kern_time.c revision 1.149 1 /* $NetBSD: kern_time.c,v 1.149 2008/07/08 20:53:02 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.149 2008/07/08 20:53:02 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 #include <uvm/uvm_extern.h>
82
83 static void timer_intr(void *);
84 static void itimerfire(struct ptimer *);
85 static void itimerfree(struct ptimers *, int);
86
87 kmutex_t timer_lock;
88
89 static void *timer_sih;
90 static TAILQ_HEAD(, ptimer) timer_queue;
91
92 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
93 &pool_allocator_nointr, IPL_NONE);
94 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
95 &pool_allocator_nointr, IPL_NONE);
96
97 /*
98 * Initialize timekeeping.
99 */
100 void
101 time_init(void)
102 {
103
104 /* nothing yet */
105 }
106
107 void
108 time_init2(void)
109 {
110
111 TAILQ_INIT(&timer_queue);
112 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
113 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
114 timer_intr, NULL);
115 }
116
117 /* Time of day and interval timer support.
118 *
119 * These routines provide the kernel entry points to get and set
120 * the time-of-day and per-process interval timers. Subroutines
121 * here provide support for adding and subtracting timeval structures
122 * and decrementing interval timers, optionally reloading the interval
123 * timers when they expire.
124 */
125
126 /* This function is used by clock_settime and settimeofday */
127 static int
128 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
129 {
130 struct timeval delta, tv;
131 struct timeval now;
132 struct timespec ts1;
133 struct bintime btdelta;
134 lwp_t *l;
135 int s;
136
137 TIMESPEC_TO_TIMEVAL(&tv, ts);
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 microtime(&now);
142 timersub(&tv, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
146 KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159 tc_setclock(&ts1);
160
161 timeradd(&boottime, &delta, &boottime);
162
163 /*
164 * XXXSMP: There is a short race between setting the time above
165 * and adjusting LWP's run times. Fixing this properly means
166 * pausing all CPUs while we adjust the clock.
167 */
168 timeval2bintime(&delta, &btdelta);
169 mutex_enter(proc_lock);
170 LIST_FOREACH(l, &alllwp, l_list) {
171 lwp_lock(l);
172 bintime_add(&l->l_stime, &btdelta);
173 lwp_unlock(l);
174 }
175 mutex_exit(proc_lock);
176 resettodr();
177 splx(s);
178
179 return (0);
180 }
181
182 int
183 settime(struct proc *p, struct timespec *ts)
184 {
185 return (settime1(p, ts, true));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
191 register_t *retval)
192 {
193 /* {
194 syscallarg(clockid_t) clock_id;
195 syscallarg(struct timespec *) tp;
196 } */
197 clockid_t clock_id;
198 struct timespec ats;
199
200 clock_id = SCARG(uap, clock_id);
201 switch (clock_id) {
202 case CLOCK_REALTIME:
203 nanotime(&ats);
204 break;
205 case CLOCK_MONOTONIC:
206 nanouptime(&ats);
207 break;
208 default:
209 return (EINVAL);
210 }
211
212 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
213 }
214
215 /* ARGSUSED */
216 int
217 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
218 register_t *retval)
219 {
220 /* {
221 syscallarg(clockid_t) clock_id;
222 syscallarg(const struct timespec *) tp;
223 } */
224
225 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226 true);
227 }
228
229
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 bool check_kauth)
233 {
234 struct timespec ats;
235 int error;
236
237 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238 return (error);
239
240 switch (clock_id) {
241 case CLOCK_REALTIME:
242 if ((error = settime1(p, &ats, check_kauth)) != 0)
243 return (error);
244 break;
245 case CLOCK_MONOTONIC:
