timers.  Subroutines
    112  * here provide support for adding and subtracting timeval structures
    113  * and decrementing interval timers, optionally reloading the interval
    114  * timers when they expire.
    115  */
    116 
    117 /* This function is used by clock_settime and settimeofday */
    118 static int
    119 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    120 {
    121 	struct timespec delta, now;
    122 	struct bintime btdelta;
    123 	lwp_t *l;
    124 	int s;
    125 
    126 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127 	s = splclock();
    128 	nanotime(&now);
    129 	timespecsub(ts, &now, &delta);
    130 
    131 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    132 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    133 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    134 		splx(s);
    135 		return (EPERM);
    136 	}
    137 
    138 #ifdef notyet
    139 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    140 		splx(s);
    141 		return (EPERM);
    142 	}
    143 #endif
    144 
    145 	tc_setclock(ts);
    146 
    147 	timespecadd(&boottime, &delta, &boottime);
    148 
    149 	/*
    150 	 * XXXSMP: There is a short race between setting the time above
    151 	 * and adjusting LWP's run times.  Fixing this properly means
    152 	 * pausing all CPUs while we adjust the clock.
    153 	 */
    154 	timespec2bintime(&delta, &btdelta);
    155 	mutex_enter(&proclist_lock);
    156 	LIST_FOREACH(l, &alllwp, l_list) {
    157 		lwp_lock(l);
    158 		bintime_add(&l->l_stime, &btdelta);
    159 		lwp_unlock(l);
    160 	}
    161 	mutex_exit(&proclist_lock);
    162 	resettodr();
    163 	splx(s);
    164 
    165 	return (0);
    166 }
    167 
    168 int
    169 settime(struct proc *p, struct timespec *ts)
    170 {
    171 	return (settime1(p, ts, true));
    172 }
    173 
    174 /* ARGSUSED */
    175 int
    176 sys___clock_gettime50(struct lwp *l,
    177     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178 {
    179 	/* {
    180 		syscallarg(clockid_t) clock_id;
    181 		syscallarg(struct timespec *) tp;
    182 	} */
    183 	clockid_t clock_id;
    184 	struct timespec ats;
    185 
    186 	clock_id = SCARG(uap, clock_id);
    187 	switch (clock_id) {
    188 	case CLOCK_REALTIME:
    189 		nanotime(&ats);
    190 		break;
    191 	case CLOCK_MONOTONIC:
    192 		nanouptime(&ats);
    193 		break;
    194 	default:
    195 		return (EINVAL);
    196 	}
    197 
    198 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    199 }
    200 
    201 /* ARGSUSED */
    202 int
    203 sys___clock_settime50(struct lwp *l,
    204     const struct sys___clock_settime50_args *uap, register_t *retval)
    205 {
    206 	/* {
    207 		syscallarg(clockid_t) clock_id;
    208 		syscallarg(const struct timespec *) tp;
    209 	} */
    210 	int error;
    211 	struct timespec ats;
    212 
    213 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    214 		return error;
    215 
    216 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    217 }
    218 
    219 
    220 int
    221 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    222     bool check_kauth)
    223 {
    224 	int error;
    225 
    226 	switch (clock_id) {
    227 	case CLOCK_REALTIME:
    228 		if ((error = settime1(p, tp, check_kauth)) != 0)
    229 			return (error);
    230 		break;
    231 	case CLOCK_MONOTONIC:
    232 		return (EINVAL);	/* read-only clock */
    233 	default:
    234 		return (EINVAL);
    235 	}
    236 
    237 	return 0;
    238 }
    239 
    240 int
    241 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    242     register_t *retval)
    243 {
    244 	/* {
    245 		syscallarg(clockid_t) clock_id;
    246 		syscallarg(struct timespec *) tp;
    247 	} */
    248 	clockid_t clock_id;
    249 	struct timespec ts;
    250 	int error = 0;
    251 
    252 	clock_id = SCARG(uap, clock_id);
    253 	switch (clock_id) {
    254 	case CLOCK_REALTIME:
    255 	case CLOCK_MONOTONIC:
    256 		ts.tv_sec = 0;
    257 		if (tc_getfrequency() > 1000000000)
    258 			ts.tv_nsec = 1;
    259 		else
    260 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    261 		break;
    262 	default:
    263 		return (EINVAL);
    264 	}
    265 
    266 	if (SCARG(uap, tp))
    267 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    268 
    269 	return error;
    270 }
    271 
    272 /* ARGSUSED */
    273 int
    274 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275     register_t *retval)
    276 {
    277 	/* {
    278 		syscallarg(struct timespec *) rqtp;
    279 		syscallarg(struct timespec *) rmtp;
    280 	} */
    281 	struct timespec rmt, rqt;
    282 	int error, error1;
    283 
    284 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285 	if (error)
    286 		return (error);
    287 
    288 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    289 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    290 		return error;
    291 
    292 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    293 	return error1 ? error1 : error;
    294 }
    295 
    296 int
    297 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    298 {
