kern_time.c revision 1.148 1 /* $NetBSD: kern_time.c,v 1.148 2008/05/29 15:27:51 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.148 2008/05/29 15:27:51 joerg Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 #include <uvm/uvm_extern.h>
82
83 static void timer_intr(void *);
84 static void itimerfire(struct ptimer *);
85 static void itimerfree(struct ptimers *, int);
86
87 kmutex_t timer_lock;
88
89 static void *timer_sih;
90 static TAILQ_HEAD(, ptimer) timer_queue;
91
92 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
93 &pool_allocator_nointr, IPL_NONE);
94 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
95 &pool_allocator_nointr, IPL_NONE);
96
97 /*
98 * Initialize timekeeping.
99 */
100 void
101 time_init(void)
102 {
103
104 /* nothing yet */
105 }
106
107 void
108 time_init2(void)
109 {
110
111 TAILQ_INIT(&timer_queue);
112 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
113 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
114 timer_intr, NULL);
115 }
116
117 /* Time of day and interval timer support.
118 *
119 * These routines provide the kernel entry points to get and set
120 * the time-of-day and per-process interval timers. Subroutines
121 * here provide support for adding and subtracting timeval structures
122 * and decrementing interval timers, optionally reloading the interval
123 * timers when they expire.
124 */
125
126 /* This function is used by clock_settime and settimeofday */
127 static int
128 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
129 {
130 struct timeval delta, tv;
131 struct timeval now;
132 struct timespec ts1;
133 struct bintime btdelta;
134 lwp_t *l;
135 int s;
136
137 TIMESPEC_TO_TIMEVAL(&tv, ts);
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 microtime(&now);
142 timersub(&tv, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
146 KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159 tc_setclock(&ts1);
160
161 timeradd(&boottime, &delta, &boottime);
162
163 /*
164 * XXXSMP: There is a short race between setting the time above
165 * and adjusting LWP's run times. Fixing this properly means
166 * pausing all CPUs while we adjust the clock.
167 */
168 timeval2bintime(&delta, &btdelta);
169 mutex_enter(proc_lock);
170 LIST_FOREACH(l, &alllwp, l_list) {
171 lwp_lock(l);
172 bintime_add(&l->l_stime, &btdelta);
173 lwp_unlock(l);
174 }
175 mutex_exit(proc_lock);
176 resettodr();
177 splx(s);
178
179 return (0);
180 }
181
182 int
183 settime(struct proc *p, struct timespec *ts)
184 {
185 return (settime1(p, ts, true));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
191 register_t *retval)
192 {
193 /* {
194 syscallarg(clockid_t) clock_id;
195 syscallarg(struct timespec *) tp;
196 } */
197 clockid_t clock_id;
198 struct timespec ats;
199
200 clock_id = SCARG(uap, clock_id);
201 switch (clock_id) {
202 case CLOCK_REALTIME:
203 nanotime(&ats);
204 break;
205 case CLOCK_MONOTONIC:
206 nanouptime(&ats);
207 break;
208 default:
209 return (EINVAL);
210 }
211
212 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
213 }
214
215 /* ARGSUSED */
216 int
217 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
218 register_t *retval)
219 {
220 /* {
221 syscallarg(clockid_t) clock_id;
222 syscallarg(const struct timespec *) tp;
223 } */
224
225 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226 true);
227 }
228
229
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 bool check_kauth)
233 {
234 struct timespec ats;
235 int error;
236
237 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238 return (error);
239
240 switch (clock_id) {
241 case CLOCK_REALTIME:
242 if ((error = settime1(p, &ats, check_kauth)) != 0)
243 return (error);
244 break;
245 case CLOCK_MONOTONIC:
246 return (EINVAL); /* read-only clock */
247 default:
248 return (EINVAL);
249 }
250
251 return 0;
252 }
253
254 int
255 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
256 register_t *retval)
257 {
258 /* {
259 syscallarg(clockid_t) clock_id;
260 syscallarg(struct timespec *) tp;
261 } */
262 clockid_t clock_id;
263 struct timespec ts;
264 int error = 0;
265
266 clock_id = SCARG(uap, clock_id);
267 switch (clock_id) {
268 case CLOCK_REALTIME:
269 case CLOCK_MONOTONIC:
270 ts.tv_sec = 0;
271 if (tc_getfrequency() > 1000000000)
272 ts.tv_nsec = 1;
273 else
274 ts.tv_nsec = 1000000000 / tc_getfrequency();
275 break;
276 default:
277 return (EINVAL);
278 }
279
280 if (SCARG(uap, tp))
281 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
282
283 return error;
284 }
285
286 /* ARGSUSED */
287 int
288 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
289 register_t *retval)
290 {
291 /* {
292 syscallarg(struct timespec *) rqtp;
293 syscallarg(struct timespec *) rmtp;
294 } */
295 struct timespec rmt, rqt;
