Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.143
      1 /*	$NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1989, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/resourcevar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/vnode.h>
     79 #include <sys/signalvar.h>
     80 #include <sys/syslog.h>
     81 #include <sys/timetc.h>
     82 #include <sys/timex.h>
     83 #include <sys/kauth.h>
     84 #include <sys/mount.h>
     85 #include <sys/syscallargs.h>
     86 #include <sys/cpu.h>
     87 
     88 #include <uvm/uvm_extern.h>
     89 
     90 static void	timer_intr(void *);
     91 static void	itimerfire(struct ptimer *);
     92 static void	itimerfree(struct ptimers *, int);
     93 
     94 kmutex_t	time_lock;
     95 kmutex_t	timer_lock;
     96 
     97 static void	*timer_sih;
     98 static TAILQ_HEAD(, ptimer) timer_queue;
     99 
    100 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    101     &pool_allocator_nointr, IPL_NONE);
    102 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    103     &pool_allocator_nointr, IPL_NONE);
    104 
    105 /*
    106  * Initialize timekeeping.
    107  */
    108 void
    109 time_init(void)
    110 {
    111 
    112 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    113 }
    114 
    115 void
    116 time_init2(void)
    117 {
    118 
    119 	TAILQ_INIT(&timer_queue);
    120 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122 	    timer_intr, NULL);
    123 }
    124 
    125 /* Time of day and interval timer support.
    126  *
    127  * These routines provide the kernel entry points to get and set
    128  * the time-of-day and per-process interval timers.  Subroutines
    129  * here provide support for adding and subtracting timeval structures
    130  * and decrementing interval timers, optionally reloading the interval
    131  * timers when they expire.
    132  */
    133 
    134 /* This function is used by clock_settime and settimeofday */
    135 static int
    136 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    137 {
    138 	struct timeval delta, tv;
    139 	struct timeval now;
    140 	struct timespec ts1;
    141 	struct bintime btdelta;
    142 	lwp_t *l;
    143 	int s;
    144 
    145 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    146 
    147 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    148 	s = splclock();
    149 	microtime(&now);
    150 	timersub(&tv, &now, &delta);
    151 
    152 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    153 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    154 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    155 		splx(s);
    156 		return (EPERM);
    157 	}
    158 
    159 #ifdef notyet
    160 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    161 		splx(s);
    162 		return (EPERM);
    163 	}
    164 #endif
    165 
    166 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    167 	tc_setclock(&ts1);
    168 
    169 	timeradd(&boottime, &delta, &boottime);
    170 
    171 	/*
    172 	 * XXXSMP: There is a short race between setting the time above
    173 	 * and adjusting LWP's run times.  Fixing this properly means
    174 	 * pausing all CPUs while we adjust the clock.
    175 	 */
    176 	timeval2bintime(&delta, &btdelta);
    177 	mutex_enter(&proclist_lock);
    178 	LIST_FOREACH(l, &alllwp, l_list) {
    179 		lwp_lock(l);
    180 		bintime_add(&l->l_stime, &btdelta);
    181 		lwp_unlock(l);
    182 	}
    183 	mutex_exit(&proclist_lock);
    184 	resettodr();
    185 	splx(s);
    186 
    187 	return (0);
    188 }
    189 
    190 int
    191 settime(struct proc *p, struct timespec *ts)
    192 {
    193 	return (settime1(p, ts, true));
    194 }
    195 
    196 /* ARGSUSED */
    197 int
    198 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    199     register_t *retval)
    200 {
    201 	/* {
    202 		syscallarg(clockid_t) clock_id;
    203 		syscallarg(struct timespec *) tp;
    204 	} */
    205 	clockid_t clock_id;
    206 	struct timespec ats;
    207 
    208 	clock_id = SCARG(uap, clock_id);
    209 	switch (clock_id) {
    210 	case CLOCK_REALTIME:
    211 		nanotime(&ats);
    212 		break;
    213 	case CLOCK_MONOTONIC:
    214 		nanouptime(&ats);
    215 		break;
    216 	default:
    217 		return (EINVAL);
    218 	}
    219 
    220 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    221 }
    222 
    223 /* ARGSUSED */
    224 int
    225 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    226     register_t *retval)
    227 {
    228 	/* {
    229 		syscallarg(clockid_t) clock_id;
    230 		syscallarg(const struct timespec *) tp;
    231 	} */
    232 
    233 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    234 	    true);
    235 }
    236 
    237 
    238 int
    239 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    240     bool check_kauth)
    241 {
    242 	struct timespec ats;
    243 	int error;
    244 
    245 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    246 		return (error);
    247 
    248 	switch (clock_id) {
    249 	case CLOCK_REALTIME:
    250 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    251 			return (error);
    252 		break;
    253 	case CLOCK_MONOTONIC:
    254 		return (EINVAL);	/* read-only clock */
    255 	default:
    256 		return (EINVAL);
    257 	}
    258 
    259 	return 0;
    260 }
    261 
    262 int
    263 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    264     register_t *retval)
    265 {
    266 	/* {
    267 		syscallarg(clockid_t) clock_id;
    268 		syscallarg(struct timespec *) tp;
    269 	} */
    270 	clockid_t clock_id;
    271 	struct timespec ts;
    272 	int error = 0;
    273 
    274 	clock_id = SCARG(uap, clock_id);
    275 	switch (clock_id) {
    276 	case CLOCK_REALTIME:
    277 	case CLOCK_MONOTONIC:
    278 		ts.tv_sec = 0;
    279 		if (tc_getfrequency() > 1000000000)
    280 			ts.tv_nsec = 1;
    281 		else
    282 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    283 		break;
    284 	default:
    285 		return (EINVAL);
    286 	}
    287 
    288 	if (SCARG(uap, tp))