    299 	struct timespec rmtstart;
    300 	int error, timo;
    301 
    302 	if (itimespecfix(rqt))
    303 		return (EINVAL);
    304 
    305 	timo = tstohz(rqt);
    306 	/*
    307 	 * Avoid inadvertantly sleeping forever
    308 	 */
    309 	if (timo == 0)
    310 		timo = 1;
    311 	getnanouptime(&rmtstart);
    312 again:
    313 	error = kpause("nanoslp", true, timo, NULL);
    314 	if (rmt != NULL || error == 0) {
    315 		struct timespec rmtend;
    316 		struct timespec t0;
    317 		struct timespec *t;
    318 
    319 		getnanouptime(&rmtend);
    320 		t = (rmt != NULL) ? rmt : &t0;
    321 		timespecsub(&rmtend, &rmtstart, t);
    322 		timespecsub(rqt, t, t);
    323 		if (t->tv_sec < 0)
    324 			timespecclear(t);
    325 		if (error == 0) {
    326 			timo = tstohz(t);
    327 			if (timo > 0)
    328 				goto again;
    329 		}
    330 	}
    331 
    332 	if (error == ERESTART)
    333 		error = EINTR;
    334 	if (error == EWOULDBLOCK)
    335 		error = 0;
    336 
    337 	return error;
    338 }
    339 
    340 /* ARGSUSED */
    341 int
    342 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    343     register_t *retval)
    344 {
    345 	/* {
    346 		syscallarg(struct timeval *) tp;
    347 		syscallarg(void *) tzp;		really "struct timezone *";
    348 	} */
    349 	struct timeval atv;
    350 	int error = 0;
    351 	struct timezone tzfake;
    352 
    353 	if (SCARG(uap, tp)) {
    354 		microtime(&atv);
    355 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    356 		if (error)
    357 			return (error);
    358 	}
    359 	if (SCARG(uap, tzp)) {
    360 		/*
    361 		 * NetBSD has no kernel notion of time zone, so we just
    362 		 * fake up a timezone struct and return it if demanded.
    363 		 */
    364 		tzfake.tz_minuteswest = 0;
    365 		tzfake.tz_dsttime = 0;
    366 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    367 	}
    368 	return (error);
    369 }
    370 
    371 /* ARGSUSED */
    372 int
    373 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    374     register_t *retval)
    375 {
    376 	/* {
    377 		syscallarg(const struct timeval *) tv;
    378 		syscallarg(const void *) tzp; really "const struct timezone *";
    379 	} */
    380 
    381 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    382 }
    383 
    384 int
    385 settimeofday1(const struct timeval *utv, bool userspace,
    386     const void *utzp, struct lwp *l, bool check_kauth)
    387 {
    388 	struct timeval atv;
    389 	struct timespec ts;
    390 	int error;
    391 
    392 	/* Verify all parameters before changing time. */
    393 
    394 	/*
    395 	 * NetBSD has no kernel notion of time zone, and only an
    396 	 * obsolete program would try to set it, so we log a warning.
    397 	 */
    398 	if (utzp)
    399 		log(LOG_WARNING, "pid %d attempted to set the "
    400 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    401 
    402 	if (utv == NULL)
    403 		return 0;
    404 
    405 	if (userspace) {
    406 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    407 			return error;
    408 		utv = &atv;
    409 	}
    410 
    411 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    412 	return settime1(l->l_proc, &ts, check_kauth);
    413 }
    414 
    415 int	time_adjusted;			/* set if an adjustment is made */
    416 
    417 /* ARGSUSED */
    418 int
    419 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    420     register_t *retval)
    421 {
    422 	/* {
    423 		syscallarg(const struct timeval *) delta;
    424 		syscallarg(struct timeval *) olddelta;
    425 	} */
    426 	int error = 0;
    427 	struct timeval atv, oldatv;
    428 
    429 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    430 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    431 		return error;
    432 
    433 	if (SCARG(uap, delta)) {
    434 		error = copyin(SCARG(uap, delta), &atv,
    435 		    sizeof(*SCARG(uap, delta)));
    436 		if (error)
    437 			return (error);
    438 	}
    439 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    440 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    441 	if (SCARG(uap, olddelta))
    442 		error = copyout(&oldatv, SCARG(uap, olddelta),
    443 		    sizeof(*SCARG(uap, olddelta)));
    444 	return error;
    445 }
    446 
    447 void
    448 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    449 {
    450 	struct timeval atv;
    451 
    452 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    453 
    454 	if (olddelta) {
    455 		olddelta->tv_sec = time_adjtime / 1000000;
    456 		olddelta->tv_usec = time_adjtime % 1000000;
    457 		if (olddelta->tv_usec < 0) {
    458 			olddelta->tv_usec += 1000000;
    459 			olddelta->tv_sec--;
    460 		}
    461 	}
    462 
    463 	if (delta) {
    464 		time_adjtime = delta->tv_sec * 1000000 + atv.tv_usec;
    465 
    466 		if (time_adjtime)
    467 			/* We need to save the system time during shutdown */
    468 			time_adjusted |= 1;
    469 	}
    470 }
    471 
    472 /*
    473  * Interval timer support. Both the BSD getitimer() family and the POSIX
    474  * timer_*() family of routines are supported.
