kern_time.c revision 1.146.2.3 1 /* $NetBSD: kern_time.c,v 1.146.2.3 2008/05/27 03:16:30 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146.2.3 2008/05/27 03:16:30 wrstuden Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 static void timer_intr(void *);
86 static void itimerfire(struct ptimer *);
87 static void itimerfree(struct ptimers *, int);
88
89 kmutex_t time_lock;
90 kmutex_t timer_lock;
91
92 static void *timer_sih;
93 static TAILQ_HEAD(, ptimer) timer_queue;
94
95 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
96 &pool_allocator_nointr, IPL_NONE);
97 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
98 &pool_allocator_nointr, IPL_NONE);
99
100 /*
101 * Initialize timekeeping.
102 */
103 void
104 time_init(void)
105 {
106
107 mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
108 }
109
110 void
111 time_init2(void)
112 {
113
114 TAILQ_INIT(&timer_queue);
115 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
116 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
117 timer_intr, NULL);
118 }
119
120 /* Time of day and interval timer support.
121 *
122 * These routines provide the kernel entry points to get and set
123 * the time-of-day and per-process interval timers. Subroutines
124 * here provide support for adding and subtracting timeval structures
125 * and decrementing interval timers, optionally reloading the interval
126 * timers when they expire.
127 */
128
129 /* This function is used by clock_settime and settimeofday */
130 static int
131 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
132 {
133 struct timeval delta, tv;
134 struct timeval now;
135 struct timespec ts1;
136 struct bintime btdelta;
137 lwp_t *l;
138 int s;
139
140 TIMESPEC_TO_TIMEVAL(&tv, ts);
141
142 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
143 s = splclock();
144 microtime(&now);
145 timersub(&tv, &now, &delta);
146
147 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
148 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
149 KAUTH_ARG(check_kauth ? false : true)) != 0) {
150 splx(s);
151 return (EPERM);
152 }
153
154 #ifdef notyet
155 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
156 splx(s);
157 return (EPERM);
158 }
159 #endif
160
161 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
162 tc_setclock(&ts1);
163
164 timeradd(&boottime, &delta, &boottime);
165
166 /*
167 * XXXSMP: There is a short race between setting the time above
168 * and adjusting LWP's run times. Fixing this properly means
169 * pausing all CPUs while we adjust the clock.
170 */
171 timeval2bintime(&delta, &btdelta);
172 mutex_enter(proc_lock);
173 LIST_FOREACH(l, &alllwp, l_list) {
174 lwp_lock(l);
175 bintime_add(&l->l_stime, &btdelta);
176 lwp_unlock(l);
177 }
178 mutex_exit(proc_lock);
179 resettodr();
180 splx(s);
181
182 return (0);
183 }
184
185 int
186 settime(struct proc *p, struct timespec *ts)
187 {
188 return (settime1(p, ts, true));
189 }
190
191 /* ARGSUSED */
192 int
193 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
194 register_t *retval)
195 {
196 /* {
197 syscallarg(clockid_t) clock_id;
198 syscallarg(struct timespec *) tp;
199 } */
200 clockid_t clock_id;
201 struct timespec ats;
202
203 clock_id = SCARG(uap, clock_id);
204 switch (clock_id) {
205 case CLOCK_REALTIME:
206 nanotime(&ats);
207 break;
208 case CLOCK_MONOTONIC:
209 nanouptime(&ats);
210 break;
211 default:
212 return (EINVAL);
213 }
214
215 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
216 }
217
218 /* ARGSUSED */
219 int
220 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
221 register_t *retval)
222 {
223 /* {
224 syscallarg(clockid_t) clock_id;
225 syscallarg(const struct timespec *) tp;
226 } */
227
228 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
229 true);
230 }
231
232
233 int
234 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
235 bool check_kauth)
236 {
237 struct timespec ats;
238 int error;
239
240 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
241 return (error);
242
243 switch (clock_id) {
244 case CLOCK_REALTIME:
245 if ((error = settime1(p, &ats, check_kauth)) != 0)
246 return (error);
247 break;
248 case CLOCK_MONOTONIC:
249 return (EINVAL); /* read-only clock */
250 default:
251 return (EINVAL);
252 }
253
254 return 0;
255 }
256
257 int
258 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
259 register_t *retval)
260 {
261 /* {
262 syscallarg(clockid_t) clock_id;
263 syscallarg(struct timespec *) tp;
264 } */
265 clockid_t clock_id;
266 struct timespec ts;
267 int error = 0;
268
269 clock_id = SCARG(uap, clock_id);
270 switch (clock_id) {
271 case CLOCK_REALTIME:
272 case CLOCK_MONOTONIC:
273 ts.tv_sec = 0;
274 if (tc_getfrequency() > 1000000000)
275 ts.tv_nsec = 1;
276 else
277 ts.tv_nsec = 1000000000 / tc_getfrequency();
278 break;
279 default:
280 return (EINVAL);
281 }
282
283 if (SCARG(uap, tp))
284 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
285
286 return error;
287 }
288
289 /* ARGSUSED */
290 int
291 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
292 register_t *retval)
293 {
294 /* {
295 syscallarg(struct timespec *) rqtp;
296 syscallarg(struct timespec *) rmtp;
297 } */
298 struct timespec rmt, rqt;
299 int error, error1;
