kern_time.c revision 1.143 1 /* $NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/resourcevar.h>
75 #include <sys/kernel.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/vnode.h>
79 #include <sys/signalvar.h>
80 #include <sys/syslog.h>
81 #include <sys/timetc.h>
82 #include <sys/timex.h>
83 #include <sys/kauth.h>
84 #include <sys/mount.h>
85 #include <sys/syscallargs.h>
86 #include <sys/cpu.h>
87
88 #include <uvm/uvm_extern.h>
89
90 static void timer_intr(void *);
91 static void itimerfire(struct ptimer *);
92 static void itimerfree(struct ptimers *, int);
93
94 kmutex_t time_lock;
95 kmutex_t timer_lock;
96
97 static void *timer_sih;
98 static TAILQ_HEAD(, ptimer) timer_queue;
99
100 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
101 &pool_allocator_nointr, IPL_NONE);
102 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
103 &pool_allocator_nointr, IPL_NONE);
104
105 /*
106 * Initialize timekeeping.
107 */
108 void
109 time_init(void)
110 {
111
112 mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
113 }
114
115 void
116 time_init2(void)
117 {
118
119 TAILQ_INIT(&timer_queue);
120 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 timer_intr, NULL);
123 }
124
125 /* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers. Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134 /* This function is used by clock_settime and settimeofday */
135 static int
136 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
137 {
138 struct timeval delta, tv;
139 struct timeval now;
140 struct timespec ts1;
141 struct bintime btdelta;
142 lwp_t *l;
143 int s;
144
145 TIMESPEC_TO_TIMEVAL(&tv, ts);
146
147 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
148 s = splclock();
149 microtime(&now);
150 timersub(&tv, &now, &delta);
151
152 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
153 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
154 KAUTH_ARG(check_kauth ? false : true)) != 0) {
155 splx(s);
156 return (EPERM);
157 }
158
159 #ifdef notyet
160 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
161 splx(s);
162 return (EPERM);
163 }
164 #endif
165
166 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
167 tc_setclock(&ts1);
168
169 timeradd(&boottime, &delta, &boottime);
170
171 /*
172 * XXXSMP: There is a short race between setting the time above
173 * and adjusting LWP's run times. Fixing this properly means
174 * pausing all CPUs while we adjust the clock.
175 */
176 timeval2bintime(&delta, &btdelta);
177 mutex_enter(&proclist_lock);
178 LIST_FOREACH(l, &alllwp, l_list) {
179 lwp_lock(l);
180 bintime_add(&l->l_stime, &btdelta);
181 lwp_unlock(l);
182 }
183 mutex_exit(&proclist_lock);
184 resettodr();
185 splx(s);
186
187 return (0);
188 }
189
190 int
191 settime(struct proc *p, struct timespec *ts)
192 {
193 return (settime1(p, ts, true));
194 }
195
196 /* ARGSUSED */
197 int
198 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
199 register_t *retval)
200 {
201 /* {
202 syscallarg(clockid_t) clock_id;
203 syscallarg(struct timespec *) tp;
204 } */
205 clockid_t clock_id;
206 struct timespec ats;
207
208 clock_id = SCARG(uap, clock_id);
209 switch (clock_id) {
210 case CLOCK_REALTIME:
211 nanotime(&ats);
212 break;
213 case CLOCK_MONOTONIC:
214 nanouptime(&ats);
215 break;
216 default:
217 return (EINVAL);
218 }
219
220 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
221 }
222
223 /* ARGSUSED */
224 int
225 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
226 register_t *retval)
227 {
228 /* {
229 syscallarg(clockid_t) clock_id;
230 syscallarg(const struct timespec *) tp;
231 } */
232
233 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
234 true);
235 }
236
237
238 int
239 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
240 bool check_kauth)
241 {
242 struct timespec ats;
243 int error;
244
245 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
246 return (error);
247
248 switch (clock_id) {
249 case CLOCK_REALTIME:
250 if ((error = settime1(p, &ats, check_kauth)) != 0)
251 return (error);
252 break;
253 case CLOCK_MONOTONIC:
254 return (EINVAL); /* read-only clock */
255 default:
256 return (EINVAL);
257 }
258
259 return 0;
260 }
261
262 int
263 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
264 register_t *retval)
265 {
266 /* {
267 syscallarg(clockid_t) clock_id;
268 syscallarg(struct timespec *) tp;
269 } */
270 clockid_t clock_id;
271 struct timespec ts;
272 int error = 0;
273
274 clock_id = SCARG(uap, clock_id);
275 switch (clock_id) {
276 case CLOCK_REALTIME:
277 case CLOCK_MONOTONIC:
278 ts.tv_sec = 0;
279 if (tc_getfrequency() > 1000000000)
280 ts.tv_nsec = 1;
281 else
282 ts.tv_nsec = 1000000000 / tc_getfrequency();
283 break;
284 default:
285 return (EINVAL);
286 }
287
288 if (SCARG(uap, tp))
289 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
290
291 return error;
292 }
293
294 /* ARGSUSED */
295 int