296 int error, error1;
297
298 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
299 if (error)
300 return (error);
301
302 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
303 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
304 return error;
305
306 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
307 return error1 ? error1 : error;
308 }
309
310 int
311 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
312 {
313 struct timespec rmtstart;
314 int error, timo;
315
316 if (itimespecfix(rqt))
317 return (EINVAL);
318
319 timo = tstohz(rqt);
320 /*
321 * Avoid inadvertantly sleeping forever
322 */
323 if (timo == 0)
324 timo = 1;
325 getnanouptime(&rmtstart);
326 again:
327 error = kpause("nanoslp", true, timo, NULL);
328 if (rmt != NULL || error == 0) {
329 struct timespec rmtend;
330 struct timespec t0;
331 struct timespec *t;
332
333 getnanouptime(&rmtend);
334 t = (rmt != NULL) ? rmt : &t0;
335 timespecsub(&rmtend, &rmtstart, t);
336 timespecsub(rqt, t, t);
337 if (t->tv_sec < 0)
338 timespecclear(t);
339 if (error == 0) {
340 timo = tstohz(t);
341 if (timo > 0)
342 goto again;
343 }
344 }
345
346 if (error == ERESTART)
347 error = EINTR;
348 if (error == EWOULDBLOCK)
349 error = 0;
350
351 return error;
352 }
353
354 /* ARGSUSED */
355 int
356 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
357 register_t *retval)
358 {
359 /* {
360 syscallarg(struct timeval *) tp;
361 syscallarg(void *) tzp; really "struct timezone *";
362 } */
363 struct timeval atv;
364 int error = 0;
365 struct timezone tzfake;
366
367 if (SCARG(uap, tp)) {
368 microtime(&atv);
369 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
370 if (error)
371 return (error);
372 }
373 if (SCARG(uap, tzp)) {
374 /*
375 * NetBSD has no kernel notion of time zone, so we just
376 * fake up a timezone struct and return it if demanded.
377 */
378 tzfake.tz_minuteswest = 0;
379 tzfake.tz_dsttime = 0;
380 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
381 }
382 return (error);
383 }
384
385 /* ARGSUSED */
386 int
387 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
388 register_t *retval)
389 {
390 /* {
391 syscallarg(const struct timeval *) tv;
392 syscallarg(const void *) tzp; really "const struct timezone *";
393 } */
394
395 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
396 }
397
398 int
399 settimeofday1(const struct timeval *utv, bool userspace,
400 const void *utzp, struct lwp *l, bool check_kauth)
401 {
402 struct timeval atv;
403 struct timespec ts;
404 int error;
405
406 /* Verify all parameters before changing time. */
407
408 /*
409 * NetBSD has no kernel notion of time zone, and only an
410 * obsolete program would try to set it, so we log a warning.
411 */
412 if (utzp)
413 log(LOG_WARNING, "pid %d attempted to set the "
414 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
415
416 if (utv == NULL)
417 return 0;
418
419 if (userspace) {
420 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
421 return error;
422 utv = &atv;
423 }
424
425 TIMEVAL_TO_TIMESPEC(utv, &ts);
426 return settime1(l->l_proc, &ts, check_kauth);
427 }
428
429 int time_adjusted; /* set if an adjustment is made */
430
431 /* ARGSUSED */
432 int
433 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
434 register_t *retval)
435 {
436 /* {
437 syscallarg(const struct timeval *) delta;
438 syscallarg(struct timeval *) olddelta;
439 } */
440 int error;
441
442 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
443 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
444 return (error);
445
446 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
447 }
448
449 int
450 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
451 {
452 struct timeval atv;
453 int error = 0;
454
455 extern int64_t time_adjtime; /* in kern_ntptime.c */
456
457 if (olddelta) {
458 mutex_spin_enter(&timecounter_lock);
459 atv.tv_sec = time_adjtime / 1000000;
460 atv.tv_usec = time_adjtime % 1000000;
461 mutex_spin_exit(&timecounter_lock);
462 if (atv.tv_usec < 0) {
463 atv.tv_usec += 1000000;
464 atv.tv_sec--;
465 }
466 error = copyout(&atv, olddelta, sizeof(struct timeval));
467 if (error)
468 return (error);
469 }
470
471 if (delta) {
472 error = copyin(delta, &atv, sizeof(struct timeval));
473 if (error)
474 return (error);
475
476 mutex_spin_enter(&timecounter_lock);
477 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
478 atv.tv_usec;
479 if (time_adjtime) {
480 /* We need to save the system time during shutdown */
481 time_adjusted |= 1;
482 }
483 mutex_spin_exit(&timecounter_lock);
484 }
485
486 return error;
487 }
488
489 /*
490 * Interval timer support. Both the BSD getitimer() family and the POSIX
491 * timer_*() family of routines are supported.