    289 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    290 
    291 	return error;
    292 }
    293 
    294 /* ARGSUSED */
    295 int
    296 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    297     register_t *retval)
    298 {
    299 	/* {
    300 		syscallarg(struct timespec *) rqtp;
    301 		syscallarg(struct timespec *) rmtp;
    302 	} */
    303 	struct timespec rmt, rqt;
    304 	int error, error1;
    305 
    306 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307 	if (error)
    308 		return (error);
    309 
    310 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    311 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    312 		return error;
    313 
    314 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    315 	return error1 ? error1 : error;
    316 }
    317 
    318 int
    319 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    320 {
    321 	struct timespec rmtstart;
    322 	int error, timo;
    323 
    324 	if (itimespecfix(rqt))
    325 		return (EINVAL);
    326 
    327 	timo = tstohz(rqt);
    328 	/*
    329 	 * Avoid inadvertantly sleeping forever
    330 	 */
    331 	if (timo == 0)
    332 		timo = 1;
    333 	getnanouptime(&rmtstart);
    334 again:
    335 	error = kpause("nanoslp", true, timo, NULL);
    336 	if (rmt != NULL || error == 0) {
    337 		struct timespec rmtend;
    338 		struct timespec t0;
    339 		struct timespec *t;
    340 
    341 		getnanouptime(&rmtend);
    342 		t = (rmt != NULL) ? rmt : &t0;
    343 		timespecsub(&rmtend, &rmtstart, t);
    344 		timespecsub(rqt, t, t);
    345 		if (t->tv_sec < 0)
    346 			timespecclear(t);
    347 		if (error == 0) {
    348 			timo = tstohz(t);
    349 			if (timo > 0)
    350 				goto again;
    351 		}
    352 	}
    353 
    354 	if (error == ERESTART)
    355 		error = EINTR;
    356 	if (error == EWOULDBLOCK)
    357 		error = 0;
    358 
    359 	return error;
    360 }
    361 
    362 /* ARGSUSED */
    363 int
    364 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    365     register_t *retval)
    366 {
    367 	/* {
    368 		syscallarg(struct timeval *) tp;
    369 		syscallarg(void *) tzp;		really "struct timezone *";
    370 	} */
    371 	struct timeval atv;
    372 	int error = 0;
    373 	struct timezone tzfake;
    374 
    375 	if (SCARG(uap, tp)) {
    376 		microtime(&atv);
    377 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    378 		if (error)
    379 			return (error);
    380 	}
    381 	if (SCARG(uap, tzp)) {
    382 		/*
    383 		 * NetBSD has no kernel notion of time zone, so we just
    384 		 * fake up a timezone struct and return it if demanded.
    385 		 */
    386 		tzfake.tz_minuteswest = 0;
    387 		tzfake.tz_dsttime = 0;
    388 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    389 	}
    390 	return (error);
    391 }
    392 
    393 /* ARGSUSED */
    394 int
    395 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    396     register_t *retval)
    397 {
    398 	/* {
    399 		syscallarg(const struct timeval *) tv;
    400 		syscallarg(const void *) tzp; really "const struct timezone *";
    401 	} */
    402 
    403 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    404 }
    405 
    406 int
    407 settimeofday1(const struct timeval *utv, bool userspace,
    408     const void *utzp, struct lwp *l, bool check_kauth)
    409 {
    410 	struct timeval atv;
    411 	struct timespec ts;
    412 	int error;
    413 
    414 	/* Verify all parameters before changing time. */
    415 
    416 	/*
    417 	 * NetBSD has no kernel notion of time zone, and only an
    418 	 * obsolete program would try to set it, so we log a warning.
    419 	 */
    420 	if (utzp)
    421 		log(LOG_WARNING, "pid %d attempted to set the "
    422 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    423 
    424 	if (utv == NULL)
    425 		return 0;
    426 
    427 	if (userspace) {
    428 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    429 			return error;
    430 		utv = &atv;
    431 	}
    432 
    433 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    434 	return settime1(l->l_proc, &ts, check_kauth);
    435 }
    436 
    437 int	time_adjusted;			/* set if an adjustment is made */
    438 
    439 /* ARGSUSED */
    440 int
    441 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    442     register_t *retval)
    443 {
    444 	/* {
    445 		syscallarg(const struct timeval *) delta;
    446 		syscallarg(struct timeval *) olddelta;
    447 	} */
    448 	int error;
    449 
    450 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    451 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    452 		return (error);
    453 
    454 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    455 }
    456 
    457 int
    458 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    459 {
    460 	struct timeval atv;
    461 	int error = 0;
    462 
    463 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    464 
    465 	if (olddelta) {
    466 		mutex_spin_enter(&timecounter_lock);
    467 		atv.tv_sec = time_adjtime / 1000000;
    468 		atv.tv_usec = time_adjtime % 1000000;
    469 		mutex_spin_exit(&timecounter_lock);
    470 		if (atv.tv_usec < 0) {
    471 			atv.tv_usec += 1000000;
    472 			atv.tv_sec--;
    473 		}
    474 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    475 		if (error)
    476 			return (error);
    477 	}
    478 
    479 	if (delta) {
    480 		error = copyin(delta, &atv, sizeof(struct timeval));
    481 		if (error)
    482 			return (error);
    483 
    484 		mutex_spin_enter(&timecounter_lock);
    485 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    486 			atv.tv_usec;
    487 		if (time_adjtime) {
    488 			/* We need to save the system time during shutdown */
    489 			time_adjusted |= 1;
    490 		}
    491 		mutex_spin_exit(&timecounter_lock);
    492 	}
    493 
    494 	return error;
    495 }
    496 
    497 /*
    498  * Interval timer support. Both the BSD getitimer() family and the POSIX
    499  * timer_*() family of routines are supported.