296 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
297 register_t *retval)
298 {
299 /* {
300 syscallarg(struct timespec *) rqtp;
301 syscallarg(struct timespec *) rmtp;
302 } */
303 struct timespec rmt, rqt;
304 int error, error1;
305
306 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307 if (error)
308 return (error);
309
310 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312 return error;
313
314 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315 return error1 ? error1 : error;
316 }
317
318 int
319 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320 {
321 struct timespec rmtstart;
322 int error, timo;
323
324 if (itimespecfix(rqt))
325 return (EINVAL);
326
327 timo = tstohz(rqt);
328 /*
329 * Avoid inadvertantly sleeping forever
330 */
331 if (timo == 0)
332 timo = 1;
333 getnanouptime(&rmtstart);
334 again:
335 error = kpause("nanoslp", true, timo, NULL);
336 if (rmt != NULL || error == 0) {
337 struct timespec rmtend;
338 struct timespec t0;
339 struct timespec *t;
340
341 getnanouptime(&rmtend);
342 t = (rmt != NULL) ? rmt : &t0;
343 timespecsub(&rmtend, &rmtstart, t);
344 timespecsub(rqt, t, t);
345 if (t->tv_sec < 0)
346 timespecclear(t);
347 if (error == 0) {
348 timo = tstohz(t);
349 if (timo > 0)
350 goto again;
351 }
352 }
353
354 if (error == ERESTART)
355 error = EINTR;
356 if (error == EWOULDBLOCK)
357 error = 0;
358
359 return error;
360 }
361
362 /* ARGSUSED */
363 int
364 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
365 register_t *retval)
366 {
367 /* {
368 syscallarg(struct timeval *) tp;
369 syscallarg(void *) tzp; really "struct timezone *";
370 } */
371 struct timeval atv;
372 int error = 0;
373 struct timezone tzfake;
374
375 if (SCARG(uap, tp)) {
376 microtime(&atv);
377 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
378 if (error)
379 return (error);
380 }
381 if (SCARG(uap, tzp)) {
382 /*
383 * NetBSD has no kernel notion of time zone, so we just
384 * fake up a timezone struct and return it if demanded.
385 */
386 tzfake.tz_minuteswest = 0;
387 tzfake.tz_dsttime = 0;
388 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
389 }
390 return (error);
391 }
392
393 /* ARGSUSED */
394 int
395 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
396 register_t *retval)
397 {
398 /* {
399 syscallarg(const struct timeval *) tv;
400 syscallarg(const void *) tzp; really "const struct timezone *";
401 } */
402
403 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
404 }
405
406 int
407 settimeofday1(const struct timeval *utv, bool userspace,
408 const void *utzp, struct lwp *l, bool check_kauth)
409 {
410 struct timeval atv;
411 struct timespec ts;
412 int error;
413
414 /* Verify all parameters before changing time. */
415
416 /*
417 * NetBSD has no kernel notion of time zone, and only an
418 * obsolete program would try to set it, so we log a warning.
419 */
420 if (utzp)
421 log(LOG_WARNING, "pid %d attempted to set the "
422 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
423
424 if (utv == NULL)
425 return 0;
426
427 if (userspace) {
428 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
429 return error;
430 utv = &atv;
431 }
432
433 TIMEVAL_TO_TIMESPEC(utv, &ts);
434 return settime1(l->l_proc, &ts, check_kauth);
435 }
436
437 int time_adjusted; /* set if an adjustment is made */
438
439 /* ARGSUSED */
440 int
441 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
442 register_t *retval)
443 {
444 /* {
445 syscallarg(const struct timeval *) delta;
446 syscallarg(struct timeval *) olddelta;
447 } */
448 int error;
449
450 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
451 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
452 return (error);
453
454 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
455 }
456
457 int
458 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
459 {
460 struct timeval atv;
461 int error = 0;
462
463 extern int64_t time_adjtime; /* in kern_ntptime.c */
464
465 if (olddelta) {
466 mutex_spin_enter(&timecounter_lock);
467 atv.tv_sec = time_adjtime / 1000000;
468 atv.tv_usec = time_adjtime % 1000000;
469 mutex_spin_exit(&timecounter_lock);
470 if (atv.tv_usec < 0) {
471 atv.tv_usec += 1000000;
472 atv.tv_sec--;
473 }
474 error = copyout(&atv, olddelta, sizeof(struct timeval));
475 if (error)
476 return (error);
477 }
478
479 if (delta) {
480 error = copyin(delta, &atv, sizeof(struct timeval));
481 if (error)
482 return (error);
483
484 mutex_spin_enter(&timecounter_lock);
485 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
486 atv.tv_usec;
487 if (time_adjtime) {
488 /* We need to save the system time during shutdown */
489 time_adjusted |= 1;
490 }
491 mutex_spin_exit(&timecounter_lock);
492 }
493
494 return error;
495 }
496
497 /*
498 * Interval timer support. Both the BSD getitimer() family and the POSIX
499 * timer_*() family of routines are supported.