492 *
493 * All timers are kept in an array pointed to by p_timers, which is
494 * allocated on demand - many processes don't use timers at all. The
495 * first three elements in this array are reserved for the BSD timers:
496 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
497 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
498 * syscall.
499 *
500 * Realtime timers are kept in the ptimer structure as an absolute
501 * time; virtual time timers are kept as a linked list of deltas.
502 * Virtual time timers are processed in the hardclock() routine of
503 * kern_clock.c. The real time timer is processed by a callout
504 * routine, called from the softclock() routine. Since a callout may
505 * be delayed in real time due to interrupt processing in the system,
506 * it is possible for the real time timeout routine (realtimeexpire,
507 * given below), to be delayed in real time past when it is supposed
508 * to occur. It does not suffice, therefore, to reload the real timer
509 * .it_value from the real time timers .it_interval. Rather, we
510 * compute the next time in absolute time the timer should go off. */
511
512 /* Allocate a POSIX realtime timer. */
513 int
514 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
515 register_t *retval)
516 {
517 /* {
518 syscallarg(clockid_t) clock_id;
519 syscallarg(struct sigevent *) evp;
520 syscallarg(timer_t *) timerid;
521 } */
522
523 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
524 SCARG(uap, evp), copyin, l);
525 }
526
527 int
528 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
529 copyin_t fetch_event, struct lwp *l)
530 {
531 int error;
532 timer_t timerid;
533 struct ptimers *pts;
534 struct ptimer *pt;
535 struct proc *p;
536
537 p = l->l_proc;
538
539 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
540 return (EINVAL);
541
542 if ((pts = p->p_timers) == NULL)
543 pts = timers_alloc(p);
544
545 pt = pool_get(&ptimer_pool, PR_WAITOK);
546 if (evp != NULL) {
547 if (((error =
548 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
549 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
550 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
551 pool_put(&ptimer_pool, pt);
552 return (error ? error : EINVAL);
553 }
554 }
555
556 /* Find a free timer slot, skipping those reserved for setitimer(). */
557 mutex_spin_enter(&timer_lock);
558 for (timerid = 3; timerid < TIMER_MAX; timerid++)
559 if (pts->pts_timers[timerid] == NULL)
560 break;
561 if (timerid == TIMER_MAX) {
562 mutex_spin_exit(&timer_lock);
563 pool_put(&ptimer_pool, pt);
564 return EAGAIN;
565 }
566 if (evp == NULL) {
567 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
568 switch (id) {
569 case CLOCK_REALTIME:
570 pt->pt_ev.sigev_signo = SIGALRM;
571 break;
572 case CLOCK_VIRTUAL:
573 pt->pt_ev.sigev_signo = SIGVTALRM;
574 break;
575 case CLOCK_PROF:
576 pt->pt_ev.sigev_signo = SIGPROF;
577 break;
578 }
579 pt->pt_ev.sigev_value.sival_int = timerid;
580 }
581 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
582 pt->pt_info.ksi_errno = 0;
583 pt->pt_info.ksi_code = 0;
584 pt->pt_info.ksi_pid = p->p_pid;
585 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
586 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
587 pt->pt_type = id;
588 pt->pt_proc = p;
589 pt->pt_overruns = 0;
590 pt->pt_poverruns = 0;
591 pt->pt_entry = timerid;
592 pt->pt_queued = false;
593 pt->pt_active = 0;
594 timerclear(&pt->pt_time.it_value);
595 callout_init(&pt->pt_ch, 0);
596 pts->pts_timers[timerid] = pt;
597 mutex_spin_exit(&timer_lock);
598
599 return copyout(&timerid, tid, sizeof(timerid));
600 }
601
602 /* Delete a POSIX realtime timer */
603 int
604 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
605 register_t *retval)
606 {
607 /* {
608 syscallarg(timer_t) timerid;
609 } */
610 struct proc *p = l->l_proc;
611 timer_t timerid;
612 struct ptimers *pts;
613 struct ptimer *pt, *ptn;
614
615 timerid = SCARG(uap, timerid);
616 pts = p->p_timers;
617
618 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
619 return (EINVAL);
620
621 mutex_spin_enter(&timer_lock);
622 if ((pt = pts->pts_timers[timerid]) == NULL) {
623 mutex_spin_exit(&timer_lock);
624 return (EINVAL);
625 }
626 if (pt->pt_active) {
627 ptn = LIST_NEXT(pt, pt_list);
628 LIST_REMOVE(pt, pt_list);
629 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
630 timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
631 &ptn->pt_time.it_value);
632 pt->pt_active = 0;
633 }
634 itimerfree(pts, timerid);
635
636 return (0);
637 }
638
639 /*
640 * Set up the given timer. The value in pt->pt_time.it_value is taken
641 * to be an absolute time for CLOCK_REALTIME timers and a relative
642 * time for virtual timers.
643 * Must be called at splclock().