    500  *
    501  * All timers are kept in an array pointed to by p_timers, which is
    502  * allocated on demand - many processes don't use timers at all. The
    503  * first three elements in this array are reserved for the BSD timers:
    504  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    505  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    506  * syscall.
    507  *
    508  * Realtime timers are kept in the ptimer structure as an absolute
    509  * time; virtual time timers are kept as a linked list of deltas.
    510  * Virtual time timers are processed in the hardclock() routine of
    511  * kern_clock.c.  The real time timer is processed by a callout
    512  * routine, called from the softclock() routine.  Since a callout may
    513  * be delayed in real time due to interrupt processing in the system,
    514  * it is possible for the real time timeout routine (realtimeexpire,
    515  * given below), to be delayed in real time past when it is supposed
    516  * to occur.  It does not suffice, therefore, to reload the real timer
    517  * .it_value from the real time timers .it_interval.  Rather, we
    518  * compute the next time in absolute time the timer should go off.  */
    519 
    520 /* Allocate a POSIX realtime timer. */
    521 int
    522 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    523     register_t *retval)
    524 {
    525 	/* {
    526 		syscallarg(clockid_t) clock_id;
    527 		syscallarg(struct sigevent *) evp;
    528 		syscallarg(timer_t *) timerid;
    529 	} */
    530 
    531 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    532 	    SCARG(uap, evp), copyin, l);
    533 }
    534 
    535 int
    536 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    537     copyin_t fetch_event, struct lwp *l)
    538 {
    539 	int error;
    540 	timer_t timerid;
    541 	struct ptimers *pts;
    542 	struct ptimer *pt;
    543 	struct proc *p;
    544 
    545 	p = l->l_proc;
    546 
    547 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    548 		return (EINVAL);
    549 
    550 	if ((pts = p->p_timers) == NULL)
    551 		pts = timers_alloc(p);
    552 
    553 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    554 	if (evp != NULL) {
    555 		if (((error =
    556 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    557 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    558 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    559 			pool_put(&ptimer_pool, pt);
    560 			return (error ? error : EINVAL);
    561 		}
    562 	}
    563 
    564 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    565 	mutex_spin_enter(&timer_lock);
    566 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    567 		if (pts->pts_timers[timerid] == NULL)
    568 			break;
    569 	if (timerid == TIMER_MAX) {
    570 		mutex_spin_exit(&timer_lock);
    571 		pool_put(&ptimer_pool, pt);
    572 		return EAGAIN;
    573 	}
    574 	if (evp == NULL) {
    575 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    576 		switch (id) {
    577 		case CLOCK_REALTIME:
    578 			pt->pt_ev.sigev_signo = SIGALRM;
    579 			break;
    580 		case CLOCK_VIRTUAL:
    581 			pt->pt_ev.sigev_signo = SIGVTALRM;
    582 			break;
    583 		case CLOCK_PROF:
    584 			pt->pt_ev.sigev_signo = SIGPROF;
    585 			break;
    586 		}
    587 		pt->pt_ev.sigev_value.sival_int = timerid;
    588 	}
    589 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    590 	pt->pt_info.ksi_errno = 0;
    591 	pt->pt_info.ksi_code = 0;
    592 	pt->pt_info.ksi_pid = p->p_pid;
    593 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    594 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    595 	pt->pt_type = id;
    596 	pt->pt_proc = p;
    597 	pt->pt_overruns = 0;
    598 	pt->pt_poverruns = 0;
    599 	pt->pt_entry = timerid;
    600 	pt->pt_queued = false;
    601 	pt->pt_active = 0;
    602 	timerclear(&pt->pt_time.it_value);
    603 	callout_init(&pt->pt_ch, 0);
    604 	pts->pts_timers[timerid] = pt;
    605 	mutex_spin_exit(&timer_lock);
    606 
    607 	return copyout(&timerid, tid, sizeof(timerid));
    608 }
    609 
    610 /* Delete a POSIX realtime timer */
    611 int
    612 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    613     register_t *retval)
    614 {
    615 	/* {
    616 		syscallarg(timer_t) timerid;
    617 	} */
    618 	struct proc *p = l->l_proc;
    619 	timer_t timerid;
    620 	struct ptimers *pts;
    621 	struct ptimer *pt, *ptn;
    622 
    623 	timerid = SCARG(uap, timerid);
    624 	pts = p->p_timers;
    625 
    626 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    627 		return (EINVAL);
    628 
    629 	mutex_spin_enter(&timer_lock);
    630 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    631 		mutex_spin_exit(&timer_lock);
    632 		return (EINVAL);
    633 	}
    634 	if (pt->pt_active) {
    635 		ptn = LIST_NEXT(pt, pt_list);
    636 		LIST_REMOVE(pt, pt_list);
    637 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    638 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    639 			    &ptn->pt_time.it_value);
    640 		pt->pt_active = 0;
    641 	}
    642 	itimerfree(pts, timerid);
    643 
    644 	return (0);
    645 }
    646 
    647 /*
    648  * Set up the given timer. The value in pt->pt_time.it_value is taken
    649  * to be an absolute time for CLOCK_REALTIME timers and a relative
    650  * time for virtual timers.