    475  *
    476  * All timers are kept in an array pointed to by p_timers, which is
    477  * allocated on demand - many processes don't use timers at all. The
    478  * first three elements in this array are reserved for the BSD timers:
    479  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    480  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    481  * syscall.
    482  *
    483  * Realtime timers are kept in the ptimer structure as an absolute
    484  * time; virtual time timers are kept as a linked list of deltas.
    485  * Virtual time timers are processed in the hardclock() routine of
    486  * kern_clock.c.  The real time timer is processed by a callout
    487  * routine, called from the softclock() routine.  Since a callout may
    488  * be delayed in real time due to interrupt processing in the system,
    489  * it is possible for the real time timeout routine (realtimeexpire,
    490  * given below), to be delayed in real time past when it is supposed
    491  * to occur.  It does not suffice, therefore, to reload the real timer
    492  * .it_value from the real time timers .it_interval.  Rather, we
    493  * compute the next time in absolute time the timer should go off.  */
    494 
    495 /* Allocate a POSIX realtime timer. */
    496 int
    497 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    498     register_t *retval)
    499 {
    500 	/* {
    501 		syscallarg(clockid_t) clock_id;
    502 		syscallarg(struct sigevent *) evp;
    503 		syscallarg(timer_t *) timerid;
    504 	} */
    505 
    506 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    507 	    SCARG(uap, evp), copyin, l);
    508 }
    509 
    510 int
    511 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    512     copyin_t fetch_event, struct lwp *l)
    513 {
    514 	int error;
    515 	timer_t timerid;
    516 	struct ptimer *pt;
    517 	struct proc *p;
    518 
    519 	p = l->l_proc;
    520 
    521 	if (id < CLOCK_REALTIME ||
    522 	    id > CLOCK_PROF)
    523 		return (EINVAL);
    524 
    525 	if (p->p_timers == NULL)
    526 		timers_alloc(p);
    527 
    528 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    529 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    530 		if (p->p_timers->pts_timers[timerid] == NULL)
    531 			break;
    532 
    533 	if (timerid == TIMER_MAX)
    534 		return EAGAIN;
    535 
    536 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    537 	if (evp) {
    538 		if (((error =
    539 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    540 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    541 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    542 			pool_put(&ptimer_pool, pt);
    543 			return (error ? error : EINVAL);
    544 		}
    545 	} else {
    546 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    547 		switch (id) {
    548 		case CLOCK_REALTIME:
    549 			pt->pt_ev.sigev_signo = SIGALRM;
    550 			break;
    551 		case CLOCK_VIRTUAL:
    552 			pt->pt_ev.sigev_signo = SIGVTALRM;
    553 			break;
    554 		case CLOCK_PROF:
    555 			pt->pt_ev.sigev_signo = SIGPROF;
    556 			break;
    557 		}
    558 		pt->pt_ev.sigev_value.sival_int = timerid;
    559 	}
    560 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    561 	pt->pt_info.ksi_errno = 0;
    562 	pt->pt_info.ksi_code = 0;
    563 	pt->pt_info.ksi_pid = p->p_pid;
    564 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    565 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    566 
    567 	pt->pt_type = id;
    568 	pt->pt_proc = p;
    569 	pt->pt_overruns = 0;
    570 	pt->pt_poverruns = 0;
    571 	pt->pt_entry = timerid;
    572 	timerclear(&pt->pt_time.it_value);
    573 	if (id == CLOCK_REALTIME)
    574 		callout_init(&pt->pt_ch, 0);
    575 	else
    576 		pt->pt_active = 0;
    577 
    578 	p->p_timers->pts_timers[timerid] = pt;
    579 