300
301 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
302 if (error)
303 return (error);
304
305 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
306 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
307 return error;
308
309 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
310 return error1 ? error1 : error;
311 }
312
313 int
314 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
315 {
316 struct timespec rmtstart;
317 int error, timo;
318
319 if (itimespecfix(rqt))
320 return (EINVAL);
321
322 timo = tstohz(rqt);
323 /*
324 * Avoid inadvertantly sleeping forever
325 */
326 if (timo == 0)
327 timo = 1;
328 getnanouptime(&rmtstart);
329 again:
330 error = kpause("nanoslp", true, timo, NULL);
331 if (rmt != NULL || error == 0) {
332 struct timespec rmtend;
333 struct timespec t0;
334 struct timespec *t;
335
336 getnanouptime(&rmtend);
337 t = (rmt != NULL) ? rmt : &t0;
338 timespecsub(&rmtend, &rmtstart, t);
339 timespecsub(rqt, t, t);
340 if (t->tv_sec < 0)
341 timespecclear(t);
342 if (error == 0) {
343 timo = tstohz(t);
344 if (timo > 0)
345 goto again;
346 }
347 }
348
349 if (error == ERESTART)
350 error = EINTR;
351 if (error == EWOULDBLOCK)
352 error = 0;
353
354 return error;
355 }
356
357 /* ARGSUSED */
358 int
359 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
360 register_t *retval)
361 {
362 /* {
363 syscallarg(struct timeval *) tp;
364 syscallarg(void *) tzp; really "struct timezone *";
365 } */
366 struct timeval atv;
367 int error = 0;
368 struct timezone tzfake;
369
370 if (SCARG(uap, tp)) {
371 microtime(&atv);
372 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
373 if (error)
374 return (error);
375 }
376 if (SCARG(uap, tzp)) {
377 /*
378 * NetBSD has no kernel notion of time zone, so we just
379 * fake up a timezone struct and return it if demanded.
380 */
381 tzfake.tz_minuteswest = 0;
382 tzfake.tz_dsttime = 0;
383 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
384 }
385 return (error);
386 }
387
388 /* ARGSUSED */
389 int
390 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
391 register_t *retval)
392 {
393 /* {
394 syscallarg(const struct timeval *) tv;
395 syscallarg(const void *) tzp; really "const struct timezone *";
396 } */
397
398 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
399 }
400
401 int
402 settimeofday1(const struct timeval *utv, bool userspace,
403 const void *utzp, struct lwp *l, bool check_kauth)
404 {
405 struct timeval atv;
406 struct timespec ts;
407 int error;
408
409 /* Verify all parameters before changing time. */
410
411 /*
412 * NetBSD has no kernel notion of time zone, and only an
413 * obsolete program would try to set it, so we log a warning.
414 */
415 if (utzp)
416 log(LOG_WARNING, "pid %d attempted to set the "
417 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
418
419 if (utv == NULL)
420 return 0;
421
422 if (userspace) {
423 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
424 return error;
425 utv = &atv;
426 }
427
428 TIMEVAL_TO_TIMESPEC(utv, &ts);
429 return settime1(l->l_proc, &ts, check_kauth);
430 }
431
432 int time_adjusted; /* set if an adjustment is made */
433
434 /* ARGSUSED */
435 int
436 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
437 register_t *retval)
438 {
439 /* {
440 syscallarg(const struct timeval *) delta;
441 syscallarg(struct timeval *) olddelta;
442 } */
443 int error;
444
445 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
446 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
447 return (error);
448
449 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
450 }
451
452 int
453 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
454 {
455 struct timeval atv;
456 int error = 0;
457
458 extern int64_t time_adjtime; /* in kern_ntptime.c */
459
460 if (olddelta) {
461 mutex_spin_enter(&timecounter_lock);
462 atv.tv_sec = time_adjtime / 1000000;
463 atv.tv_usec = time_adjtime % 1000000;
464 mutex_spin_exit(&timecounter_lock);
465 if (atv.tv_usec < 0) {
466 atv.tv_usec += 1000000;
467 atv.tv_sec--;
468 }
469 error = copyout(&atv, olddelta, sizeof(struct timeval));
470 if (error)
471 return (error);
472 }
473
474 if (delta) {
475 error = copyin(delta, &atv, sizeof(struct timeval));
476 if (error)
477 return (error);
478
479 mutex_spin_enter(&timecounter_lock);
480 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
481 atv.tv_usec;
482 if (time_adjtime) {
483 /* We need to save the system time during shutdown */
484 time_adjusted |= 1;
485 }
486 mutex_spin_exit(&timecounter_lock);
487 }
488
489 return error;
490 }
491
492 /*
493 * Interval timer support. Both the BSD getitimer() family and the POSIX
494 * timer_*() family of routines are supported.
495 *
496 * All timers are kept in an array pointed to by p_timers, which is
497 * allocated on demand - many processes don't use timers at all. The
498 * first three elements in this array are reserved for the BSD timers:
499 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
500 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
501 * syscall.
502 *
503 * Realtime timers are kept in the ptimer structure as an absolute
504 * time; virtual time timers are kept as a linked list of deltas.