246 return (EINVAL); /* read-only clock */
247 default:
248 return (EINVAL);
249 }
250
251 return 0;
252 }
253
254 int
255 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
256 register_t *retval)
257 {
258 /* {
259 syscallarg(clockid_t) clock_id;
260 syscallarg(struct timespec *) tp;
261 } */
262 clockid_t clock_id;
263 struct timespec ts;
264 int error = 0;
265
266 clock_id = SCARG(uap, clock_id);
267 switch (clock_id) {
268 case CLOCK_REALTIME:
269 case CLOCK_MONOTONIC:
270 ts.tv_sec = 0;
271 if (tc_getfrequency() > 1000000000)
272 ts.tv_nsec = 1;
273 else
274 ts.tv_nsec = 1000000000 / tc_getfrequency();
275 break;
276 default:
277 return (EINVAL);
278 }
279
280 if (SCARG(uap, tp))
281 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
282
283 return error;
284 }
285
286 /* ARGSUSED */
287 int
288 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
289 register_t *retval)
290 {
291 /* {
292 syscallarg(struct timespec *) rqtp;
293 syscallarg(struct timespec *) rmtp;
294 } */
295 struct timespec rmt, rqt;
296 int error, error1;
297
298 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
299 if (error)
300 return (error);
301
302 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
303 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
304 return error;
305
306 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
307 return error1 ? error1 : error;
308 }
309
310 int
311 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
312 {
313 struct timespec rmtstart;
314 int error, timo;
315
316 if (itimespecfix(rqt))
317 return (EINVAL);
318
319 timo = tstohz(rqt);
320 /*
321 * Avoid inadvertantly sleeping forever
322 */
323 if (timo == 0)
324 timo = 1;
325 getnanouptime(&rmtstart);
326 again:
327 error = kpause("nanoslp", true, timo, NULL);
328 if (rmt != NULL || error == 0) {
329 struct timespec rmtend;
330 struct timespec t0;
331 struct timespec *t;
332
333 getnanouptime(&rmtend);
334 t = (rmt != NULL) ? rmt : &t0;
335 timespecsub(&rmtend, &rmtstart, t);
336 timespecsub(rqt, t, t);
337 if (t->tv_sec < 0)
338 timespecclear(t);
339 if (error == 0) {
340 timo = tstohz(t);
341 if (timo > 0)
342 goto again;
343 }
344 }
345
346 if (error == ERESTART)
347 error = EINTR;
348 if (error == EWOULDBLOCK)
349 error = 0;
350
351 return error;
352 }
353
354 /* ARGSUSED */
355 int
356 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
357 register_t *retval)
358 {
359 /* {
360 syscallarg(struct timeval *) tp;
361 syscallarg(void *) tzp; really "struct timezone *";
362 } */
363 struct timeval atv;
364 int error = 0;
365 struct timezone tzfake;
366
367 if (SCARG(uap, tp)) {
368 microtime(&atv);
369 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
370 if (error)
371 return (error);
372 }
373 if (SCARG(uap, tzp)) {
374 /*
375 * NetBSD has no kernel notion of time zone, so we just
376 * fake up a timezone struct and return it if demanded.
377 */
378 tzfake.tz_minuteswest = 0;
379 tzfake.tz_dsttime = 0;
380 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
381 }
382 return (error);
383 }
384
385 /* ARGSUSED */
386 int
387 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
388 register_t *retval)
389 {
390 /* {
391 syscallarg(const struct timeval *) tv;
392 syscallarg(const void *) tzp; really "const struct timezone *";
393 } */
394
395 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
396 }
397
398 int
399 settimeofday1(const struct timeval *utv, bool userspace,
400 const void *utzp, struct lwp *l, bool check_kauth)
401 {
402 struct timeval atv;
403 struct timespec ts;
404 int error;
405
406 /* Verify all parameters before changing time. */
407
408 /*
409 * NetBSD has no kernel notion of time zone, and only an
410 * obsolete program would try to set it, so we log a warning.