644 */
645 void
646 timer_settime(struct ptimer *pt)
647 {
648 struct ptimer *ptn, *pptn;
649 struct ptlist *ptl;
650
651 KASSERT(mutex_owned(&timer_lock));
652
653 if (pt->pt_type == CLOCK_REALTIME) {
654 callout_stop(&pt->pt_ch);
655 if (timerisset(&pt->pt_time.it_value)) {
656 /*
657 * Don't need to check hzto() return value, here.
658 * callout_reset() does it for us.
659 */
660 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
661 realtimerexpire, pt);
662 }
663 } else {
664 if (pt->pt_active) {
665 ptn = LIST_NEXT(pt, pt_list);
666 LIST_REMOVE(pt, pt_list);
667 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
668 timeradd(&pt->pt_time.it_value,
669 &ptn->pt_time.it_value,
670 &ptn->pt_time.it_value);
671 }
672 if (timerisset(&pt->pt_time.it_value)) {
673 if (pt->pt_type == CLOCK_VIRTUAL)
674 ptl = &pt->pt_proc->p_timers->pts_virtual;
675 else
676 ptl = &pt->pt_proc->p_timers->pts_prof;
677
678 for (ptn = LIST_FIRST(ptl), pptn = NULL;
679 ptn && timercmp(&pt->pt_time.it_value,
680 &ptn->pt_time.it_value, >);
681 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
682 timersub(&pt->pt_time.it_value,
683 &ptn->pt_time.it_value,
684 &pt->pt_time.it_value);
685
686 if (pptn)
687 LIST_INSERT_AFTER(pptn, pt, pt_list);
688 else
689 LIST_INSERT_HEAD(ptl, pt, pt_list);
690
691 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
692 timersub(&ptn->pt_time.it_value,
693 &pt->pt_time.it_value,
694 &ptn->pt_time.it_value);
695
696 pt->pt_active = 1;
697 } else
698 pt->pt_active = 0;
699 }
700 }
701
702 void
703 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
704 {
705 struct timeval now;
706 struct ptimer *ptn;
707
708 KASSERT(mutex_owned(&timer_lock));
709
710 *aitv = pt->pt_time;
711 if (pt->pt_type == CLOCK_REALTIME) {
712 /*
713 * Convert from absolute to relative time in .it_value
714 * part of real time timer. If time for real time
715 * timer has passed return 0, else return difference
716 * between current time and time for the timer to go
717 * off.
718 */
719 if (timerisset(&aitv->it_value)) {
720 getmicrotime(&now);
721 if (timercmp(&aitv->it_value, &now, <))
722 timerclear(&aitv->it_value);
723 else
724 timersub(&aitv->it_value, &now,
725 &aitv->it_value);
726 }
727 } else if (pt->pt_active) {
728 if (pt->pt_type == CLOCK_VIRTUAL)
729 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
730 else
731 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
732 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
733 timeradd(&aitv->it_value,
734 &ptn->pt_time.it_value, &aitv->it_value);
735 KASSERT(ptn != NULL); /* pt should be findable on the list */
736 } else
737 timerclear(&aitv->it_value);
738 }
739
740
741
742 /* Set and arm a POSIX realtime timer */
743 int
744 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
745 register_t *retval)
746 {
747 /* {
748 syscallarg(timer_t) timerid;
749 syscallarg(int) flags;
750 syscallarg(const struct itimerspec *) value;
751 syscallarg(struct itimerspec *) ovalue;
752 } */
753 int error;
754 struct itimerspec value, ovalue, *ovp = NULL;
755
756 if ((error = copyin(SCARG(uap, value), &value,
757 sizeof(struct itimerspec))) != 0)
758 return (error);
759
760 if (SCARG(uap, ovalue))
761 ovp = &ovalue;
762
763 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
764 SCARG(uap, flags), l->l_proc)) != 0)
765 return error;
766
767 if (ovp)
768 return copyout(&ovalue, SCARG(uap, ovalue),
769 sizeof(struct itimerspec));
770 return 0;
771 }
772
773 int
774 dotimer_settime(int timerid, struct itimerspec *value,
775 struct itimerspec *ovalue, int flags, struct proc *p)
776 {
777 struct timeval now;
778 struct itimerval val, oval;
779 struct ptimers *pts;
780 struct ptimer *pt;
781
782 pts = p->p_timers;
783
784 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
785 return EINVAL;
786 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
787 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
788 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
789 return (EINVAL);
790
791 mutex_spin_enter(&timer_lock);
792 if ((pt = pts->pts_timers[timerid]) == NULL) {
793 mutex_spin_exit(&timer_lock);
794 return (EINVAL);
795 }
796
797 oval = pt->pt_time;
798 pt->pt_time = val;
799
800 /*
801 * If we've been passed a relative time for a realtime timer,
802 * convert it to absolute; if an absolute time for a virtual
803 * timer, convert it to relative and make sure we don't set it
804 * to zero, which would cancel the timer, or let it go
805 * negative, which would confuse the comparison tests.