500 *
501 * All timers are kept in an array pointed to by p_timers, which is
502 * allocated on demand - many processes don't use timers at all. The
503 * first three elements in this array are reserved for the BSD timers:
504 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
505 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
506 * syscall.
507 *
508 * Realtime timers are kept in the ptimer structure as an absolute
509 * time; virtual time timers are kept as a linked list of deltas.
510 * Virtual time timers are processed in the hardclock() routine of
511 * kern_clock.c. The real time timer is processed by a callout
512 * routine, called from the softclock() routine. Since a callout may
513 * be delayed in real time due to interrupt processing in the system,
514 * it is possible for the real time timeout routine (realtimeexpire,
515 * given below), to be delayed in real time past when it is supposed
516 * to occur. It does not suffice, therefore, to reload the real timer
517 * .it_value from the real time timers .it_interval. Rather, we
518 * compute the next time in absolute time the timer should go off. */
519
520 /* Allocate a POSIX realtime timer. */
521 int
522 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
523 register_t *retval)
524 {
525 /* {
526 syscallarg(clockid_t) clock_id;
527 syscallarg(struct sigevent *) evp;
528 syscallarg(timer_t *) timerid;
529 } */
530
531 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
532 SCARG(uap, evp), copyin, l);
533 }
534
535 int
536 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
537 copyin_t fetch_event, struct lwp *l)
538 {
539 int error;
540 timer_t timerid;
541 struct ptimers *pts;
542 struct ptimer *pt;
543 struct proc *p;
544
545 p = l->l_proc;
546
547 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
548 return (EINVAL);
549
550 if ((pts = p->p_timers) == NULL)
551 pts = timers_alloc(p);
552
553 pt = pool_get(&ptimer_pool, PR_WAITOK);
554 if (evp != NULL) {
555 if (((error =
556 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
557 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
558 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
559 pool_put(&ptimer_pool, pt);
560 return (error ? error : EINVAL);
561 }
562 }
563
564 /* Find a free timer slot, skipping those reserved for setitimer(). */
565 mutex_spin_enter(&timer_lock);
566 for (timerid = 3; timerid < TIMER_MAX; timerid++)
567 if (pts->pts_timers[timerid] == NULL)
568 break;
569 if (timerid == TIMER_MAX) {
570 mutex_spin_exit(&timer_lock);
571 pool_put(&ptimer_pool, pt);
572 return EAGAIN;
573 }
574 if (evp == NULL) {
575 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
576 switch (id) {
577 case CLOCK_REALTIME:
578 pt->pt_ev.sigev_signo = SIGALRM;
579 break;
580 case CLOCK_VIRTUAL:
581 pt->pt_ev.sigev_signo = SIGVTALRM;
582 break;
583 case CLOCK_PROF:
584 pt->pt_ev.sigev_signo = SIGPROF;
585 break;
586 }
587 pt->pt_ev.sigev_value.sival_int = timerid;
588 }
589 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
590 pt->pt_info.ksi_errno = 0;
591 pt->pt_info.ksi_code = 0;
592 pt->pt_info.ksi_pid = p->p_pid;
593 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
594 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
595 pt->pt_type = id;
596 pt->pt_proc = p;
597 pt->pt_overruns = 0;
598 pt->pt_poverruns = 0;
599 pt->pt_entry = timerid;
600 pt->pt_queued = false;
601 pt->pt_active = 0;
602 timerclear(&pt->pt_time.it_value);
603 callout_init(&pt->pt_ch, 0);
604 pts->pts_timers[timerid] = pt;
605 mutex_spin_exit(&timer_lock);
606
607 return copyout(&timerid, tid, sizeof(timerid));
608 }
609
610 /* Delete a POSIX realtime timer */
611 int
612 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
613 register_t *retval)
614 {
615 /* {
616 syscallarg(timer_t) timerid;
617 } */
618 struct proc *p = l->l_proc;
619 timer_t timerid;
620 struct ptimers *pts;
621 struct ptimer *pt, *ptn;
622
623 timerid = SCARG(uap, timerid);
624 pts = p->p_timers;
625
626 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
627 return (EINVAL);
628
629 mutex_spin_enter(&timer_lock);
630 if ((pt = pts->pts_timers[timerid]) == NULL) {
631 mutex_spin_exit(&timer_lock);
632 return (EINVAL);
633 }
634 if (pt->pt_active) {
635 ptn = LIST_NEXT(pt, pt_list);
636 LIST_REMOVE(pt, pt_list);
637 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
638 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
639 &ptn->pt_time.it_value);
640 pt->pt_active = 0;
641 }
642 itimerfree(pts, timerid);
643
644 return (0);
645 }
646
647 /*
648 * Set up the given timer. The value in pt->pt_time.it_value is taken
649 * to be an absolute time for CLOCK_REALTIME timers and a relative
650 * time for virtual timers.