505 * Virtual time timers are processed in the hardclock() routine of
506 * kern_clock.c. The real time timer is processed by a callout
507 * routine, called from the softclock() routine. Since a callout may
508 * be delayed in real time due to interrupt processing in the system,
509 * it is possible for the real time timeout routine (realtimeexpire,
510 * given below), to be delayed in real time past when it is supposed
511 * to occur. It does not suffice, therefore, to reload the real timer
512 * .it_value from the real time timers .it_interval. Rather, we
513 * compute the next time in absolute time the timer should go off. */
514
515 /* Allocate a POSIX realtime timer. */
516 int
517 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
518 register_t *retval)
519 {
520 /* {
521 syscallarg(clockid_t) clock_id;
522 syscallarg(struct sigevent *) evp;
523 syscallarg(timer_t *) timerid;
524 } */
525
526 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
527 SCARG(uap, evp), copyin, l);
528 }
529
530 int
531 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
532 copyin_t fetch_event, struct lwp *l)
533 {
534 int error;
535 timer_t timerid;
536 struct ptimers *pts;
537 struct ptimer *pt;
538 struct proc *p;
539
540 p = l->l_proc;
541
542 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
543 return (EINVAL);
544
545 if ((pts = p->p_timers) == NULL)
546 pts = timers_alloc(p);
547
548 pt = pool_get(&ptimer_pool, PR_WAITOK);
549 if (evp != NULL) {
550 if (((error =
551 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
552 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
553 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
554 pool_put(&ptimer_pool, pt);
555 return (error ? error : EINVAL);
556 }
557 }
558
559 /* Find a free timer slot, skipping those reserved for setitimer(). */
560 mutex_spin_enter(&timer_lock);
561 for (timerid = 3; timerid < TIMER_MAX; timerid++)
562 if (pts->pts_timers[timerid] == NULL)
563 break;
564 if (timerid == TIMER_MAX) {
565 mutex_spin_exit(&timer_lock);
566 pool_put(&ptimer_pool, pt);
567 return EAGAIN;
568 }
569 if (evp == NULL) {
570 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
571 switch (id) {
572 case CLOCK_REALTIME:
573 pt->pt_ev.sigev_signo = SIGALRM;
574 break;
575 case CLOCK_VIRTUAL:
576 pt->pt_ev.sigev_signo = SIGVTALRM;
577 break;
578 case CLOCK_PROF:
579 pt->pt_ev.sigev_signo = SIGPROF;
580 break;
581 }
582 pt->pt_ev.sigev_value.sival_int = timerid;
583 }
584 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
585 pt->pt_info.ksi_errno = 0;
586 pt->pt_info.ksi_code = 0;
587 pt->pt_info.ksi_pid = p->p_pid;
588 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
589 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
590 pt->pt_type = id;
591 pt->pt_proc = p;
592 pt->pt_overruns = 0;
593 pt->pt_poverruns = 0;
594 pt->pt_entry = timerid;
595 pt->pt_queued = false;
596 pt->pt_active = 0;
597 timerclear(&pt->pt_time.it_value);
598 callout_init(&pt->pt_ch, 0);
599 pts->pts_timers[timerid] = pt;
600 mutex_spin_exit(&timer_lock);
601
602 return copyout(&timerid, tid, sizeof(timerid));
603 }
604
605 /* Delete a POSIX realtime timer */
606 int
607 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
608 register_t *retval)
609 {
610 /* {
611 syscallarg(timer_t) timerid;
612 } */
613 struct proc *p = l->l_proc;
614 timer_t timerid;
615 struct ptimers *pts;
616 struct ptimer *pt, *ptn;
617
618 timerid = SCARG(uap, timerid);
619 pts = p->p_timers;
620
621 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
622 return (EINVAL);
623
624 mutex_spin_enter(&timer_lock);
625 if ((pt = pts->pts_timers[timerid]) == NULL) {
626 mutex_spin_exit(&timer_lock);
627 return (EINVAL);
628 }
629 if (pt->pt_active) {
630 ptn = LIST_NEXT(pt, pt_list);
631 LIST_REMOVE(pt, pt_list);
632 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
633 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
634 &ptn->pt_time.it_value);
635 pt->pt_active = 0;
636 }
637 itimerfree(pts, timerid);
638
639 return (0);
640 }
641
642 /*
643 * Set up the given timer. The value in pt->pt_time.it_value is taken
644 * to be an absolute time for CLOCK_REALTIME timers and a relative
645 * time for virtual timers.
646 * Must be called at splclock().
647 */
648 void
649 timer_settime(struct ptimer *pt)
650 {
651 struct ptimer *ptn, *pptn;
652 struct ptlist *ptl;
653
654 KASSERT(mutex_owned(&timer_lock));
655
656 if (pt->pt_type == CLOCK_REALTIME) {
657 callout_stop(&pt->pt_ch);
658 if (timerisset(&pt->pt_time.it_value)) {
659 /*
660 * Don't need to check hzto() return value, here.
661 * callout_reset() does it for us.