806 */
807 if (timerisset(&pt->pt_time.it_value)) {
808 if (pt->pt_type == CLOCK_REALTIME) {
809 if ((flags & TIMER_ABSTIME) == 0) {
810 getmicrotime(&now);
811 timeradd(&pt->pt_time.it_value, &now,
812 &pt->pt_time.it_value);
813 }
814 } else {
815 if ((flags & TIMER_ABSTIME) != 0) {
816 getmicrotime(&now);
817 timersub(&pt->pt_time.it_value, &now,
818 &pt->pt_time.it_value);
819 if (!timerisset(&pt->pt_time.it_value) ||
820 pt->pt_time.it_value.tv_sec < 0) {
821 pt->pt_time.it_value.tv_sec = 0;
822 pt->pt_time.it_value.tv_usec = 1;
823 }
824 }
825 }
826 }
827
828 timer_settime(pt);
829 mutex_spin_exit(&timer_lock);
830
831 if (ovalue) {
832 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
833 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
834 }
835
836 return (0);
837 }
838
839 /* Return the time remaining until a POSIX timer fires. */
840 int
841 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
842 register_t *retval)
843 {
844 /* {
845 syscallarg(timer_t) timerid;
846 syscallarg(struct itimerspec *) value;
847 } */
848 struct itimerspec its;
849 int error;
850
851 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
852 &its)) != 0)
853 return error;
854
855 return copyout(&its, SCARG(uap, value), sizeof(its));
856 }
857
858 int
859 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
860 {
861 struct ptimer *pt;
862 struct ptimers *pts;
863 struct itimerval aitv;
864
865 pts = p->p_timers;
866 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
867 return (EINVAL);
868 mutex_spin_enter(&timer_lock);
869 if ((pt = pts->pts_timers[timerid]) == NULL) {
870 mutex_spin_exit(&timer_lock);
871 return (EINVAL);
872 }
873 timer_gettime(pt, &aitv);
874 mutex_spin_exit(&timer_lock);
875
876 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
877 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
878
879 return 0;
880 }
881
882 /*
883 * Return the count of the number of times a periodic timer expired
884 * while a notification was already pending. The counter is reset when
885 * a timer expires and a notification can be posted.
886 */
887 int
888 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
889 register_t *retval)
890 {
891 /* {
892 syscallarg(timer_t) timerid;
893 } */
894 struct proc *p = l->l_proc;
895 struct ptimers *pts;
896 int timerid;
897 struct ptimer *pt;
898
899 timerid = SCARG(uap, timerid);
900
901 pts = p->p_timers;
902 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
903 return (EINVAL);
904 mutex_spin_enter(&timer_lock);
905 if ((pt = pts->pts_timers[timerid]) == NULL) {
906 mutex_spin_exit(&timer_lock);
907 return (EINVAL);
908 }
909 *retval = pt->pt_poverruns;
910 mutex_spin_exit(&timer_lock);
911
912 return (0);
913 }
914
915 /*
916 * Real interval timer expired:
917 * send process whose timer expired an alarm signal.
918 * If time is not set up to reload, then just return.
919 * Else compute next time timer should go off which is > current time.
920 * This is where delay in processing this timeout causes multiple
921 * SIGALRM calls to be compressed into one.
922 */
923 void
924 realtimerexpire(void *arg)
925 {
926 uint64_t last_val, next_val, interval, now_ms;
927 struct timeval now, next;
928 struct ptimer *pt;
929 int backwards;
930
931 pt = arg;
932
933 mutex_spin_enter(&timer_lock);
934 itimerfire(pt);
935
936 if (!timerisset(&pt->pt_time.it_interval)) {
937 timerclear(&pt->pt_time.it_value);
938 mutex_spin_exit(&timer_lock);
939 return;
940 }
941
942 getmicrotime(&now);
943 backwards = (timercmp(&pt->pt_time.it_value, &now, >));
944 timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
945 /* Handle the easy case of non-overflown timers first. */
946 if (!backwards && timercmp(&next, &now, >)) {
947 pt->pt_time.it_value = next;
948 } else {
949 #define TV2MS(x) (((uint64_t)(x)->tv_sec) * 1000000 + (x)->tv_usec)
950 now_ms = TV2MS(&now);
951 last_val = TV2MS(&pt->pt_time.it_value);
952 interval = TV2MS(&pt->pt_time.it_interval);
953 #undef TV2MS
954
955 next_val = now_ms +
956 (now_ms - last_val + interval - 1) % interval;
957
958 if (backwards)
959 next_val += interval;
960 else
961 pt->pt_overruns += (now_ms - last_val) / interval;
962
963 pt->pt_time.it_value.tv_sec = next_val / 1000000;
964 pt->pt_time.it_value.tv_usec = next_val % 1000000;
965 }
966
967 /*
968 * Don't need to check hzto() return value, here.