    651  * Must be called at splclock().
    652  */
    653 void
    654 timer_settime(struct ptimer *pt)
    655 {
    656 	struct ptimer *ptn, *pptn;
    657 	struct ptlist *ptl;
    658 
    659 	KASSERT(mutex_owned(&timer_lock));
    660 
    661 	if (pt->pt_type == CLOCK_REALTIME) {
    662 		callout_stop(&pt->pt_ch);
    663 		if (timerisset(&pt->pt_time.it_value)) {
    664 			/*
    665 			 * Don't need to check hzto() return value, here.
    666 			 * callout_reset() does it for us.
    667 			 */
    668 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    669 			    realtimerexpire, pt);
    670 		}
    671 	} else {
    672 		if (pt->pt_active) {
    673 			ptn = LIST_NEXT(pt, pt_list);
    674 			LIST_REMOVE(pt, pt_list);
    675 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    676 				timeradd(&pt->pt_time.it_value,
    677 				    &ptn->pt_time.it_value,
    678 				    &ptn->pt_time.it_value);
    679 		}
    680 		if (timerisset(&pt->pt_time.it_value)) {
    681 			if (pt->pt_type == CLOCK_VIRTUAL)
    682 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    683 			else
    684 				ptl = &pt->pt_proc->p_timers->pts_prof;
    685 
    686 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    687 			     ptn && timercmp(&pt->pt_time.it_value,
    688 				 &ptn->pt_time.it_value, >);
    689 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    690 				timersub(&pt->pt_time.it_value,
    691 				    &ptn->pt_time.it_value,
    692 				    &pt->pt_time.it_value);
    693 
    694 			if (pptn)
    695 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    696 			else
    697 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    698 
    699 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    700 				timersub(&ptn->pt_time.it_value,
    701 				    &pt->pt_time.it_value,
    702 				    &ptn->pt_time.it_value);
    703 
    704 			pt->pt_active = 1;
    705 		} else
    706 			pt->pt_active = 0;
    707 	}
    708 }
    709 
    710 void
    711 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    712 {
    713 	struct timeval now;
    714 	struct ptimer *ptn;
    715 
    716 	KASSERT(mutex_owned(&timer_lock));
    717 
    718 	*aitv = pt->pt_time;
    719 	if (pt->pt_type == CLOCK_REALTIME) {
    720 		/*
    721 		 * Convert from absolute to relative time in .it_value
    722 		 * part of real time timer.  If time for real time
    723 		 * timer has passed return 0, else return difference
    724 		 * between current time and time for the timer to go
    725 		 * off.
    726 		 */
    727 		if (timerisset(&aitv->it_value)) {
    728 			getmicrotime(&now);
    729 			if (timercmp(&aitv->it_value, &now, <))
    730 				timerclear(&aitv->it_value);
    731 			else
    732 				timersub(&aitv->it_value, &now,
    733 				    &aitv->it_value);
    734 		}
    735 	} else if (pt->pt_active) {
    736 		if (pt->pt_type == CLOCK_VIRTUAL)
    737 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    738 		else
    739 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    740 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    741 			timeradd(&aitv->it_value,
    742 			    &ptn->pt_time.it_value, &aitv->it_value);
    743 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    744 	} else
    745 		timerclear(&aitv->it_value);
    746 }
    747 
    748 
    749 
    750 /* Set and arm a POSIX realtime timer */
    751 int
    752 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    753     register_t *retval)
    754 {
    755 	/* {
    756 		syscallarg(timer_t) timerid;
    757 		syscallarg(int) flags;
    758 		syscallarg(const struct itimerspec *) value;
    759 		syscallarg(struct itimerspec *) ovalue;
    760 	} */
    761 	int error;
    762 	struct itimerspec value, ovalue, *ovp = NULL;
    763 
    764 	if ((error = copyin(SCARG(uap, value), &value,
    765 	    sizeof(struct itimerspec))) != 0)
    766 		return (error);
    767 
    768 	if (SCARG(uap, ovalue))
    769 		ovp = &ovalue;
    770 
    771 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    772 	    SCARG(uap, flags), l->l_proc)) != 0)
    773 		return error;
    774 
    775 	if (ovp)
    776 		return copyout(&ovalue, SCARG(uap, ovalue),
    777 		    sizeof(struct itimerspec));
    778 	return 0;
    779 }
    780 
    781 int
    782 dotimer_settime(int timerid, struct itimerspec *value,
    783     struct itimerspec *ovalue, int flags, struct proc *p)
    784 {
    785 	struct timeval now;
    786 	struct itimerval val, oval;
    787 	struct ptimers *pts;
    788 	struct ptimer *pt;
    789 
    790 	pts = p->p_timers;
    791 
    792 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    793 		return EINVAL;
    794 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    795 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    796 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    797 		return (EINVAL);
    798 
    799 	mutex_spin_enter(&timer_lock);
    800 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    801 		mutex_spin_exit(&timer_lock);
    802 		return (EINVAL);
    803 	}
    804 
    805 	oval = pt->pt_time;
    806 	pt->pt_time = val;
    807 
    808 	/*
    809 	 * If we've been passed a relative time for a realtime timer,
    810 	 * convert it to absolute; if an absolute time for a virtual
    811 	 * timer, convert it to relative and make sure we don't set it
    812 	 * to zero, which would cancel the timer, or let it go
    813 	 * negative, which would confuse the comparison tests.