    580 	return copyout(&timerid, tid, sizeof(timerid));
    581 }
    582 
    583 /* Delete a POSIX realtime timer */
    584 int
    585 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    586     register_t *retval)
    587 {
    588 	/* {
    589 		syscallarg(timer_t) timerid;
    590 	} */
    591 	struct proc *p = l->l_proc;
    592 	timer_t timerid;
    593 	struct ptimer *pt, *ptn;
    594 	int s;
    595 
    596 	timerid = SCARG(uap, timerid);
    597 
    598 	if ((p->p_timers == NULL) ||
    599 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    600 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    601 		return (EINVAL);
    602 
    603 	if (pt->pt_type == CLOCK_REALTIME) {
    604 		callout_stop(&pt->pt_ch);
    605 		callout_destroy(&pt->pt_ch);
    606 	} else if (pt->pt_active) {
    607 		s = splclock();
    608 		ptn = LIST_NEXT(pt, pt_list);
    609 		LIST_REMOVE(pt, pt_list);
    610 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    611 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    612 			    &ptn->pt_time.it_value);
    613 		splx(s);
    614 	}
    615 
    616 	p->p_timers->pts_timers[timerid] = NULL;
    617 	pool_put(&ptimer_pool, pt);
    618 
    619 	return (0);
    620 }
    621 
    622 /*
    623  * Set up the given timer. The value in pt->pt_time.it_value is taken
    624  * to be an absolute time for CLOCK_REALTIME timers and a relative
    625  * time for virtual timers.
    626  * Must be called at splclock().
    627  */
    628 void
    629 timer_settime(struct ptimer *pt)
    630 {
    631 	struct ptimer *ptn, *pptn;
    632 	struct ptlist *ptl;
    633 
    634 	if (pt->pt_type == CLOCK_REALTIME) {
    635 		callout_stop(&pt->pt_ch);
    636 		if (timerisset(&pt->pt_time.it_value)) {
    637 			/*
    638 			 * Don't need to check hzto() return value, here.
    639 			 * callout_reset() does it for us.
    640 			 */
    641 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    642 			    realtimerexpire, pt);
    643 		}
    644 	} else {
    645 		if (pt->pt_active) {
    646 			ptn = LIST_NEXT(pt, pt_list);
    647 			LIST_REMOVE(pt, pt_list);
    648 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    649 				timeradd(&pt->pt_time.it_value,
    650 				    &ptn->pt_time.it_value,
    651 				    &ptn->pt_time.it_value);
    652 		}
    653 		if (timerisset(&pt->pt_time.it_value)) {
    654 			if (pt->pt_type == CLOCK_VIRTUAL)
    655 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    656 			else
    657 				ptl = &pt->pt_proc->p_timers->pts_prof;
    658 
    659 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    660 			     ptn && timercmp(&pt->pt_time.it_value,
    661 				 &ptn->pt_time.it_value, >);
    662 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    663 				timersub(&pt->pt_time.it_value,
    664 				    &ptn->pt_time.it_value,
    665 				    &pt->pt_time.it_value);
    666 
    667 			if (pptn)
    668 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    669 			else
    670 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    671 
    672 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    673 				timersub(&ptn->pt_time.it_value,
    674 				    &pt->pt_time.it_value,
    675 				    &ptn->pt_time.it_value);
    676 
    677 			pt->pt_active = 1;
    678 		} else
    679 			pt->pt_active = 0;
    680 	}
    681 }
    682 
    683 void
    684 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    685 {
    686 	struct timeval now;
    687 	struct ptimer *ptn;
    688 
    689 	*aitv = pt->pt_time;
    690 	if (pt->pt_type == CLOCK_REALTIME) {
    691 		/*
    692 		 * Convert from absolute to relative time in .it_value
    693 		 * part of real time timer.  If time for real time
    694 		 * timer has passed return 0, else return difference
    695 		 * between current time and time for the timer to go
    696 		 * off.