662 */
663 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
664 realtimerexpire, pt);
665 }
666 } else {
667 if (pt->pt_active) {
668 ptn = LIST_NEXT(pt, pt_list);
669 LIST_REMOVE(pt, pt_list);
670 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
671 timeradd(&pt->pt_time.it_value,
672 &ptn->pt_time.it_value,
673 &ptn->pt_time.it_value);
674 }
675 if (timerisset(&pt->pt_time.it_value)) {
676 if (pt->pt_type == CLOCK_VIRTUAL)
677 ptl = &pt->pt_proc->p_timers->pts_virtual;
678 else
679 ptl = &pt->pt_proc->p_timers->pts_prof;
680
681 for (ptn = LIST_FIRST(ptl), pptn = NULL;
682 ptn && timercmp(&pt->pt_time.it_value,
683 &ptn->pt_time.it_value, >);
684 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
685 timersub(&pt->pt_time.it_value,
686 &ptn->pt_time.it_value,
687 &pt->pt_time.it_value);
688
689 if (pptn)
690 LIST_INSERT_AFTER(pptn, pt, pt_list);
691 else
692 LIST_INSERT_HEAD(ptl, pt, pt_list);
693
694 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
695 timersub(&ptn->pt_time.it_value,
696 &pt->pt_time.it_value,
697 &ptn->pt_time.it_value);
698
699 pt->pt_active = 1;
700 } else
701 pt->pt_active = 0;
702 }
703 }
704
705 void
706 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
707 {
708 struct timeval now;
709 struct ptimer *ptn;
710
711 KASSERT(mutex_owned(&timer_lock));
712
713 *aitv = pt->pt_time;
714 if (pt->pt_type == CLOCK_REALTIME) {
715 /*
716 * Convert from absolute to relative time in .it_value
717 * part of real time timer. If time for real time
718 * timer has passed return 0, else return difference
719 * between current time and time for the timer to go
720 * off.
721 */
722 if (timerisset(&aitv->it_value)) {
723 getmicrotime(&now);
724 if (timercmp(&aitv->it_value, &now, <))
725 timerclear(&aitv->it_value);
726 else
727 timersub(&aitv->it_value, &now,
728 &aitv->it_value);
729 }
730 } else if (pt->pt_active) {
731 if (pt->pt_type == CLOCK_VIRTUAL)
732 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
733 else
734 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
735 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
736 timeradd(&aitv->it_value,
737 &ptn->pt_time.it_value, &aitv->it_value);
738 KASSERT(ptn != NULL); /* pt should be findable on the list */
739 } else
740 timerclear(&aitv->it_value);
741 }
742
743
744
745 /* Set and arm a POSIX realtime timer */
746 int
747 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
748 register_t *retval)
749 {
750 /* {
751 syscallarg(timer_t) timerid;
752 syscallarg(int) flags;
753 syscallarg(const struct itimerspec *) value;
754 syscallarg(struct itimerspec *) ovalue;
755 } */
756 int error;
757 struct itimerspec value, ovalue, *ovp = NULL;
758
759 if ((error = copyin(SCARG(uap, value), &value,
760 sizeof(struct itimerspec))) != 0)
761 return (error);
762
763 if (SCARG(uap, ovalue))
764 ovp = &ovalue;
765
766 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
767 SCARG(uap, flags), l->l_proc)) != 0)
768 return error;
769
770 if (ovp)
771 return copyout(&ovalue, SCARG(uap, ovalue),
772 sizeof(struct itimerspec));
773 return 0;
774 }
775
776 int
777 dotimer_settime(int timerid, struct itimerspec *value,
778 struct itimerspec *ovalue, int flags, struct proc *p)
779 {
780 struct timeval now;
781 struct itimerval val, oval;
782 struct ptimers *pts;
783 struct ptimer *pt;
784
785 pts = p->p_timers;
786
787 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
788 return EINVAL;
789 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
790 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
791 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
792 return (EINVAL);
793
794 mutex_spin_enter(&timer_lock);
795 if ((pt = pts->pts_timers[timerid]) == NULL) {
796 mutex_spin_exit(&timer_lock);
797 return (EINVAL);
798 }
799
800 oval = pt->pt_time;
801 pt->pt_time = val;
802
803 /*
804 * If we've been passed a relative time for a realtime timer,
805 * convert it to absolute; if an absolute time for a virtual
806 * timer, convert it to relative and make sure we don't set it
807 * to zero, which would cancel the timer, or let it go
808 * negative, which would confuse the comparison tests.
809 */
810 if (timerisset(&pt->pt_time.it_value)) {
811 if (pt->pt_type == CLOCK_REALTIME) {
812 if ((flags & TIMER_ABSTIME) == 0) {
813 getmicrotime(&now);
814 timeradd(&pt->pt_time.it_value, &now,
815 &pt->pt_time.it_value);
816 }
817 } else {
818 if ((flags & TIMER_ABSTIME) != 0) {
819 getmicrotime(&now);
820 timersub(&pt->pt_time.it_value, &now,
821 &pt->pt_time.it_value);
822 if (!timerisset(&pt->pt_time.it_value) ||
823 pt->pt_time.it_value.tv_sec < 0) {
824 pt->pt_time.it_value.tv_sec = 0;
825 pt->pt_time.it_value.tv_usec = 1;
826 }
827 }
828 }
829 }
830
831 timer_settime(pt);
832 mutex_spin_exit(&timer_lock);
833
834 if (ovalue) {
835 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
836 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
837 }
838
839 return (0);
840 }
841
842 /* Return the time remaining until a POSIX timer fires. */
843 int
844 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
845 register_t *retval)
846 {
847 /* {
848 syscallarg(timer_t) timerid;
849 syscallarg(struct itimerspec *) value;
850 } */
851 struct itimerspec its;
852 int error;
853
854 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
855 &its)) != 0)
856 return error;
857
858 return copyout(&its, SCARG(uap, value), sizeof(its));
859 }
860
861 int
862 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
863 {
864 struct ptimer *pt;
865 struct ptimers *pts;
866 struct itimerval aitv;
867
868 pts = p->p_timers;
869 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
870 return (EINVAL);
871 mutex_spin_enter(&timer_lock);
872 if ((pt = pts->pts_timers[timerid]) == NULL) {
873 mutex_spin_exit(&timer_lock);
874 return (EINVAL);
875 }
876 timer_gettime(pt, &aitv);
877 mutex_spin_exit(&timer_lock);
878
879 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
880 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
881
882 return 0;
883 }
884
885 /*
886 * Return the count of the number of times a periodic timer expired
887 * while a notification was already pending. The counter is reset when
888 * a timer expires and a notification can be posted.