    814 	 */
    815 	if (timerisset(&pt->pt_time.it_value)) {
    816 		if (pt->pt_type == CLOCK_REALTIME) {
    817 			if ((flags & TIMER_ABSTIME) == 0) {
    818 				getmicrotime(&now);
    819 				timeradd(&pt->pt_time.it_value, &now,
    820 				    &pt->pt_time.it_value);
    821 			}
    822 		} else {
    823 			if ((flags & TIMER_ABSTIME) != 0) {
    824 				getmicrotime(&now);
    825 				timersub(&pt->pt_time.it_value, &now,
    826 				    &pt->pt_time.it_value);
    827 				if (!timerisset(&pt->pt_time.it_value) ||
    828 				    pt->pt_time.it_value.tv_sec < 0) {
    829 					pt->pt_time.it_value.tv_sec = 0;
    830 					pt->pt_time.it_value.tv_usec = 1;
    831 				}
    832 			}
    833 		}
    834 	}
    835 
    836 	timer_settime(pt);
    837 	mutex_spin_exit(&timer_lock);
    838 
    839 	if (ovalue) {
    840 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    841 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    842 	}
    843 
    844 	return (0);
    845 }
    846 
    847 /* Return the time remaining until a POSIX timer fires. */
    848 int
    849 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    850     register_t *retval)
    851 {
    852 	/* {
    853 		syscallarg(timer_t) timerid;
    854 		syscallarg(struct itimerspec *) value;
    855 	} */
    856 	struct itimerspec its;
    857 	int error;
    858 
    859 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    860 	    &its)) != 0)
    861 		return error;
    862 
    863 	return copyout(&its, SCARG(uap, value), sizeof(its));
    864 }
    865 
    866 int
    867 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    868 {
    869 	struct ptimer *pt;
    870 	struct ptimers *pts;
    871 	struct itimerval aitv;
    872 
    873 	pts = p->p_timers;
    874 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    875 		return (EINVAL);
    876 	mutex_spin_enter(&timer_lock);
    877 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    878 		mutex_spin_exit(&timer_lock);
    879 		return (EINVAL);
    880 	}
    881 	timer_gettime(pt, &aitv);
    882 	mutex_spin_exit(&timer_lock);
    883 
    884 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    885 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    886 
    887 	return 0;
    888 }
    889 
    890 /*
    891  * Return the count of the number of times a periodic timer expired
    892  * while a notification was already pending. The counter is reset when
    893  * a timer expires and a notification can be posted.
    894  */
    895 int
    896 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    897     register_t *retval)
    898 {
    899 	/* {
    900 		syscallarg(timer_t) timerid;
    901 	} */
    902 	struct proc *p = l->l_proc;
    903 	struct ptimers *pts;
    904 	int timerid;
    905 	struct ptimer *pt;
    906 
    907 	timerid = SCARG(uap, timerid);
    908 
    909 	pts = p->p_timers;
    910 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    911 		return (EINVAL);
    912 	mutex_spin_enter(&timer_lock);
    913 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    914 		mutex_spin_exit(&timer_lock);
    915 		return (EINVAL);
    916 	}
    917 	*retval = pt->pt_poverruns;
    918 	mutex_spin_exit(&timer_lock);
    919 
    920 	return (0);
    921 }
    922 
    923 /*
    924  * Real interval timer expired:
    925  * send process whose timer expired an alarm signal.
    926  * If time is not set up to reload, then just return.
    927  * Else compute next time timer should go off which is > current time.
    928  * This is where delay in processing this timeout causes multiple
    929  * SIGALRM calls to be compressed into one.
    930  */
    931 void
    932 realtimerexpire(void *arg)
    933 {
    934 	struct timeval now;
    935 	struct ptimer *pt;
    936 
    937 	pt = arg;
    938 
    939 	mutex_spin_enter(&timer_lock);
    940 	itimerfire(pt);
    941 
    942 	if (!timerisset(&pt->pt_time.it_interval)) {
    943 		timerclear(&pt->pt_time.it_value);
    944 		mutex_spin_exit(&timer_lock);
    945 		return;
    946 	}
    947 	for (;;) {
    948 		timeradd(&pt->pt_time.it_value,
    949 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    950 		getmicrotime(&now);
    951 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    952 			/*
    953 			 * Don't need to check hzto() return value, here.