411 */
412 if (utzp)
413 log(LOG_WARNING, "pid %d attempted to set the "
414 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
415
416 if (utv == NULL)
417 return 0;
418
419 if (userspace) {
420 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
421 return error;
422 utv = &atv;
423 }
424
425 TIMEVAL_TO_TIMESPEC(utv, &ts);
426 return settime1(l->l_proc, &ts, check_kauth);
427 }
428
429 int time_adjusted; /* set if an adjustment is made */
430
431 /* ARGSUSED */
432 int
433 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
434 register_t *retval)
435 {
436 /* {
437 syscallarg(const struct timeval *) delta;
438 syscallarg(struct timeval *) olddelta;
439 } */
440 int error;
441
442 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
443 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
444 return (error);
445
446 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
447 }
448
449 int
450 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
451 {
452 struct timeval atv;
453 int error = 0;
454
455 extern int64_t time_adjtime; /* in kern_ntptime.c */
456
457 if (olddelta) {
458 mutex_spin_enter(&timecounter_lock);
459 atv.tv_sec = time_adjtime / 1000000;
460 atv.tv_usec = time_adjtime % 1000000;
461 mutex_spin_exit(&timecounter_lock);
462 if (atv.tv_usec < 0) {
463 atv.tv_usec += 1000000;
464 atv.tv_sec--;
465 }
466 error = copyout(&atv, olddelta, sizeof(struct timeval));
467 if (error)
468 return (error);
469 }
470
471 if (delta) {
472 error = copyin(delta, &atv, sizeof(struct timeval));
473 if (error)
474 return (error);
475
476 mutex_spin_enter(&timecounter_lock);
477 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
478 atv.tv_usec;
479 if (time_adjtime) {
480 /* We need to save the system time during shutdown */
481 time_adjusted |= 1;
482 }
483 mutex_spin_exit(&timecounter_lock);
484 }
485
486 return error;
487 }
488
489 /*
490 * Interval timer support. Both the BSD getitimer() family and the POSIX
491 * timer_*() family of routines are supported.
492 *
493 * All timers are kept in an array pointed to by p_timers, which is
494 * allocated on demand - many processes don't use timers at all. The
495 * first three elements in this array are reserved for the BSD timers:
496 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
497 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
498 * syscall.
499 *
500 * Realtime timers are kept in the ptimer structure as an absolute
501 * time; virtual time timers are kept as a linked list of deltas.
502 * Virtual time timers are processed in the hardclock() routine of
503 * kern_clock.c. The real time timer is processed by a callout
504 * routine, called from the softclock() routine. Since a callout may
505 * be delayed in real time due to interrupt processing in the system,
506 * it is possible for the real time timeout routine (realtimeexpire,
507 * given below), to be delayed in real time past when it is supposed
508 * to occur. It does not suffice, therefore, to reload the real timer
509 * .it_value from the real time timers .it_interval. Rather, we
510 * compute the next time in absolute time the timer should go off. */
511
512 /* Allocate a POSIX realtime timer. */
513 int
514 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
515 register_t *retval)
516 {
517 /* {
518 syscallarg(clockid_t) clock_id;
519 syscallarg(struct sigevent *) evp;
520 syscallarg(timer_t *) timerid;
521 } */
522
523 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
524 SCARG(uap, evp), copyin, l);
525 }
526
527 int
528 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
529 copyin_t fetch_event, struct lwp *l)
530 {
531 int error;
532 timer_t timerid;
533 struct ptimers *pts;
534 struct ptimer *pt;
535 struct proc *p;
536
537 p = l->l_proc;
538
539 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
540 return (EINVAL);
541
542 if ((pts = p->p_timers) == NULL)
543 pts = timers_alloc(p);
544
545 pt = pool_get(&ptimer_pool, PR_WAITOK);
546 if (evp != NULL) {
547 if (((error =
548 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
549 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
550 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
551 pool_put(&ptimer_pool, pt);
552 return (error ? error : EINVAL);