    697 		 */
    698 		if (timerisset(&aitv->it_value)) {
    699 			getmicrotime(&now);
    700 			if (timercmp(&aitv->it_value, &now, <))
    701 				timerclear(&aitv->it_value);
    702 			else
    703 				timersub(&aitv->it_value, &now,
    704 				    &aitv->it_value);
    705 		}
    706 	} else if (pt->pt_active) {
    707 		if (pt->pt_type == CLOCK_VIRTUAL)
    708 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    709 		else
    710 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    711 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    712 			timeradd(&aitv->it_value,
    713 			    &ptn->pt_time.it_value, &aitv->it_value);
    714 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    715 	} else
    716 		timerclear(&aitv->it_value);
    717 }
    718 
    719 
    720 
    721 /* Set and arm a POSIX realtime timer */
    722 int
    723 sys___timer_settime50(struct lwp *l,
    724     const struct sys___timer_settime50_args *uap,
    725     register_t *retval)
    726 {
    727 	/* {
    728 		syscallarg(timer_t) timerid;
    729 		syscallarg(int) flags;
    730 		syscallarg(const struct itimerspec *) value;
    731 		syscallarg(struct itimerspec *) ovalue;
    732 	} */
    733 	int error;
    734 	struct itimerspec value, ovalue, *ovp = NULL;
    735 
    736 	if ((error = copyin(SCARG(uap, value), &value,
    737 	    sizeof(struct itimerspec))) != 0)
    738 		return (error);
    739 
    740 	if (SCARG(uap, ovalue))
    741 		ovp = &ovalue;
    742 
    743 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    744 	    SCARG(uap, flags), l->l_proc)) != 0)
    745 		return error;
    746 
    747 	if (ovp)
    748 		return copyout(&ovalue, SCARG(uap, ovalue),
    749 		    sizeof(struct itimerspec));
    750 	return 0;
    751 }
    752 
    753 int
    754 dotimer_settime(int timerid, struct itimerspec *value,
    755     struct itimerspec *ovalue, int flags, struct proc *p)
    756 {
    757 	struct timeval now;
    758 	struct itimerval val, oval;
    759 	struct ptimer *pt;
    760 	int s;
    761 
    762 	if ((p->p_timers == NULL) ||
    763 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    764 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    765 		return (EINVAL);
    766 
    767 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    768 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    769 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    770 		return (EINVAL);
    771 
    772 	oval = pt->pt_time;
    773 	pt->pt_time = val;
    774 
    775 	s = splclock();
    776 	/*
    777 	 * If we've been passed a relative time for a realtime timer,
    778 	 * convert it to absolute; if an absolute time for a virtual
    779 	 * timer, convert it to relative and make sure we don't set it
    780 	 * to zero, which would cancel the timer, or let it go
    781 	 * negative, which would confuse the comparison tests.
    782 	 */
    783 	if (timerisset(&pt->pt_time.it_value)) {
    784 		if (pt->pt_type == CLOCK_REALTIME) {
    785 			if ((flags & TIMER_ABSTIME) == 0) {
    786 				getmicrotime(&now);
    787 				timeradd(&pt->pt_time.it_value, &now,
    788 				    &pt->pt_time.it_value);
    789 			}
    790 		} else {
    791 			if ((flags & TIMER_ABSTIME) != 0) {
    792 				getmicrotime(&now);
    793 				timersub(&pt->pt_time.it_value, &now,
    794 				    &pt->pt_time.it_value);
    795 				if (!timerisset(&pt->pt_time.it_value) ||
    796 				    pt->pt_time.it_value.tv_sec < 0) {
    797 					pt->pt_time.it_value.tv_sec = 0;
    798 					pt->pt_time.it_value.tv_usec = 1;
    799 				}
    800 			}
    801 		}
    802 	}
    803 
    804 	timer_settime(pt);
    805 	splx(s);
    806 
    807 	if (ovalue) {
    808 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    809 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    810 	}
    811 
    812 	return (0);
    813 }
    814 
    815 /* Return the time remaining until a POSIX timer fires. */
    816 int
    817 sys___timer_gettime50(struct lwp *l,
    818     const struct sys___timer_gettime50_args *uap, register_t *retval)
    819 {
    820 	/* {
    821 		syscallarg(timer_t) timerid;
    822 		syscallarg(struct itimerspec *) value;
    823 	} */
    824 	struct itimerspec its;
    825 	int error;
    826 
    827 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    828 	    &its)) != 0)
    829 		return error;
    830 
    831 	return copyout(&its, SCARG(uap, value), sizeof(its));
    832 }
    833 
    834 int
    835 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    836 {
    837 	int s;
    838 	struct ptimer *pt;
    839 	struct itimerval aitv;
    840 
    841 	if ((p->p_timers == NULL) ||
    842 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    843 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    844 		return (EINVAL);
    845 
    846 	s = splclock();
    847 	timer_gettime(pt, &aitv);
    848 	splx(s);
    849 
    850 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    851 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    852 
    853 	return 0;
    854 }
    855 
    856 /*
    857  * Return the count of the number of times a periodic timer expired
    858  * while a notification was already pending. The counter is reset when
    859  * a timer expires and a notification can be posted.