    954 			 * callout_reset() does it for us.
    955 			 */
    956 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    957 			    realtimerexpire, pt);
    958 			mutex_spin_exit(&timer_lock);
    959 			return;
    960 		}
    961 		mutex_spin_exit(&timer_lock);
    962 		pt->pt_overruns++;
    963 		mutex_spin_enter(&timer_lock);
    964 	}
    965 }
    966 
    967 /* BSD routine to get the value of an interval timer. */
    968 /* ARGSUSED */
    969 int
    970 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
    971     register_t *retval)
    972 {
    973 	/* {
    974 		syscallarg(int) which;
    975 		syscallarg(struct itimerval *) itv;
    976 	} */
    977 	struct proc *p = l->l_proc;
    978 	struct itimerval aitv;
    979 	int error;
    980 
    981 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    982 	if (error)
    983 		return error;
    984 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    985 }
    986 
    987 int
    988 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    989 {
    990 	struct ptimers *pts;
    991 	struct ptimer *pt;
    992 
    993 	if ((u_int)which > ITIMER_PROF)
    994 		return (EINVAL);
    995 
    996 	mutex_spin_enter(&timer_lock);
    997 	pts = p->p_timers;
    998 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
    999 		timerclear(&itvp->it_value);
   1000 		timerclear(&itvp->it_interval);
   1001 	} else
   1002 		timer_gettime(pt, itvp);
   1003 	mutex_spin_exit(&timer_lock);
   1004 
   1005 	return 0;
   1006 }
   1007 
   1008 /* BSD routine to set/arm an interval timer. */
   1009 /* ARGSUSED */
   1010 int
   1011 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1012     register_t *retval)
   1013 {
   1014 	/* {
   1015 		syscallarg(int) which;
   1016 		syscallarg(const struct itimerval *) itv;
   1017 		syscallarg(struct itimerval *) oitv;
   1018 	} */
   1019 	struct proc *p = l->l_proc;
   1020 	int which = SCARG(uap, which);
   1021 	struct sys_getitimer_args getargs;
   1022 	const struct itimerval *itvp;
   1023 	struct itimerval aitv;
   1024 	int error;
   1025 
   1026 	if ((u_int)which > ITIMER_PROF)
   1027 		return (EINVAL);
   1028 	itvp = SCARG(uap, itv);
   1029 	if (itvp &&
   1030 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1031 		return (error);
   1032 	if (SCARG(uap, oitv) != NULL) {
   1033 		SCARG(&getargs, which) = which;
   1034 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1035 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1036 			return (error);
   1037 	}
   1038 	if (itvp == 0)
   1039 		return (0);
   1040 
   1041 	return dosetitimer(p, which, &aitv);
   1042 }
   1043 
   1044 int
   1045 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1046 {
   1047 	struct timeval now;
   1048 	struct ptimers *pts;
   1049 	struct ptimer *pt, *spare;
   1050 
   1051 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1052 		return (EINVAL);
   1053 
   1054 	/*
   1055 	 * Don't bother allocating data structures if the process just
   1056 	 * wants to clear the timer.
   1057 	 */
   1058 	spare = NULL;
   1059 	pts = p->p_timers;
   1060  retry:
   1061 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1062 	    pts->pts_timers[which] == NULL))
   1063 		return (0);
   1064 	if (pts == NULL)
   1065 		pts = timers_alloc(p);
   1066 	mutex_spin_enter(&timer_lock);
   1067 	pt = pts->pts_timers[which];
   1068 	if (pt == NULL) {
   1069 		if (spare == NULL) {
   1070 			mutex_spin_exit(&timer_lock);
   1071 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1072 			goto retry;
   1073 		}
   1074 		pt = spare;
   1075 		spare = NULL;
   1076 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1077 		pt->pt_ev.sigev_value.sival_int = which;
   1078 		pt->pt_overruns = 0;
   1079 		pt->pt_proc = p;
   1080 		pt->pt_type = which;
   1081 		pt->pt_entry = which;
   1082 		pt->pt_active = 0;
   1083 		pt->pt_queued = false;
   1084 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1085 		switch (which) {
   1086 		case ITIMER_REAL:
   1087 			pt->pt_ev.sigev_signo = SIGALRM;
   1088 			break;
   1089 		case ITIMER_VIRTUAL:
   1090 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1091 			break;
   1092 		case ITIMER_PROF:
   1093 			pt->pt_ev.sigev_signo = SIGPROF;
   1094 			break;
   1095 		}
   1096 		pts->pts_timers[which] = pt;
   1097 	}
   1098 	pt->pt_time = *itvp;
   1099 
   1100 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1101 		/* Convert to absolute time */
   1102 		/* XXX need to wrap in splclock for timecounters case? */
   1103 		getmicrotime(&now);
   1104 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1105 	}
   1106 	timer_settime(pt);
   1107 	mutex_spin_exit(&timer_lock);
   1108 	if (spare != NULL)
   1109 		pool_put(&ptimer_pool, spare);
   1110 
   1111 	return (0);
   1112 }
   1113 
   1114 /* Utility routines to manage the array of pointers to timers. */
   1115 struct ptimers *
   1116 timers_alloc(struct proc *p)
   1117 {
   1118 	struct ptimers *pts;
   1119 	int i;
   1120 
   1121 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1122 	LIST_INIT(&pts->pts_virtual);
   1123 	LIST_INIT(&pts->pts_prof);
   1124 	for (i = 0; i < TIMER_MAX; i++)
   1125 		pts->pts_timers[i] = NULL;
   1126 	pts->pts_fired = 0;
   1127 	mutex_spin_enter(&timer_lock);
   1128 	if (p->p_timers == NULL) {
   1129 		p->p_timers = pts;
   1130 		mutex_spin_exit(&timer_lock);
   1131 		return pts;
   1132 	}
   1133 	mutex_spin_exit(&timer_lock);
   1134 	pool_put(&ptimers_pool, pts);
   1135 	return p->p_timers;
   1136 }
   1137 
   1138 /*
   1139  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1140  * then clean up all timers and free all the data structures. If
   1141  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1142  * by timer_create(), not the BSD setitimer() timers, and only free the
   1143  * structure if none of those remain.