969 * callout_reset() does it for us.
970 */
971 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
972 realtimerexpire, pt);
973 mutex_spin_exit(&timer_lock);
974 }
975
976 /* BSD routine to get the value of an interval timer. */
977 /* ARGSUSED */
978 int
979 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
980 register_t *retval)
981 {
982 /* {
983 syscallarg(int) which;
984 syscallarg(struct itimerval *) itv;
985 } */
986 struct proc *p = l->l_proc;
987 struct itimerval aitv;
988 int error;
989
990 error = dogetitimer(p, SCARG(uap, which), &aitv);
991 if (error)
992 return error;
993 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
994 }
995
996 int
997 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
998 {
999 struct ptimers *pts;
1000 struct ptimer *pt;
1001
1002 if ((u_int)which > ITIMER_PROF)
1003 return (EINVAL);
1004
1005 mutex_spin_enter(&timer_lock);
1006 pts = p->p_timers;
1007 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1008 timerclear(&itvp->it_value);
1009 timerclear(&itvp->it_interval);
1010 } else
1011 timer_gettime(pt, itvp);
1012 mutex_spin_exit(&timer_lock);
1013
1014 return 0;
1015 }
1016
1017 /* BSD routine to set/arm an interval timer. */
1018 /* ARGSUSED */
1019 int
1020 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1021 register_t *retval)
1022 {
1023 /* {
1024 syscallarg(int) which;
1025 syscallarg(const struct itimerval *) itv;
1026 syscallarg(struct itimerval *) oitv;
1027 } */
1028 struct proc *p = l->l_proc;
1029 int which = SCARG(uap, which);
1030 struct sys_getitimer_args getargs;
1031 const struct itimerval *itvp;
1032 struct itimerval aitv;
1033 int error;
1034
1035 if ((u_int)which > ITIMER_PROF)
1036 return (EINVAL);
1037 itvp = SCARG(uap, itv);
1038 if (itvp &&
1039 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1040 return (error);
1041 if (SCARG(uap, oitv) != NULL) {
1042 SCARG(&getargs, which) = which;
1043 SCARG(&getargs, itv) = SCARG(uap, oitv);
1044 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1045 return (error);
1046 }
1047 if (itvp == 0)
1048 return (0);
1049
1050 return dosetitimer(p, which, &aitv);
1051 }
1052
1053 int
1054 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1055 {
1056 struct timeval now;
1057 struct ptimers *pts;
1058 struct ptimer *pt, *spare;
1059
1060 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1061 return (EINVAL);
1062
1063 /*
1064 * Don't bother allocating data structures if the process just
1065 * wants to clear the timer.
1066 */
1067 spare = NULL;
1068 pts = p->p_timers;
1069 retry:
1070 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1071 pts->pts_timers[which] == NULL))
1072 return (0);
1073 if (pts == NULL)
1074 pts = timers_alloc(p);
1075 mutex_spin_enter(&timer_lock);
1076 pt = pts->pts_timers[which];
1077 if (pt == NULL) {
1078 if (spare == NULL) {
1079 mutex_spin_exit(&timer_lock);
1080 spare = pool_get(&ptimer_pool, PR_WAITOK);
1081 goto retry;
1082 }
1083 pt = spare;
1084 spare = NULL;
1085 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1086 pt->pt_ev.sigev_value.sival_int = which;
1087 pt->pt_overruns = 0;
1088 pt->pt_proc = p;
1089 pt->pt_type = which;
1090 pt->pt_entry = which;
1091 pt->pt_active = 0;
1092 pt->pt_queued = false;
1093 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1094 switch (which) {
1095 case ITIMER_REAL:
1096 pt->pt_ev.sigev_signo = SIGALRM;
1097 break;
1098 case ITIMER_VIRTUAL:
1099 pt->pt_ev.sigev_signo = SIGVTALRM;
1100 break;
1101 case ITIMER_PROF:
1102 pt->pt_ev.sigev_signo = SIGPROF;
1103 break;
1104 }
1105 pts->pts_timers[which] = pt;
1106 }
1107 pt->pt_time = *itvp;
1108
1109 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1110 /* Convert to absolute time */
1111 /* XXX need to wrap in splclock for timecounters case? */
1112 getmicrotime(&now);
1113 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1114 }
1115 timer_settime(pt);
1116 mutex_spin_exit(&timer_lock);
1117 if (spare != NULL)
1118 pool_put(&ptimer_pool, spare);
1119
1120 return (0);
1121 }
1122
1123 /* Utility routines to manage the array of pointers to timers. */
1124 struct ptimers *
1125 timers_alloc(struct proc *p)
1126 {
1127 struct ptimers *pts;
1128 int i;
1129
1130 pts = pool_get(&ptimers_pool, PR_WAITOK);
1131 LIST_INIT(&pts->pts_virtual);
1132 LIST_INIT(&pts->pts_prof);
1133 for (i = 0; i < TIMER_MAX; i++)
1134 pts->pts_timers[i] = NULL;
1135 pts->pts_fired = 0;
1136 mutex_spin_enter(&timer_lock);
1137 if (p->p_timers == NULL) {
1138 p->p_timers = pts;
1139 mutex_spin_exit(&timer_lock);
1140 return pts;
1141 }
1142 mutex_spin_exit(&timer_lock);
1143 pool_put(&ptimers_pool, pts);
1144 return p->p_timers;
1145 }
1146
1147 /*
1148 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1149 * then clean up all timers and free all the data structures. If
1150 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1151 * by timer_create(), not the BSD setitimer() timers, and only free the
1152 * structure if none of those remain.