    860  */
    861 int
    862 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    863     register_t *retval)
    864 {
    865 	/* {
    866 		syscallarg(timer_t) timerid;
    867 	} */
    868 	struct proc *p = l->l_proc;
    869 	int timerid;
    870 	struct ptimer *pt;
    871 
    872 	timerid = SCARG(uap, timerid);
    873 
    874 	if ((p->p_timers == NULL) ||
    875 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    876 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    877 		return (EINVAL);
    878 
    879 	*retval = pt->pt_poverruns;
    880 
    881 	return (0);
    882 }
    883 
    884 /*
    885  * Real interval timer expired:
    886  * send process whose timer expired an alarm signal.
    887  * If time is not set up to reload, then just return.
    888  * Else compute next time timer should go off which is > current time.
    889  * This is where delay in processing this timeout causes multiple
    890  * SIGALRM calls to be compressed into one.
    891  */
    892 void
    893 realtimerexpire(void *arg)
    894 {
    895 	struct timeval now;
    896 	struct ptimer *pt;
    897 	int s;
    898 
    899 	pt = (struct ptimer *)arg;
    900 
    901 	itimerfire(pt);
    902 
    903 	if (!timerisset(&pt->pt_time.it_interval)) {
    904 		timerclear(&pt->pt_time.it_value);
    905 		return;
    906 	}
    907 	for (;;) {
    908 		s = splclock();	/* XXX need spl now? */
    909 		timeradd(&pt->pt_time.it_value,
    910 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    911 		getmicrotime(&now);
    912 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    913 			/*
    914 			 * Don't need to check hzto() return value, here.
    915 			 * callout_reset() does it for us.
    916 			 */
    917 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    918 			    realtimerexpire, pt);
    919 			splx(s);
    920 			return;
    921 		}
    922 		splx(s);
    923 		pt->pt_overruns++;
    924 	}
    925 }
    926 
    927 /* BSD routine to get the value of an interval timer. */
    928 /* ARGSUSED */
    929 int
    930 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
    931     register_t *retval)
    932 {
    933 	/* {
    934 		syscallarg(int) which;
    935 		syscallarg(struct itimerval *) itv;
    936 	} */
    937 	struct proc *p = l->l_proc;
    938 	struct itimerval aitv;
    939 	int error;
    940 
    941 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    942 	if (error)
    943 		return error;
    944 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    945 }
    946 
    947 int
    948 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    949 {
    950 	int s;
    951 
    952 	if ((u_int)which > ITIMER_PROF)
    953 		return (EINVAL);
    954 
    955 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    956 		timerclear(&itvp->it_value);
    957 		timerclear(&itvp->it_interval);
    958 	} else {
    959 		s = splclock();
    960 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    961 		splx(s);
    962 	}
    963 
    964 	return 0;
    965 }
    966 
    967 /* BSD routine to set/arm an interval timer. */
    968 /* ARGSUSED */
    969 int
    970 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
    971     register_t *retval)
    972 {
    973 	/* {
    974 		syscallarg(int) which;
    975 		syscallarg(const struct itimerval *) itv;
    976 		syscallarg(struct itimerval *) oitv;
    977 	} */
    978 	struct proc *p = l->l_proc;
    979 	int which = SCARG(uap, which);
    980 	struct sys___getitimer50_args getargs;
    981 	const struct itimerval *itvp;
    982 	struct itimerval aitv;
    983 	int error;
    984 
    985 	if ((u_int)which > ITIMER_PROF)
    986 		return (EINVAL);
    987 	itvp = SCARG(uap, itv);
    988 	if (itvp &&
    989 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    990 		return (error);
    991 	if (SCARG(uap, oitv) != NULL) {
    992 		SCARG(&getargs, which) = which;
    993 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    994 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
    995 			return (error);
    996 	}
    997 	if (itvp == 0)
    998 		return (0);
    999 
   1000 	return dosetitimer(p, which, &aitv);
   1001 }
   1002 
   1003 int
   1004 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1005 {
   1006 	struct timeval now;
   1007 	struct ptimer *pt;
   1008 	int s;
   1009 
   1010 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1011 		return (EINVAL);
   1012 
   1013 	/*
   1014 	 * Don't bother allocating data structures if the process just
   1015 	 * wants to clear the timer.