651 * Must be called at splclock().
652 */
653 void
654 timer_settime(struct ptimer *pt)
655 {
656 struct ptimer *ptn, *pptn;
657 struct ptlist *ptl;
658
659 KASSERT(mutex_owned(&timer_lock));
660
661 if (pt->pt_type == CLOCK_REALTIME) {
662 callout_stop(&pt->pt_ch);
663 if (timerisset(&pt->pt_time.it_value)) {
664 /*
665 * Don't need to check hzto() return value, here.
666 * callout_reset() does it for us.
667 */
668 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
669 realtimerexpire, pt);
670 }
671 } else {
672 if (pt->pt_active) {
673 ptn = LIST_NEXT(pt, pt_list);
674 LIST_REMOVE(pt, pt_list);
675 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
676 timeradd(&pt->pt_time.it_value,
677 &ptn->pt_time.it_value,
678 &ptn->pt_time.it_value);
679 }
680 if (timerisset(&pt->pt_time.it_value)) {
681 if (pt->pt_type == CLOCK_VIRTUAL)
682 ptl = &pt->pt_proc->p_timers->pts_virtual;
683 else
684 ptl = &pt->pt_proc->p_timers->pts_prof;
685
686 for (ptn = LIST_FIRST(ptl), pptn = NULL;
687 ptn && timercmp(&pt->pt_time.it_value,
688 &ptn->pt_time.it_value, >);
689 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
690 timersub(&pt->pt_time.it_value,
691 &ptn->pt_time.it_value,
692 &pt->pt_time.it_value);
693
694 if (pptn)
695 LIST_INSERT_AFTER(pptn, pt, pt_list);
696 else
697 LIST_INSERT_HEAD(ptl, pt, pt_list);
698
699 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
700 timersub(&ptn->pt_time.it_value,
701 &pt->pt_time.it_value,
702 &ptn->pt_time.it_value);
703
704 pt->pt_active = 1;
705 } else
706 pt->pt_active = 0;
707 }
708 }
709
710 void
711 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
712 {
713 struct timeval now;
714 struct ptimer *ptn;
715
716 KASSERT(mutex_owned(&timer_lock));
717
718 *aitv = pt->pt_time;
719 if (pt->pt_type == CLOCK_REALTIME) {
720 /*
721 * Convert from absolute to relative time in .it_value
722 * part of real time timer. If time for real time
723 * timer has passed return 0, else return difference
724 * between current time and time for the timer to go
725 * off.
726 */
727 if (timerisset(&aitv->it_value)) {
728 getmicrotime(&now);
729 if (timercmp(&aitv->it_value, &now, <))
730 timerclear(&aitv->it_value);
731 else
732 timersub(&aitv->it_value, &now,
733 &aitv->it_value);
734 }
735 } else if (pt->pt_active) {
736 if (pt->pt_type == CLOCK_VIRTUAL)
737 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
738 else
739 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
740 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
741 timeradd(&aitv->it_value,
742 &ptn->pt_time.it_value, &aitv->it_value);
743 KASSERT(ptn != NULL); /* pt should be findable on the list */
744 } else
745 timerclear(&aitv->it_value);
746 }
747
748
749
750 /* Set and arm a POSIX realtime timer */
751 int
752 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
753 register_t *retval)
754 {
755 /* {
756 syscallarg(timer_t) timerid;
757 syscallarg(int) flags;
758 syscallarg(const struct itimerspec *) value;
759 syscallarg(struct itimerspec *) ovalue;
760 } */
761 int error;
762 struct itimerspec value, ovalue, *ovp = NULL;
763
764 if ((error = copyin(SCARG(uap, value), &value,
765 sizeof(struct itimerspec))) != 0)
766 return (error);
767
768 if (SCARG(uap, ovalue))
769 ovp = &ovalue;
770
771 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
772 SCARG(uap, flags), l->l_proc)) != 0)
773 return error;
774
775 if (ovp)
776 return copyout(&ovalue, SCARG(uap, ovalue),
777 sizeof(struct itimerspec));
778 return 0;
779 }
780
781 int
782 dotimer_settime(int timerid, struct itimerspec *value,
783 struct itimerspec *ovalue, int flags, struct proc *p)
784 {
785 struct timeval now;
786 struct itimerval val, oval;
787 struct ptimers *pts;
788 struct ptimer *pt;
789
790 pts = p->p_timers;
791
792 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
793 return EINVAL;
794 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
795 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
796 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
797 return (EINVAL);
798
799 mutex_spin_enter(&timer_lock);
800 if ((pt = pts->pts_timers[timerid]) == NULL) {
801 mutex_spin_exit(&timer_lock);
802 return (EINVAL);
803 }
804
805 oval = pt->pt_time;
806 pt->pt_time = val;
807
808 /*
809 * If we've been passed a relative time for a realtime timer,
810 * convert it to absolute; if an absolute time for a virtual
811 * timer, convert it to relative and make sure we don't set it
812 * to zero, which would cancel the timer, or let it go
813 * negative, which would confuse the comparison tests.