   1144  */
   1145 void
   1146 timers_free(struct proc *p, int which)
   1147 {
   1148 	struct ptimers *pts;
   1149 	struct ptimer *ptn;
   1150 	struct timeval tv;
   1151 	int i;
   1152 
   1153 	if (p->p_timers == NULL)
   1154 		return;
   1155 
   1156 	pts = p->p_timers;
   1157 	mutex_spin_enter(&timer_lock);
   1158 	if (which == TIMERS_ALL) {
   1159 		p->p_timers = NULL;
   1160 		i = 0;
   1161 	} else {
   1162 		timerclear(&tv);
   1163 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1164 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1165 		     ptn = LIST_NEXT(ptn, pt_list))
   1166 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1167 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1168 		if (ptn) {
   1169 			timeradd(&tv, &ptn->pt_time.it_value,
   1170 			    &ptn->pt_time.it_value);
   1171 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1172 		}
   1173 		timerclear(&tv);
   1174 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1175 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1176 		     ptn = LIST_NEXT(ptn, pt_list))
   1177 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1178 		LIST_FIRST(&pts->pts_prof) = NULL;
   1179 		if (ptn) {
   1180 			timeradd(&tv, &ptn->pt_time.it_value,
   1181 			    &ptn->pt_time.it_value);
   1182 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1183 		}
   1184 		i = 3;
   1185 	}
   1186 	for ( ; i < TIMER_MAX; i++) {
   1187 		if (pts->pts_timers[i] != NULL) {
   1188 			itimerfree(pts, i);
   1189 			mutex_spin_enter(&timer_lock);
   1190 		}
   1191 	}
   1192 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1193 	    pts->pts_timers[2] == NULL) {
   1194 		p->p_timers = NULL;
   1195 		mutex_spin_exit(&timer_lock);
   1196 		pool_put(&ptimers_pool, pts);
   1197 	} else
   1198 		mutex_spin_exit(&timer_lock);
   1199 }
   1200 
   1201 static void
   1202 itimerfree(struct ptimers *pts, int index)
   1203 {
   1204 	struct ptimer *pt;
   1205 
   1206 	KASSERT(mutex_owned(&timer_lock));
   1207 
   1208 	pt = pts->pts_timers[index];
   1209 	pts->pts_timers[index] = NULL;
   1210 	if (pt->pt_type == CLOCK_REALTIME) {
   1211 		mutex_spin_exit(&timer_lock);
   1212 		callout_halt(&pt->pt_ch);
   1213 	} else if (pt->pt_queued) {
   1214 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1215 		mutex_spin_exit(&timer_lock);
   1216 	} else
   1217 		mutex_spin_exit(&timer_lock);
   1218 	callout_destroy(&pt->pt_ch);
   1219 	pool_put(&ptimer_pool, pt);
   1220 }
   1221 
   1222 /*
   1223  * Decrement an interval timer by a specified number
   1224  * of microseconds, which must be less than a second,
   1225  * i.e. < 1000000.  If the timer expires, then reload
   1226  * it.  In this case, carry over (usec - old value) to
   1227  * reduce the value reloaded into the timer so that
   1228  * the timer does not drift.  This routine assumes
   1229  * that it is called in a context where the timers
   1230  * on which it is operating cannot change in value.
   1231  */
   1232 static int
   1233 itimerdecr(struct ptimer *pt, int usec)
   1234 {
   1235 	struct itimerval *itp;
   1236 
   1237 	KASSERT(mutex_owned(&timer_lock));
   1238 
   1239 	itp = &pt->pt_time;
   1240 	if (itp->it_value.tv_usec < usec) {
   1241 		if (itp->it_value.tv_sec == 0) {
   1242 			/* expired, and already in next interval */
   1243 			usec -= itp->it_value.tv_usec;
   1244 			goto expire;
   1245 		}
   1246 		itp->it_value.tv_usec += 1000000;
   1247 		itp->it_value.tv_sec--;
   1248 	}
   1249 	itp->it_value.tv_usec -= usec;
   1250 	usec = 0;
   1251 	if (timerisset(&itp->it_value))
   1252 		return (1);
   1253 	/* expired, exactly at end of interval */
   1254 expire:
   1255 	if (timerisset(&itp->it_interval)) {
   1256 		itp->it_value = itp->it_interval;
   1257 		itp->it_value.tv_usec -= usec;
   1258 		if (itp->it_value.tv_usec < 0) {
   1259 			itp->it_value.tv_usec += 1000000;
   1260 			itp->it_value.tv_sec--;
   1261 		}
   1262 		timer_settime(pt);
   1263 	} else
   1264 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1265 	return (0);
   1266 }
   1267 
   1268 static void
   1269 itimerfire(struct ptimer *pt)
   1270 {
   1271 
   1272 	KASSERT(mutex_owned(&timer_lock));
   1273 
   1274 	/*
   1275 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1276 	 * XXX Relying on the clock interrupt is stupid.