1153 */
1154 void
1155 timers_free(struct proc *p, int which)
1156 {
1157 struct ptimers *pts;
1158 struct ptimer *ptn;
1159 struct timeval tv;
1160 int i;
1161
1162 if (p->p_timers == NULL)
1163 return;
1164
1165 pts = p->p_timers;
1166 mutex_spin_enter(&timer_lock);
1167 if (which == TIMERS_ALL) {
1168 p->p_timers = NULL;
1169 i = 0;
1170 } else {
1171 timerclear(&tv);
1172 for (ptn = LIST_FIRST(&pts->pts_virtual);
1173 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1174 ptn = LIST_NEXT(ptn, pt_list))
1175 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1176 LIST_FIRST(&pts->pts_virtual) = NULL;
1177 if (ptn) {
1178 timeradd(&tv, &ptn->pt_time.it_value,
1179 &ptn->pt_time.it_value);
1180 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1181 }
1182 timerclear(&tv);
1183 for (ptn = LIST_FIRST(&pts->pts_prof);
1184 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1185 ptn = LIST_NEXT(ptn, pt_list))
1186 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1187 LIST_FIRST(&pts->pts_prof) = NULL;
1188 if (ptn) {
1189 timeradd(&tv, &ptn->pt_time.it_value,
1190 &ptn->pt_time.it_value);
1191 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1192 }
1193 i = 3;
1194 }
1195 for ( ; i < TIMER_MAX; i++) {
1196 if (pts->pts_timers[i] != NULL) {
1197 itimerfree(pts, i);
1198 mutex_spin_enter(&timer_lock);
1199 }
1200 }
1201 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1202 pts->pts_timers[2] == NULL) {
1203 p->p_timers = NULL;
1204 mutex_spin_exit(&timer_lock);
1205 pool_put(&ptimers_pool, pts);
1206 } else
1207 mutex_spin_exit(&timer_lock);
1208 }
1209
1210 static void
1211 itimerfree(struct ptimers *pts, int index)
1212 {
1213 struct ptimer *pt;
1214
1215 KASSERT(mutex_owned(&timer_lock));
1216
1217 pt = pts->pts_timers[index];
1218 pts->pts_timers[index] = NULL;
1219 if (pt->pt_type == CLOCK_REALTIME)
1220 callout_halt(&pt->pt_ch, &timer_lock);
1221 else if (pt->pt_queued)
1222 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1223 mutex_spin_exit(&timer_lock);
1224 callout_destroy(&pt->pt_ch);
1225 pool_put(&ptimer_pool, pt);
1226 }
1227
1228 /*
1229 * Decrement an interval timer by a specified number
1230 * of microseconds, which must be less than a second,
1231 * i.e. < 1000000. If the timer expires, then reload
1232 * it. In this case, carry over (usec - old value) to
1233 * reduce the value reloaded into the timer so that
1234 * the timer does not drift. This routine assumes
1235 * that it is called in a context where the timers
1236 * on which it is operating cannot change in value.
1237 */
1238 static int
1239 itimerdecr(struct ptimer *pt, int usec)
1240 {
1241 struct itimerval *itp;
1242
1243 KASSERT(mutex_owned(&timer_lock));
1244
1245 itp = &pt->pt_time;
1246 if (itp->it_value.tv_usec < usec) {
1247 if (itp->it_value.tv_sec == 0) {
1248 /* expired, and already in next interval */
1249 usec -= itp->it_value.tv_usec;
1250 goto expire;
1251 }
1252 itp->it_value.tv_usec += 1000000;
1253 itp->it_value.tv_sec--;
1254 }
1255 itp->it_value.tv_usec -= usec;
1256 usec = 0;
1257 if (timerisset(&itp->it_value))
1258 return (1);
1259 /* expired, exactly at end of interval */
1260 expire:
1261 if (timerisset(&itp->it_interval)) {
1262 itp->it_value = itp->it_interval;
1263 itp->it_value.tv_usec -= usec;
1264 if (itp->it_value.tv_usec < 0) {
1265 itp->it_value.tv_usec += 1000000;
1266 itp->it_value.tv_sec--;
1267 }
1268 timer_settime(pt);
1269 } else
1270 itp->it_value.tv_usec = 0; /* sec is already 0 */
1271 return (0);
1272 }
1273
1274 static void
1275 itimerfire(struct ptimer *pt)
1276 {
1277
1278 KASSERT(mutex_owned(&timer_lock));
1279
1280 /*
1281 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1282 * XXX Relying on the clock interrupt is stupid.