814 */
815 if (timerisset(&pt->pt_time.it_value)) {
816 if (pt->pt_type == CLOCK_REALTIME) {
817 if ((flags & TIMER_ABSTIME) == 0) {
818 getmicrotime(&now);
819 timeradd(&pt->pt_time.it_value, &now,
820 &pt->pt_time.it_value);
821 }
822 } else {
823 if ((flags & TIMER_ABSTIME) != 0) {
824 getmicrotime(&now);
825 timersub(&pt->pt_time.it_value, &now,
826 &pt->pt_time.it_value);
827 if (!timerisset(&pt->pt_time.it_value) ||
828 pt->pt_time.it_value.tv_sec < 0) {
829 pt->pt_time.it_value.tv_sec = 0;
830 pt->pt_time.it_value.tv_usec = 1;
831 }
832 }
833 }
834 }
835
836 timer_settime(pt);
837 mutex_spin_exit(&timer_lock);
838
839 if (ovalue) {
840 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
841 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
842 }
843
844 return (0);
845 }
846
847 /* Return the time remaining until a POSIX timer fires. */
848 int
849 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
850 register_t *retval)
851 {
852 /* {
853 syscallarg(timer_t) timerid;
854 syscallarg(struct itimerspec *) value;
855 } */
856 struct itimerspec its;
857 int error;
858
859 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
860 &its)) != 0)
861 return error;
862
863 return copyout(&its, SCARG(uap, value), sizeof(its));
864 }
865
866 int
867 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
868 {
869 struct ptimer *pt;
870 struct ptimers *pts;
871 struct itimerval aitv;
872
873 pts = p->p_timers;
874 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
875 return (EINVAL);
876 mutex_spin_enter(&timer_lock);
877 if ((pt = pts->pts_timers[timerid]) == NULL) {
878 mutex_spin_exit(&timer_lock);
879 return (EINVAL);
880 }
881 timer_gettime(pt, &aitv);
882 mutex_spin_exit(&timer_lock);
883
884 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
885 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
886
887 return 0;
888 }
889
890 /*
891 * Return the count of the number of times a periodic timer expired
892 * while a notification was already pending. The counter is reset when
893 * a timer expires and a notification can be posted.
894 */
895 int
896 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
897 register_t *retval)
898 {
899 /* {
900 syscallarg(timer_t) timerid;
901 } */
902 struct proc *p = l->l_proc;
903 struct ptimers *pts;
904 int timerid;
905 struct ptimer *pt;
906
907 timerid = SCARG(uap, timerid);
908
909 pts = p->p_timers;
910 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
911 return (EINVAL);
912 mutex_spin_enter(&timer_lock);
913 if ((pt = pts->pts_timers[timerid]) == NULL) {
914 mutex_spin_exit(&timer_lock);
915 return (EINVAL);
916 }
917 *retval = pt->pt_poverruns;
918 mutex_spin_exit(&timer_lock);
919
920 return (0);
921 }
922
923 /*
924 * Real interval timer expired:
925 * send process whose timer expired an alarm signal.
926 * If time is not set up to reload, then just return.
927 * Else compute next time timer should go off which is > current time.
928 * This is where delay in processing this timeout causes multiple
929 * SIGALRM calls to be compressed into one.
930 */
931 void
932 realtimerexpire(void *arg)
933 {
934 struct timeval now;
935 struct ptimer *pt;
936
937 pt = arg;
938
939 mutex_spin_enter(&timer_lock);
940 itimerfire(pt);
941
942 if (!timerisset(&pt->pt_time.it_interval)) {
943 timerclear(&pt->pt_time.it_value);
944 mutex_spin_exit(&timer_lock);
945 return;
946 }
947 for (;;) {
948 timeradd(&pt->pt_time.it_value,
949 &pt->pt_time.it_interval, &pt->pt_time.it_value);
950 getmicrotime(&now);
951 if (timercmp(&pt->pt_time.it_value, &now, >)) {
952 /*
953 * Don't need to check hzto() return value, here.
954 * callout_reset() does it for us.