889 */
890 int
891 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
892 register_t *retval)
893 {
894 /* {
895 syscallarg(timer_t) timerid;
896 } */
897 struct proc *p = l->l_proc;
898 struct ptimers *pts;
899 int timerid;
900 struct ptimer *pt;
901
902 timerid = SCARG(uap, timerid);
903
904 pts = p->p_timers;
905 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
906 return (EINVAL);
907 mutex_spin_enter(&timer_lock);
908 if ((pt = pts->pts_timers[timerid]) == NULL) {
909 mutex_spin_exit(&timer_lock);
910 return (EINVAL);
911 }
912 *retval = pt->pt_poverruns;
913 mutex_spin_exit(&timer_lock);
914
915 return (0);
916 }
917
918 /* Glue function that triggers an upcall; called from userret(). */
919 void
920 timerupcall(struct lwp *l)
921 {
922 struct ptimers *pt = l->l_proc->p_timers;
923 struct proc *p = l->l_proc;
924 unsigned int i, fired, done;
925
926 KDASSERT(l->l_proc->p_sa);
927 /* Bail out if we do not own the virtual processor */
928 if (l->l_savp->savp_lwp != l)
929 return ;
930
931 mutex_enter(&p->p_sa->sa_mutex);
932 mutex_enter(p->p_lock);
933
934 fired = pt->pts_fired;
935 done = 0;
936 while ((i = ffs(fired)) != 0) {
937 siginfo_t *si;
938 int mask = 1 << --i;
939 int f;
940
941 lwp_lock(l);
942 f = l->l_flag & LW_SA;
943 l->l_flag &= ~LW_SA;
944 lwp_unlock(l);
945 si = siginfo_alloc(PR_WAITOK);
946 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
947 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
948 sizeof(*si), si, siginfo_free) != 0) {
949 siginfo_free(si);
950 /* XXX What do we do here?? */
951 } else
952 done |= mask;
953 fired &= ~mask;
954 lwp_lock(l);
955 l->l_flag |= f;
956 lwp_unlock(l);
957 }
958 pt->pts_fired &= ~done;
959 if (pt->pts_fired == 0)
960 l->l_proc->p_timerpend = 0;
961
962 mutex_exit(p->p_lock);
963 mutex_exit(&p->p_sa->sa_mutex);
964 }
965
966 /*
967 * Real interval timer expired:
968 * send process whose timer expired an alarm signal.
969 * If time is not set up to reload, then just return.
970 * Else compute next time timer should go off which is > current time.
971 * This is where delay in processing this timeout causes multiple
972 * SIGALRM calls to be compressed into one.
973 */
974 void
975 realtimerexpire(void *arg)
976 {
977 struct timeval now;
978 struct ptimer *pt;
979
980 pt = arg;
981
982 mutex_spin_enter(&timer_lock);
983 itimerfire(pt);
984
985 if (!timerisset(&pt->pt_time.it_interval)) {
986 timerclear(&pt->pt_time.it_value);
987 mutex_spin_exit(&timer_lock);
988 return;
989 }
990 for (;;) {
991 timeradd(&pt->pt_time.it_value,
992 &pt->pt_time.it_interval, &pt->pt_time.it_value);
993 getmicrotime(&now);
994 if (timercmp(&pt->pt_time.it_value, &now, >)) {
995 /*
996 * Don't need to check hzto() return value, here.
997 * callout_reset() does it for us.