   1016 	 */
   1017 	if (!timerisset(&itvp->it_value) &&
   1018 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1019 		return (0);
   1020 
   1021 	if (p->p_timers == NULL)
   1022 		timers_alloc(p);
   1023 	if (p->p_timers->pts_timers[which] == NULL) {
   1024 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1025 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1026 		pt->pt_ev.sigev_value.sival_int = which;
   1027 		pt->pt_overruns = 0;
   1028 		pt->pt_proc = p;
   1029 		pt->pt_type = which;
   1030 		pt->pt_entry = which;
   1031 		switch (which) {
   1032 		case ITIMER_REAL:
   1033 			callout_init(&pt->pt_ch, 0);
   1034 			pt->pt_ev.sigev_signo = SIGALRM;
   1035 			break;
   1036 		case ITIMER_VIRTUAL:
   1037 			pt->pt_active = 0;
   1038 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1039 			break;
   1040 		case ITIMER_PROF:
   1041 			pt->pt_active = 0;
   1042 			pt->pt_ev.sigev_signo = SIGPROF;
   1043 			break;
   1044 		}
   1045 	} else
   1046 		pt = p->p_timers->pts_timers[which];
   1047 
   1048 	pt->pt_time = *itvp;
   1049 	p->p_timers->pts_timers[which] = pt;
   1050 
   1051 	s = splclock();
   1052 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1053 		/* Convert to absolute time */
   1054 		/* XXX need to wrap in splclock for timecounters case? */
   1055 		getmicrotime(&now);
   1056 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1057 	}
   1058 	timer_settime(pt);
   1059 	splx(s);
   1060 
   1061 	return (0);
   1062 }
   1063 
   1064 /* Utility routines to manage the array of pointers to timers. */
   1065 void
   1066 timers_alloc(struct proc *p)
   1067 {
   1068 	int i;
   1069 	struct ptimers *pts;
   1070 
   1071 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1072 	LIST_INIT(&pts->pts_virtual);
   1073 	LIST_INIT(&pts->pts_prof);
   1074 	for (i = 0; i < TIMER_MAX; i++)
   1075 		pts->pts_timers[i] = NULL;
   1076 	pts->pts_fired = 0;
   1077 	p->p_timers = pts;
   1078 }
   1079 
   1080 /*
   1081  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1082  * then clean up all timers and free all the data structures. If
   1083  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1084  * by timer_create(), not the BSD setitimer() timers, and only free the
   1085  * structure if none of those remain.
   1086  */
   1087 void
   1088 timers_free(struct proc *p, int which)
   1089 {
   1090 	int i, s;
   1091 	struct ptimers *pts;
   1092 	struct ptimer *pt, *ptn;
   1093 	struct timeval tv;
   1094 
   1095 	if (p->p_timers) {
   1096 		pts = p->p_timers;
   1097 		if (which == TIMERS_ALL)
   1098 			i = 0;
   1099 		else {
   1100 			s = splclock();
   1101 			timerclear(&tv);
   1102 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1103 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1104 			     ptn = LIST_NEXT(ptn, pt_list))
   1105 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1106 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1107 			if (ptn) {
   1108 				timeradd(&tv, &ptn->pt_time.it_value,
   1109 				    &ptn->pt_time.it_value);
   1110 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1111 				    ptn, pt_list);
   1112 			}
   1113 
   1114 			timerclear(&tv);
   1115 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1116 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1117 			     ptn = LIST_NEXT(ptn, pt_list))
   1118 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1119 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1120 			if (ptn) {
   1121 				timeradd(&tv, &ptn->pt_time.it_value,
   1122 				    &ptn->pt_time.it_value);
   1123 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1124 				    pt_list);
   1125 			}
   1126 			splx(s);
   1127 			i = 3;
   1128 		}
   1129 		for ( ; i < TIMER_MAX; i++)
   1130 			if ((pt = pts->pts_timers[i]) != NULL) {
   1131 				if (pt->pt_type == CLOCK_REALTIME) {
   1132 					callout_stop(&pt->pt_ch);
   1133 					callout_destroy(&pt->pt_ch);
   1134 				}
   1135 				pts->pts_timers[i] = NULL;
   1136 				pool_put(&ptimer_pool, pt);
   1137 			}
   1138 		if ((pts->pts_timers[0] == NULL) &&
   1139 		    (pts->pts_timers[1] == NULL) &&
   1140 		    (pts->pts_timers[2] == NULL)) {
   1141 			p->p_timers = NULL;
   1142 			pool_put(&ptimers_pool, pts);
   1143 		}
   1144 	}
   1145 }
   1146 
   1147 /*
   1148  * Decrement an interval timer by a specified number
   1149  * of microseconds, which must be less than a second,
   1150  * i.e. < 1000000.  If the timer expires, then reload
   1151  * it.  In this case, carry over (usec - old value) to
   1152  * reduce the value reloaded into the timer so that
   1153  * the timer does not drift.  This routine assumes
   1154  * that it is called in a context where the timers
   1155  * on which it is operating cannot change in value.