1283 */
1284 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1285 return;
1286 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1287 pt->pt_queued = true;
1288 softint_schedule(timer_sih);
1289 }
1290
1291 void
1292 timer_tick(lwp_t *l, bool user)
1293 {
1294 struct ptimers *pts;
1295 struct ptimer *pt;
1296 proc_t *p;
1297
1298 p = l->l_proc;
1299 if (p->p_timers == NULL)
1300 return;
1301
1302 mutex_spin_enter(&timer_lock);
1303 if ((pts = l->l_proc->p_timers) != NULL) {
1304 /*
1305 * Run current process's virtual and profile time, as needed.
1306 */
1307 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1308 if (itimerdecr(pt, tick) == 0)
1309 itimerfire(pt);
1310 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1311 if (itimerdecr(pt, tick) == 0)
1312 itimerfire(pt);
1313 }
1314 mutex_spin_exit(&timer_lock);
1315 }
1316
1317 static void
1318 timer_intr(void *cookie)
1319 {
1320 ksiginfo_t ksi;
1321 struct ptimer *pt;
1322 proc_t *p;
1323
1324 mutex_spin_enter(&timer_lock);
1325 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1326 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1327 KASSERT(pt->pt_queued);
1328 pt->pt_queued = false;
1329
1330 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1331 continue;
1332 p = pt->pt_proc;
1333 if (pt->pt_proc->p_timers == NULL) {
1334 /* Process is dying. */
1335 continue;
1336 }
1337 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1338 pt->pt_overruns++;
1339 continue;
1340 }
1341
1342 KSI_INIT(&ksi);
1343 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1344 ksi.ksi_code = SI_TIMER;
1345 ksi.ksi_value = pt->pt_ev.sigev_value;
1346 pt->pt_poverruns = pt->pt_overruns;
1347 pt->pt_overruns = 0;
1348 mutex_spin_exit(&timer_lock);
1349
1350 mutex_enter(proc_lock);
1351 kpsignal(p, &ksi, NULL);
1352 mutex_exit(proc_lock);
1353
1354 mutex_spin_enter(&timer_lock);
1355 }
1356 mutex_spin_exit(&timer_lock);
1357 }
1358
1359 /*
1360 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1361 * for usage and rationale.
1362 */
1363 int
1364 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1365 {
1366 struct timeval tv, delta;
1367 int rv = 0;
1368
1369 getmicrouptime(&tv);
1370 timersub(&tv, lasttime, &delta);
1371
1372 /*
1373 * check for 0,0 is so that the message will be seen at least once,
1374 * even if interval is huge.
1375 */
1376 if (timercmp(&delta, mininterval, >=) ||
1377 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1378 *lasttime = tv;
1379 rv = 1;
1380 }
1381
1382 return (rv);
1383 }
1384
1385 /*
1386 * ppsratecheck(): packets (or events) per second limitation.
1387 */
1388 int
1389 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1390 {
1391 struct timeval tv, delta;
1392 int rv;
1393
1394 getmicrouptime(&tv);
1395 timersub(&tv, lasttime, &delta);
1396
1397 /*
1398 * check for 0,0 is so that the message will be seen at least once.
1399 * if more than one second have passed since the last update of
1400 * lasttime, reset the counter.
1401 *
1402 * we do increment *curpps even in *curpps < maxpps case, as some may
1403 * try to use *curpps for stat purposes as well.
1404 */
1405 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1406 delta.tv_sec >= 1) {
1407 *lasttime = tv;
1408 *curpps = 0;
1409 }
1410 if (maxpps < 0)
1411 rv = 1;
1412 else if (*curpps < maxpps)
1413 rv = 1;
1414 else
1415 rv = 0;
1416
1417 #if 1 /*DIAGNOSTIC?*/
1418 /* be careful about wrap-around */
1419 if (*curpps + 1 > *curpps)
1420 *curpps = *curpps + 1;
1421 #else
1422 /*
1423 * assume that there's not too many calls to this function.
1424 * not sure if the assumption holds, as it depends on *caller's*
1425 * behavior, not the behavior of this function.
1426 * IMHO it is wrong to make assumption on the caller's behavior,
1427 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1428 */
1429 *curpps = *curpps + 1;
1430 #endif
1431
1432 return (rv);
1433 }
1434