998 */
999 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1000 realtimerexpire, pt);
1001 mutex_spin_exit(&timer_lock);
1002 return;
1003 }
1004 mutex_spin_exit(&timer_lock);
1005 pt->pt_overruns++;
1006 mutex_spin_enter(&timer_lock);
1007 }
1008 }
1009
1010 /* BSD routine to get the value of an interval timer. */
1011 /* ARGSUSED */
1012 int
1013 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
1014 register_t *retval)
1015 {
1016 /* {
1017 syscallarg(int) which;
1018 syscallarg(struct itimerval *) itv;
1019 } */
1020 struct proc *p = l->l_proc;
1021 struct itimerval aitv;
1022 int error;
1023
1024 error = dogetitimer(p, SCARG(uap, which), &aitv);
1025 if (error)
1026 return error;
1027 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1028 }
1029
1030 int
1031 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1032 {
1033 struct ptimers *pts;
1034 struct ptimer *pt;
1035
1036 if ((u_int)which > ITIMER_PROF)
1037 return (EINVAL);
1038
1039 mutex_spin_enter(&timer_lock);
1040 pts = p->p_timers;
1041 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1042 timerclear(&itvp->it_value);
1043 timerclear(&itvp->it_interval);
1044 } else
1045 timer_gettime(pt, itvp);
1046 mutex_spin_exit(&timer_lock);
1047
1048 return 0;
1049 }
1050
1051 /* BSD routine to set/arm an interval timer. */
1052 /* ARGSUSED */
1053 int
1054 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1055 register_t *retval)
1056 {
1057 /* {
1058 syscallarg(int) which;
1059 syscallarg(const struct itimerval *) itv;
1060 syscallarg(struct itimerval *) oitv;
1061 } */
1062 struct proc *p = l->l_proc;
1063 int which = SCARG(uap, which);
1064 struct sys_getitimer_args getargs;
1065 const struct itimerval *itvp;
1066 struct itimerval aitv;
1067 int error;
1068
1069 if ((u_int)which > ITIMER_PROF)
1070 return (EINVAL);
1071 itvp = SCARG(uap, itv);
1072 if (itvp &&
1073 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1074 return (error);
1075 if (SCARG(uap, oitv) != NULL) {
1076 SCARG(&getargs, which) = which;
1077 SCARG(&getargs, itv) = SCARG(uap, oitv);
1078 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1079 return (error);
1080 }
1081 if (itvp == 0)
1082 return (0);
1083
1084 return dosetitimer(p, which, &aitv);
1085 }
1086
1087 int
1088 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1089 {
1090 struct timeval now;
1091 struct ptimers *pts;
1092 struct ptimer *pt, *spare;
1093
1094 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1095 return (EINVAL);
1096
1097 /*
1098 * Don't bother allocating data structures if the process just
1099 * wants to clear the timer.
1100 */
1101 spare = NULL;
1102 pts = p->p_timers;
1103 retry:
1104 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1105 pts->pts_timers[which] == NULL))
1106 return (0);
1107 if (pts == NULL)
1108 pts = timers_alloc(p);
1109 mutex_spin_enter(&timer_lock);
1110 pt = pts->pts_timers[which];
1111 if (pt == NULL) {
1112 if (spare == NULL) {
1113 mutex_spin_exit(&timer_lock);
1114 spare = pool_get(&ptimer_pool, PR_WAITOK);
1115 goto retry;
1116 }
1117 pt = spare;
1118 spare = NULL;
1119 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1120 pt->pt_ev.sigev_value.sival_int = which;
1121 pt->pt_overruns = 0;
1122 pt->pt_proc = p;
1123 pt->pt_type = which;
1124 pt->pt_entry = which;
1125 pt->pt_active = 0;
1126 pt->pt_queued = false;
1127 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1128 switch (which) {
1129 case ITIMER_REAL:
1130 pt->pt_ev.sigev_signo = SIGALRM;
1131 break;
1132 case ITIMER_VIRTUAL:
1133 pt->pt_ev.sigev_signo = SIGVTALRM;
1134 break;
1135 case ITIMER_PROF:
1136 pt->pt_ev.sigev_signo = SIGPROF;
1137 break;
1138 }
1139 pts->pts_timers[which] = pt;
1140 }
1141 pt->pt_time = *itvp;
1142
1143 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1144 /* Convert to absolute time */
1145 /* XXX need to wrap in splclock for timecounters case? */
1146 getmicrotime(&now);
1147 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1148 }
1149 timer_settime(pt);
1150 mutex_spin_exit(&timer_lock);
1151 if (spare != NULL)
1152 pool_put(&ptimer_pool, spare);
1153
1154 return (0);
1155 }
1156
1157 /* Utility routines to manage the array of pointers to timers. */
1158 struct ptimers *
1159 timers_alloc(struct proc *p)
1160 {
1161 struct ptimers *pts;
1162 int i;
1163
1164 pts = pool_get(&ptimers_pool, PR_WAITOK);
1165 LIST_INIT(&pts->pts_virtual);
1166 LIST_INIT(&pts->pts_prof);
1167 for (i = 0; i < TIMER_MAX; i++)
1168 pts->pts_timers[i] = NULL;
1169 pts->pts_fired = 0;
1170 mutex_spin_enter(&timer_lock);
1171 if (p->p_timers == NULL) {
1172 p->p_timers = pts;
1173 mutex_spin_exit(&timer_lock);
1174 return pts;
1175 }
1176 mutex_spin_exit(&timer_lock);
1177 pool_put(&ptimers_pool, pts);
1178 return p->p_timers;
1179 }
1180
1181 /*
1182 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1183 * then clean up all timers and free all the data structures. If
1184 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1185 * by timer_create(), not the BSD setitimer() timers, and only free the
1186 * structure if none of those remain.