955 */
956 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
957 realtimerexpire, pt);
958 mutex_spin_exit(&timer_lock);
959 return;
960 }
961 mutex_spin_exit(&timer_lock);
962 pt->pt_overruns++;
963 mutex_spin_enter(&timer_lock);
964 }
965 }
966
967 /* BSD routine to get the value of an interval timer. */
968 /* ARGSUSED */
969 int
970 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
971 register_t *retval)
972 {
973 /* {
974 syscallarg(int) which;
975 syscallarg(struct itimerval *) itv;
976 } */
977 struct proc *p = l->l_proc;
978 struct itimerval aitv;
979 int error;
980
981 error = dogetitimer(p, SCARG(uap, which), &aitv);
982 if (error)
983 return error;
984 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
985 }
986
987 int
988 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
989 {
990 struct ptimers *pts;
991 struct ptimer *pt;
992
993 if ((u_int)which > ITIMER_PROF)
994 return (EINVAL);
995
996 mutex_spin_enter(&timer_lock);
997 pts = p->p_timers;
998 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
999 timerclear(&itvp->it_value);
1000 timerclear(&itvp->it_interval);
1001 } else
1002 timer_gettime(pt, itvp);
1003 mutex_spin_exit(&timer_lock);
1004
1005 return 0;
1006 }
1007
1008 /* BSD routine to set/arm an interval timer. */
1009 /* ARGSUSED */
1010 int
1011 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1012 register_t *retval)
1013 {
1014 /* {
1015 syscallarg(int) which;
1016 syscallarg(const struct itimerval *) itv;
1017 syscallarg(struct itimerval *) oitv;
1018 } */
1019 struct proc *p = l->l_proc;
1020 int which = SCARG(uap, which);
1021 struct sys_getitimer_args getargs;
1022 const struct itimerval *itvp;
1023 struct itimerval aitv;
1024 int error;
1025
1026 if ((u_int)which > ITIMER_PROF)
1027 return (EINVAL);
1028 itvp = SCARG(uap, itv);
1029 if (itvp &&
1030 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1031 return (error);
1032 if (SCARG(uap, oitv) != NULL) {
1033 SCARG(&getargs, which) = which;
1034 SCARG(&getargs, itv) = SCARG(uap, oitv);
1035 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1036 return (error);
1037 }
1038 if (itvp == 0)
1039 return (0);
1040
1041 return dosetitimer(p, which, &aitv);
1042 }
1043
1044 int
1045 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1046 {
1047 struct timeval now;
1048 struct ptimers *pts;
1049 struct ptimer *pt, *spare;
1050
1051 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1052 return (EINVAL);
1053
1054 /*
1055 * Don't bother allocating data structures if the process just
1056 * wants to clear the timer.
1057 */
1058 spare = NULL;
1059 pts = p->p_timers;
1060 retry:
1061 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1062 pts->pts_timers[which] == NULL))
1063 return (0);
1064 if (pts == NULL)
1065 pts = timers_alloc(p);
1066 mutex_spin_enter(&timer_lock);
1067 pt = pts->pts_timers[which];
1068 if (pt == NULL) {
1069 if (spare == NULL) {
1070 mutex_spin_exit(&timer_lock);
1071 spare = pool_get(&ptimer_pool, PR_WAITOK);
1072 goto retry;
1073 }
1074 pt = spare;
1075 spare = NULL;
1076 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1077 pt->pt_ev.sigev_value.sival_int = which;
1078 pt->pt_overruns = 0;
1079 pt->pt_proc = p;
1080 pt->pt_type = which;
1081 pt->pt_entry = which;
1082 pt->pt_active = 0;
1083 pt->pt_queued = false;
1084 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1085 switch (which) {
1086 case ITIMER_REAL:
1087 pt->pt_ev.sigev_signo = SIGALRM;
1088 break;
1089 case ITIMER_VIRTUAL:
1090 pt->pt_ev.sigev_signo = SIGVTALRM;
1091 break;
1092 case ITIMER_PROF:
1093 pt->pt_ev.sigev_signo = SIGPROF;
1094 break;
1095 }
1096 pts->pts_timers[which] = pt;
1097 }
1098 pt->pt_time = *itvp;
1099
1100 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1101 /* Convert to absolute time */
1102 /* XXX need to wrap in splclock for timecounters case? */
1103 getmicrotime(&now);
1104 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1105 }
1106 timer_settime(pt);
1107 mutex_spin_exit(&timer_lock);
1108 if (spare != NULL)
1109 pool_put(&ptimer_pool, spare);
1110
1111 return (0);
1112 }
1113
1114 /* Utility routines to manage the array of pointers to timers. */
1115 struct ptimers *
1116 timers_alloc(struct proc *p)
1117 {
1118 struct ptimers *pts;
1119 int i;
1120
1121 pts = pool_get(&ptimers_pool, PR_WAITOK);
1122 LIST_INIT(&pts->pts_virtual);
1123 LIST_INIT(&pts->pts_prof);
1124 for (i = 0; i < TIMER_MAX; i++)
1125 pts->pts_timers[i] = NULL;
1126 pts->pts_fired = 0;
1127 mutex_spin_enter(&timer_lock);
1128 if (p->p_timers == NULL) {
1129 p->p_timers = pts;
1130 mutex_spin_exit(&timer_lock);
1131 return pts;
1132 }
1133 mutex_spin_exit(&timer_lock);
1134 pool_put(&ptimers_pool, pts);
1135 return p->p_timers;
1136 }
1137
1138 /*
1139 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1140 * then clean up all timers and free all the data structures. If
1141 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1142 * by timer_create(), not the BSD setitimer() timers, and only free the
1143 * structure if none of those remain.