   1156  */
   1157 int
   1158 itimerdecr(struct ptimer *pt, int usec)
   1159 {
   1160 	struct itimerval *itp;
   1161 
   1162 	itp = &pt->pt_time;
   1163 	if (itp->it_value.tv_usec < usec) {
   1164 		if (itp->it_value.tv_sec == 0) {
   1165 			/* expired, and already in next interval */
   1166 			usec -= itp->it_value.tv_usec;
   1167 			goto expire;
   1168 		}
   1169 		itp->it_value.tv_usec += 1000000;
   1170 		itp->it_value.tv_sec--;
   1171 	}
   1172 	itp->it_value.tv_usec -= usec;
   1173 	usec = 0;
   1174 	if (timerisset(&itp->it_value))
   1175 		return (1);
   1176 	/* expired, exactly at end of interval */
   1177 expire:
   1178 	if (timerisset(&itp->it_interval)) {
   1179 		itp->it_value = itp->it_interval;
   1180 		itp->it_value.tv_usec -= usec;
   1181 		if (itp->it_value.tv_usec < 0) {
   1182 			itp->it_value.tv_usec += 1000000;
   1183 			itp->it_value.tv_sec--;
   1184 		}
   1185 		timer_settime(pt);
   1186 	} else
   1187 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1188 	return (0);
   1189 }
   1190 
   1191 void
   1192 itimerfire(struct ptimer *pt)
   1193 {
   1194 	struct proc *p = pt->pt_proc;
   1195 
   1196 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1197 		/*
   1198 		 * No RT signal infrastructure exists at this time;
   1199 		 * just post the signal number and throw away the
   1200 		 * value.
   1201 		 */
   1202 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1203 			pt->pt_overruns++;
   1204 		else {
   1205 			ksiginfo_t ksi;
   1206 			KSI_INIT(&ksi);
   1207 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1208 			ksi.ksi_code = SI_TIMER;
   1209 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1210 			pt->pt_poverruns = pt->pt_overruns;
   1211 			pt->pt_overruns = 0;
   1212 			mutex_enter(&proclist_mutex);
   1213 			kpsignal(p, &ksi, NULL);
   1214 			mutex_exit(&proclist_mutex);
   1215 		}
   1216 	}
   1217 }
   1218 
   1219 /*
   1220  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1221  * for usage and rationale.
   1222  */
   1223 int
   1224 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1225 {
   1226 	struct timeval tv, delta;
   1227 	int rv = 0;
   1228 
   1229 	getmicrouptime(&tv);
   1230 	timersub(&tv, lasttime, &delta);
   1231 
   1232 	/*
   1233 	 * check for 0,0 is so that the message will be seen at least once,
   1234 	 * even if interval is huge.
   1235 	 */
   1236 	if (timercmp(&delta, mininterval, >=) ||
   1237 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1238 		*lasttime = tv;
   1239 		rv = 1;
   1240 	}
   1241 
   1242 	return (rv);
   1243 }
   1244 
   1245 /*
   1246  * ppsratecheck(): packets (or events) per second limitation.
   1247  */
   1248 int
   1249 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1250 {
   1251 	struct timeval tv, delta;
   1252 	int rv;
   1253 
   1254 	getmicrouptime(&tv);
   1255 	timersub(&tv, lasttime, &delta);
   1256 
   1257 	/*
   1258 	 * check for 0,0 is so that the message will be seen at least once.
   1259 	 * if more than one second have passed since the last update of
   1260 	 * lasttime, reset the counter.
   1261 	 *
   1262 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1263 	 * try to use *curpps for stat purposes as well.
   1264 	 */
   1265 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1266 	    delta.tv_sec >= 1) {
   1267 		*lasttime = tv;
   1268 		*curpps = 0;
   1269 	}
   1270 	if (maxpps < 0)
   1271 		rv = 1;
   1272 	else if (*curpps < maxpps)
   1273 		rv = 1;
   1274 	else
   1275 		rv = 0;
   1276 
   1277 #if 1 /*DIAGNOSTIC?*/
   1278 	/* be careful about wrap-around */
   1279 	if (*curpps + 1 > *curpps)
   1280 		*curpps = *curpps + 1;
   1281 #else
   1282 	/*
   1283 	 * assume that there's not too many calls to this function.
   1284 	 * not sure if the assumption holds, as it depends on *caller's*
   1285 	 * behavior, not the behavior of this function.
   1286 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1287 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1288 	 */
   1289 	*curpps = *curpps + 1;
   1290 #endif
   1291 
   1292 	return (rv);
   1293 }
   1294