1187 */
1188 void
1189 timers_free(struct proc *p, int which)
1190 {
1191 struct ptimers *pts;
1192 struct ptimer *ptn;
1193 struct timeval tv;
1194 int i;
1195
1196 if (p->p_timers == NULL)
1197 return;
1198
1199 pts = p->p_timers;
1200 mutex_spin_enter(&timer_lock);
1201 if (which == TIMERS_ALL) {
1202 p->p_timers = NULL;
1203 i = 0;
1204 } else {
1205 timerclear(&tv);
1206 for (ptn = LIST_FIRST(&pts->pts_virtual);
1207 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1208 ptn = LIST_NEXT(ptn, pt_list))
1209 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1210 LIST_FIRST(&pts->pts_virtual) = NULL;
1211 if (ptn) {
1212 timeradd(&tv, &ptn->pt_time.it_value,
1213 &ptn->pt_time.it_value);
1214 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1215 }
1216 timerclear(&tv);
1217 for (ptn = LIST_FIRST(&pts->pts_prof);
1218 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1219 ptn = LIST_NEXT(ptn, pt_list))
1220 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1221 LIST_FIRST(&pts->pts_prof) = NULL;
1222 if (ptn) {
1223 timeradd(&tv, &ptn->pt_time.it_value,
1224 &ptn->pt_time.it_value);
1225 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1226 }
1227 i = 3;
1228 }
1229 for ( ; i < TIMER_MAX; i++) {
1230 if (pts->pts_timers[i] != NULL) {
1231 itimerfree(pts, i);
1232 mutex_spin_enter(&timer_lock);
1233 }
1234 }
1235 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1236 pts->pts_timers[2] == NULL) {
1237 p->p_timers = NULL;
1238 mutex_spin_exit(&timer_lock);
1239 pool_put(&ptimers_pool, pts);
1240 } else
1241 mutex_spin_exit(&timer_lock);
1242 }
1243
1244 static void
1245 itimerfree(struct ptimers *pts, int index)
1246 {
1247 struct ptimer *pt;
1248
1249 KASSERT(mutex_owned(&timer_lock));
1250
1251 pt = pts->pts_timers[index];
1252 pts->pts_timers[index] = NULL;
1253 if (pt->pt_type == CLOCK_REALTIME)
1254 callout_halt(&pt->pt_ch, &timer_lock);
1255 else if (pt->pt_queued)
1256 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1257 mutex_spin_exit(&timer_lock);
1258 callout_destroy(&pt->pt_ch);
1259 pool_put(&ptimer_pool, pt);
1260 }
1261
1262 /*
1263 * Decrement an interval timer by a specified number
1264 * of microseconds, which must be less than a second,
1265 * i.e. < 1000000. If the timer expires, then reload
1266 * it. In this case, carry over (usec - old value) to
1267 * reduce the value reloaded into the timer so that
1268 * the timer does not drift. This routine assumes
1269 * that it is called in a context where the timers
1270 * on which it is operating cannot change in value.
1271 */
1272 static int
1273 itimerdecr(struct ptimer *pt, int usec)
1274 {
1275 struct itimerval *itp;
1276
1277 KASSERT(mutex_owned(&timer_lock));
1278
1279 itp = &pt->pt_time;
1280 if (itp->it_value.tv_usec < usec) {
1281 if (itp->it_value.tv_sec == 0) {
1282 /* expired, and already in next interval */
1283 usec -= itp->it_value.tv_usec;
1284 goto expire;
1285 }
1286 itp->it_value.tv_usec += 1000000;
1287 itp->it_value.tv_sec--;
1288 }
1289 itp->it_value.tv_usec -= usec;
1290 usec = 0;
1291 if (timerisset(&itp->it_value))
1292 return (1);
1293 /* expired, exactly at end of interval */
1294 expire:
1295 if (timerisset(&itp->it_interval)) {
1296 itp->it_value = itp->it_interval;
1297 itp->it_value.tv_usec -= usec;
1298 if (itp->it_value.tv_usec < 0) {
1299 itp->it_value.tv_usec += 1000000;
1300 itp->it_value.tv_sec--;
1301 }
1302 timer_settime(pt);
1303 } else
1304 itp->it_value.tv_usec = 0; /* sec is already 0 */
1305 return (0);
1306 }
1307
1308 static void
1309 itimerfire(struct ptimer *pt)
1310 {
1311
1312 KASSERT(mutex_owned(&timer_lock));
1313
1314 /*
1315 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1316 * XXX Relying on the clock interrupt is stupid.
1317 */
1318 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1319 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1320 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1321 return;
1322 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1323 pt->pt_queued = true;
1324 softint_schedule(timer_sih);
1325 }
1326
1327 void
1328 timer_tick(lwp_t *l, bool user)
1329 {
1330 struct ptimers *pts;
1331 struct ptimer *pt;
1332 proc_t *p;
1333
1334 p = l->l_proc;
1335 if (p->p_timers == NULL)
1336 return;
1337
1338 mutex_spin_enter(&timer_lock);
1339 if ((pts = l->l_proc->p_timers) != NULL) {
1340 /*
1341 * Run current process's virtual and profile time, as needed.
1342 */
1343 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1344 if (itimerdecr(pt, tick) == 0)
1345 itimerfire(pt);
1346 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1347 if (itimerdecr(pt, tick) == 0)
1348 itimerfire(pt);
1349 }
1350 mutex_spin_exit(&timer_lock);
1351 }
1352
1353 /*
1354 * timer_sa_intr:
1355 *
1356 * SIGEV_SA handling for timer_intr(). We are called (and return)
1357 * with the timer lock held. We know that the process had SA enabled
1358 * when this timer was enqueued. As timer_intr() is a soft interrupt
1359 * handler, SA should still be enabled by the time we get here.