1144 */
1145 void
1146 timers_free(struct proc *p, int which)
1147 {
1148 struct ptimers *pts;
1149 struct ptimer *ptn;
1150 struct timeval tv;
1151 int i;
1152
1153 if (p->p_timers == NULL)
1154 return;
1155
1156 pts = p->p_timers;
1157 mutex_spin_enter(&timer_lock);
1158 if (which == TIMERS_ALL) {
1159 p->p_timers = NULL;
1160 i = 0;
1161 } else {
1162 timerclear(&tv);
1163 for (ptn = LIST_FIRST(&pts->pts_virtual);
1164 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1165 ptn = LIST_NEXT(ptn, pt_list))
1166 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1167 LIST_FIRST(&pts->pts_virtual) = NULL;
1168 if (ptn) {
1169 timeradd(&tv, &ptn->pt_time.it_value,
1170 &ptn->pt_time.it_value);
1171 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1172 }
1173 timerclear(&tv);
1174 for (ptn = LIST_FIRST(&pts->pts_prof);
1175 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1176 ptn = LIST_NEXT(ptn, pt_list))
1177 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1178 LIST_FIRST(&pts->pts_prof) = NULL;
1179 if (ptn) {
1180 timeradd(&tv, &ptn->pt_time.it_value,
1181 &ptn->pt_time.it_value);
1182 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1183 }
1184 i = 3;
1185 }
1186 for ( ; i < TIMER_MAX; i++) {
1187 if (pts->pts_timers[i] != NULL) {
1188 itimerfree(pts, i);
1189 mutex_spin_enter(&timer_lock);
1190 }
1191 }
1192 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1193 pts->pts_timers[2] == NULL) {
1194 p->p_timers = NULL;
1195 mutex_spin_exit(&timer_lock);
1196 pool_put(&ptimers_pool, pts);
1197 } else
1198 mutex_spin_exit(&timer_lock);
1199 }
1200
1201 static void
1202 itimerfree(struct ptimers *pts, int index)
1203 {
1204 struct ptimer *pt;
1205
1206 KASSERT(mutex_owned(&timer_lock));
1207
1208 pt = pts->pts_timers[index];
1209 pts->pts_timers[index] = NULL;
1210 if (pt->pt_type == CLOCK_REALTIME) {
1211 mutex_spin_exit(&timer_lock);
1212 callout_halt(&pt->pt_ch);
1213 } else if (pt->pt_queued) {
1214 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1215 mutex_spin_exit(&timer_lock);
1216 } else
1217 mutex_spin_exit(&timer_lock);
1218 callout_destroy(&pt->pt_ch);
1219 pool_put(&ptimer_pool, pt);
1220 }
1221
1222 /*
1223 * Decrement an interval timer by a specified number
1224 * of microseconds, which must be less than a second,
1225 * i.e. < 1000000. If the timer expires, then reload
1226 * it. In this case, carry over (usec - old value) to
1227 * reduce the value reloaded into the timer so that
1228 * the timer does not drift. This routine assumes
1229 * that it is called in a context where the timers
1230 * on which it is operating cannot change in value.
1231 */
1232 static int
1233 itimerdecr(struct ptimer *pt, int usec)
1234 {
1235 struct itimerval *itp;
1236
1237 KASSERT(mutex_owned(&timer_lock));
1238
1239 itp = &pt->pt_time;
1240 if (itp->it_value.tv_usec < usec) {
1241 if (itp->it_value.tv_sec == 0) {
1242 /* expired, and already in next interval */
1243 usec -= itp->it_value.tv_usec;
1244 goto expire;
1245 }
1246 itp->it_value.tv_usec += 1000000;
1247 itp->it_value.tv_sec--;
1248 }
1249 itp->it_value.tv_usec -= usec;
1250 usec = 0;
1251 if (timerisset(&itp->it_value))
1252 return (1);
1253 /* expired, exactly at end of interval */
1254 expire:
1255 if (timerisset(&itp->it_interval)) {
1256 itp->it_value = itp->it_interval;
1257 itp->it_value.tv_usec -= usec;
1258 if (itp->it_value.tv_usec < 0) {
1259 itp->it_value.tv_usec += 1000000;
1260 itp->it_value.tv_sec--;
1261 }
1262 timer_settime(pt);
1263 } else
1264 itp->it_value.tv_usec = 0; /* sec is already 0 */
1265 return (0);
1266 }
1267
1268 static void
1269 itimerfire(struct ptimer *pt)
1270 {
1271
1272 KASSERT(mutex_owned(&timer_lock));
1273
1274 /*
1275 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1276 * XXX Relying on the clock interrupt is stupid.