   1277 	 */
   1278 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
   1279 		return;
   1280 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1281 	pt->pt_queued = true;
   1282 	softint_schedule(timer_sih);
   1283 }
   1284 
   1285 void
   1286 timer_tick(lwp_t *l, bool user)
   1287 {
   1288 	struct ptimers *pts;
   1289 	struct ptimer *pt;
   1290 	proc_t *p;
   1291 
   1292 	p = l->l_proc;
   1293 	if (p->p_timers == NULL)
   1294 		return;
   1295 
   1296 	mutex_spin_enter(&timer_lock);
   1297 	if ((pts = l->l_proc->p_timers) != NULL) {
   1298 		/*
   1299 		 * Run current process's virtual and profile time, as needed.
   1300 		 */
   1301 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1302 			if (itimerdecr(pt, tick) == 0)
   1303 				itimerfire(pt);
   1304 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1305 			if (itimerdecr(pt, tick) == 0)
   1306 				itimerfire(pt);
   1307 	}
   1308 	mutex_spin_exit(&timer_lock);
   1309 }
   1310 
   1311 static void
   1312 timer_intr(void *cookie)
   1313 {
   1314 	ksiginfo_t ksi;
   1315 	struct ptimer *pt;
   1316 	proc_t *p;
   1317 
   1318 	mutex_spin_enter(&timer_lock);
   1319 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1320 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1321 		KASSERT(pt->pt_queued);
   1322 		pt->pt_queued = false;
   1323 
   1324 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1325 			continue;
   1326 		p = pt->pt_proc;
   1327 		if (pt->pt_proc->p_timers == NULL) {
   1328 			/* Process is dying. */
   1329 			continue;
   1330 		}
   1331 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1332 			pt->pt_overruns++;
   1333 			continue;
   1334 		}
   1335 
   1336 		KSI_INIT(&ksi);
   1337 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1338 		ksi.ksi_code = SI_TIMER;
   1339 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1340 		pt->pt_poverruns = pt->pt_overruns;
   1341 		pt->pt_overruns = 0;
   1342 		mutex_spin_exit(&timer_lock);
   1343 
   1344 		mutex_enter(&proclist_mutex);
   1345 		kpsignal(p, &ksi, NULL);
   1346 		mutex_exit(&proclist_mutex);
   1347 
   1348 		mutex_spin_enter(&timer_lock);
   1349 	}
   1350 	mutex_spin_exit(&timer_lock);
   1351 }
   1352 
   1353 /*
   1354  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1355  * for usage and rationale.
   1356  */
   1357 int
   1358 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1359 {
   1360 	struct timeval tv, delta;
   1361 	int rv = 0;
   1362 
   1363 	getmicrouptime(&tv);
   1364 	timersub(&tv, lasttime, &delta);
   1365 
   1366 	/*
   1367 	 * check for 0,0 is so that the message will be seen at least once,
   1368 	 * even if interval is huge.
   1369 	 */
   1370 	if (timercmp(&delta, mininterval, >=) ||
   1371 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1372 		*lasttime = tv;
   1373 		rv = 1;
   1374 	}
   1375 
   1376 	return (rv);
   1377 }
   1378 
   1379 /*
   1380  * ppsratecheck(): packets (or events) per second limitation.
   1381  */
   1382 int
   1383 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1384 {
   1385 	struct timeval tv, delta;
   1386 	int rv;
   1387 
   1388 	getmicrouptime(&tv);
   1389 	timersub(&tv, lasttime, &delta);
   1390 
   1391 	/*
   1392 	 * check for 0,0 is so that the message will be seen at least once.
   1393 	 * if more than one second have passed since the last update of
   1394 	 * lasttime, reset the counter.
   1395 	 *
   1396 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1397 	 * try to use *curpps for stat purposes as well.
   1398 	 */
   1399 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1400 	    delta.tv_sec >= 1) {
   1401 		*lasttime = tv;
   1402 		*curpps = 0;
   1403 	}
   1404 	if (maxpps < 0)
   1405 		rv = 1;
   1406 	else if (*curpps < maxpps)
   1407 		rv = 1;
   1408 	else
   1409 		rv = 0;
   1410 
   1411 #if 1 /*DIAGNOSTIC?*/
   1412 	/* be careful about wrap-around */
   1413 	if (*curpps + 1 > *curpps)
   1414 		*curpps = *curpps + 1;
   1415 #else
   1416 	/*
   1417 	 * assume that there's not too many calls to this function.
   1418 	 * not sure if the assumption holds, as it depends on *caller's*
   1419 	 * behavior, not the behavior of this function.
   1420 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1421 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1422 	 */
   1423 	*curpps = *curpps + 1;
   1424 #endif
   1425 
   1426 	return (rv);
   1427 }
   1428