1360 *
1361 * XXX Is it legit to lock p_lock and the lwp at this time?
1362 */
1363 static void
1364 timer_sa_intr(struct ptimer *pt, proc_t *p)
1365 {
1366 unsigned int i;
1367 struct sadata_vp *vp;
1368
1369 /* Cause the process to generate an upcall when it returns. */
1370 if (!p->p_timerpend) {
1371 /*
1372 * XXX stop signals can be processed inside tsleep,
1373 * which can be inside sa_yield's inner loop, which
1374 * makes testing for sa_idle alone insuffucent to
1375 * determine if we really should call setrunnable.
1376 */
1377 pt->pt_poverruns = pt->pt_overruns;
1378 pt->pt_overruns = 0;
1379 i = 1 << pt->pt_entry;
1380 p->p_timers->pts_fired = i;
1381 p->p_timerpend = 1;
1382
1383 mutex_enter(p->p_lock);
1384 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1385 lwp_need_userret(vp->savp_lwp);
1386 lwp_lock(vp->savp_lwp);
1387 if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
1388 vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
1389 lwp_unlock(vp->savp_lwp);
1390 wakeup(vp->savp_lwp);
1391 break;
1392 }
1393 lwp_unlock(vp->savp_lwp);
1394 }
1395 mutex_exit(p->p_lock);
1396 } else {
1397 i = 1 << pt->pt_entry;
1398 if ((p->p_timers->pts_fired & i) == 0) {
1399 pt->pt_poverruns = pt->pt_overruns;
1400 pt->pt_overruns = 0;
1401 p->p_timers->pts_fired |= i;
1402 } else
1403 pt->pt_overruns++;
1404 }
1405 }
1406
1407 static void
1408 timer_intr(void *cookie)
1409 {
1410 ksiginfo_t ksi;
1411 struct ptimer *pt;
1412 proc_t *p;
1413
1414 mutex_spin_enter(&timer_lock);
1415 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1416 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1417 KASSERT(pt->pt_queued);
1418 pt->pt_queued = false;
1419
1420 if (pt->pt_proc->p_timers == NULL) {
1421 /* Process is dying. */
1422 continue;
1423 }
1424 p = pt->pt_proc;
1425 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1426 timer_sa_intr(pt, p);
1427 continue;
1428 }
1429 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1430 continue;
1431 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1432 pt->pt_overruns++;
1433 continue;
1434 }
1435
1436 KSI_INIT(&ksi);
1437 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1438 ksi.ksi_code = SI_TIMER;
1439 ksi.ksi_value = pt->pt_ev.sigev_value;
1440 pt->pt_poverruns = pt->pt_overruns;
1441 pt->pt_overruns = 0;
1442 mutex_spin_exit(&timer_lock);
1443
1444 mutex_enter(proc_lock);
1445 kpsignal(p, &ksi, NULL);
1446 mutex_exit(proc_lock);
1447
1448 mutex_spin_enter(&timer_lock);
1449 }
1450 mutex_spin_exit(&timer_lock);
1451 }
1452
1453 /*
1454 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1455 * for usage and rationale.
1456 */
1457 int
1458 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1459 {
1460 struct timeval tv, delta;
1461 int rv = 0;
1462
1463 getmicrouptime(&tv);
1464 timersub(&tv, lasttime, &delta);
1465
1466 /*
1467 * check for 0,0 is so that the message will be seen at least once,
1468 * even if interval is huge.
1469 */
1470 if (timercmp(&delta, mininterval, >=) ||
1471 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1472 *lasttime = tv;
1473 rv = 1;
1474 }
1475
1476 return (rv);
1477 }
1478
1479 /*
1480 * ppsratecheck(): packets (or events) per second limitation.
1481 */
1482 int
1483 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1484 {
1485 struct timeval tv, delta;
1486 int rv;
1487
1488 getmicrouptime(&tv);
1489 timersub(&tv, lasttime, &delta);
1490
1491 /*
1492 * check for 0,0 is so that the message will be seen at least once.
1493 * if more than one second have passed since the last update of
1494 * lasttime, reset the counter.
1495 *
1496 * we do increment *curpps even in *curpps < maxpps case, as some may
1497 * try to use *curpps for stat purposes as well.
1498 */
1499 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1500 delta.tv_sec >= 1) {
1501 *lasttime = tv;
1502 *curpps = 0;
1503 }
1504 if (maxpps < 0)
1505 rv = 1;
1506 else if (*curpps < maxpps)
1507 rv = 1;
1508 else
1509 rv = 0;
1510
1511 #if 1 /*DIAGNOSTIC?*/
1512 /* be careful about wrap-around */
1513 if (*curpps + 1 > *curpps)
1514 *curpps = *curpps + 1;
1515 #else
1516 /*
1517 * assume that there's not too many calls to this function.
1518 * not sure if the assumption holds, as it depends on *caller's*
1519 * behavior, not the behavior of this function.
1520 * IMHO it is wrong to make assumption on the caller's behavior,
1521 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1522 */
1523 *curpps = *curpps + 1;
1524 #endif
1525
1526 return (rv);
1527 }
1528