1277 */
1278 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1279 return;
1280 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1281 pt->pt_queued = true;
1282 softint_schedule(timer_sih);
1283 }
1284
1285 void
1286 timer_tick(lwp_t *l, bool user)
1287 {
1288 struct ptimers *pts;
1289 struct ptimer *pt;
1290 proc_t *p;
1291
1292 p = l->l_proc;
1293 if (p->p_timers == NULL)
1294 return;
1295
1296 mutex_spin_enter(&timer_lock);
1297 if ((pts = l->l_proc->p_timers) != NULL) {
1298 /*
1299 * Run current process's virtual and profile time, as needed.
1300 */
1301 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1302 if (itimerdecr(pt, tick) == 0)
1303 itimerfire(pt);
1304 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1305 if (itimerdecr(pt, tick) == 0)
1306 itimerfire(pt);
1307 }
1308 mutex_spin_exit(&timer_lock);
1309 }
1310
1311 static void
1312 timer_intr(void *cookie)
1313 {
1314 ksiginfo_t ksi;
1315 struct ptimer *pt;
1316 proc_t *p;
1317
1318 mutex_spin_enter(&timer_lock);
1319 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1320 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1321 KASSERT(pt->pt_queued);
1322 pt->pt_queued = false;
1323
1324 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1325 continue;
1326 p = pt->pt_proc;
1327 if (pt->pt_proc->p_timers == NULL) {
1328 /* Process is dying. */
1329 continue;
1330 }
1331 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1332 pt->pt_overruns++;
1333 continue;
1334 }
1335
1336 KSI_INIT(&ksi);
1337 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1338 ksi.ksi_code = SI_TIMER;
1339 ksi.ksi_value = pt->pt_ev.sigev_value;
1340 pt->pt_poverruns = pt->pt_overruns;
1341 pt->pt_overruns = 0;
1342 mutex_spin_exit(&timer_lock);
1343
1344 mutex_enter(&proclist_mutex);
1345 kpsignal(p, &ksi, NULL);
1346 mutex_exit(&proclist_mutex);
1347
1348 mutex_spin_enter(&timer_lock);
1349 }
1350 mutex_spin_exit(&timer_lock);
1351 }
1352
1353 /*
1354 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1355 * for usage and rationale.
1356 */
1357 int
1358 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1359 {
1360 struct timeval tv, delta;
1361 int rv = 0;
1362
1363 getmicrouptime(&tv);
1364 timersub(&tv, lasttime, &delta);
1365
1366 /*
1367 * check for 0,0 is so that the message will be seen at least once,
1368 * even if interval is huge.
1369 */
1370 if (timercmp(&delta, mininterval, >=) ||
1371 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1372 *lasttime = tv;
1373 rv = 1;
1374 }
1375
1376 return (rv);
1377 }
1378
1379 /*
1380 * ppsratecheck(): packets (or events) per second limitation.
1381 */
1382 int
1383 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1384 {
1385 struct timeval tv, delta;
1386 int rv;
1387
1388 getmicrouptime(&tv);
1389 timersub(&tv, lasttime, &delta);
1390
1391 /*
1392 * check for 0,0 is so that the message will be seen at least once.
1393 * if more than one second have passed since the last update of
1394 * lasttime, reset the counter.
1395 *
1396 * we do increment *curpps even in *curpps < maxpps case, as some may
1397 * try to use *curpps for stat purposes as well.
1398 */
1399 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1400 delta.tv_sec >= 1) {
1401 *lasttime = tv;
1402 *curpps = 0;
1403 }
1404 if (maxpps < 0)
1405 rv = 1;
1406 else if (*curpps < maxpps)
1407 rv = 1;
1408 else
1409 rv = 0;
1410
1411 #if 1 /*DIAGNOSTIC?*/
1412 /* be careful about wrap-around */
1413 if (*curpps + 1 > *curpps)
1414 *curpps = *curpps + 1;
1415 #else
1416 /*
1417 * assume that there's not too many calls to this function.
1418 * not sure if the assumption holds, as it depends on *caller's*
1419 * behavior, not the behavior of this function.
1420 * IMHO it is wrong to make assumption on the caller's behavior,
1421 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1422 */
1423 *curpps = *curpps + 1;
1424 #endif
1425
1426 return (rv);
1427 }
1428