553 }
554 }
555
556 /* Find a free timer slot, skipping those reserved for setitimer(). */
557 mutex_spin_enter(&timer_lock);
558 for (timerid = 3; timerid < TIMER_MAX; timerid++)
559 if (pts->pts_timers[timerid] == NULL)
560 break;
561 if (timerid == TIMER_MAX) {
562 mutex_spin_exit(&timer_lock);
563 pool_put(&ptimer_pool, pt);
564 return EAGAIN;
565 }
566 if (evp == NULL) {
567 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
568 switch (id) {
569 case CLOCK_REALTIME:
570 pt->pt_ev.sigev_signo = SIGALRM;
571 break;
572 case CLOCK_VIRTUAL:
573 pt->pt_ev.sigev_signo = SIGVTALRM;
574 break;
575 case CLOCK_PROF:
576 pt->pt_ev.sigev_signo = SIGPROF;
577 break;
578 }
579 pt->pt_ev.sigev_value.sival_int = timerid;
580 }
581 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
582 pt->pt_info.ksi_errno = 0;
583 pt->pt_info.ksi_code = 0;
584 pt->pt_info.ksi_pid = p->p_pid;
585 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
586 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
587 pt->pt_type = id;
588 pt->pt_proc = p;
589 pt->pt_overruns = 0;
590 pt->pt_poverruns = 0;
591 pt->pt_entry = timerid;
592 pt->pt_queued = false;
593 timerclear(&pt->pt_time.it_value);
594 if (id == CLOCK_REALTIME)
595 callout_init(&pt->pt_ch, 0);
596 else
597 pt->pt_active = 0;
598
599 pts->pts_timers[timerid] = pt;
600 mutex_spin_exit(&timer_lock);
601
602 return copyout(&timerid, tid, sizeof(timerid));
603 }
604
605 /* Delete a POSIX realtime timer */
606 int
607 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
608 register_t *retval)
609 {
610 /* {
611 syscallarg(timer_t) timerid;
612 } */
613 struct proc *p = l->l_proc;
614 timer_t timerid;
615 struct ptimers *pts;
616 struct ptimer *pt, *ptn;
617
618 timerid = SCARG(uap, timerid);
619 pts = p->p_timers;
620
621 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
622 return (EINVAL);
623
624 mutex_spin_enter(&timer_lock);
625 if ((pt = pts->pts_timers[timerid]) == NULL) {
626 mutex_spin_exit(&timer_lock);
627 return (EINVAL);
628 }
629 if (pt->pt_type != CLOCK_REALTIME) {
630 if (pt->pt_active) {
631 ptn = LIST_NEXT(pt, pt_list);
632 LIST_REMOVE(pt, pt_list);
633 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
634 timeradd(&pt->pt_time.it_value,
635 &ptn->pt_time.it_value,
636 &ptn->pt_time.it_value);
637 pt->pt_active = 0;
638 }
639 }
640 itimerfree(pts, timerid);
641
642 return (0);
643 }
644
645 /*
646 * Set up the given timer. The value in pt->pt_time.it_value is taken
647 * to be an absolute time for CLOCK_REALTIME timers and a relative
648 * time for virtual timers.
649 * Must be called at splclock().
650 */
651 void
652 timer_settime(struct ptimer *pt)
653 {
654 struct ptimer *ptn, *pptn;
655 struct ptlist *ptl;
656
657 KASSERT(mutex_owned(&timer_lock));
658
659 if (pt->pt_type == CLOCK_REALTIME) {
660 callout_stop(&pt->pt_ch);
661 if (timerisset(&pt->pt_time.it_value)) {
662 /*
663 * Don't need to check hzto() return value, here.
664 * callout_reset() does it for us.
665 */
666 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
667 realtimerexpire, pt);
668 }
669 } else {
670 if (pt->pt_active) {
671 ptn = LIST_NEXT(pt, pt_list);
672 LIST_REMOVE(pt, pt_list);
673 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
674 timeradd(&pt->pt_time.it_value,
675 &ptn->pt_time.it_value,
676 &ptn->pt_time.it_value);
677 }
678 if (timerisset(&pt->pt_time.it_value)) {
679 if (pt->pt_type == CLOCK_VIRTUAL)
680 ptl = &pt->pt_proc->p_timers->pts_virtual;
681 else
682 ptl = &pt->pt_proc->p_timers->pts_prof;
683
684 for (ptn = LIST_FIRST(ptl), pptn = NULL;
685 ptn && timercmp(&pt->pt_time.it_value,
686 &ptn->pt_time.it_value, >);
687 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
688 timersub(&pt->pt_time.it_value,
689 &ptn->pt_time.it_value,
690 &pt->pt_time.it_value);
691
692 if (pptn)
693 LIST_INSERT_AFTER(pptn, pt, pt_list);
694 else
695 LIST_INSERT_HEAD(ptl, pt, pt_list);
696
697 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
698 timersub(&ptn->pt_time.it_value,
699 &pt->pt_time.it_value,
700 &ptn->pt_time.it_value);
701
702 pt->pt_active = 1;
703 } else
704 pt->pt_active = 0;
705 }
706 }
707
708 void
709 timer_gettime(struct ptimer *pt, struct itimerval *aitv)
710 {
711 struct timeval now;
712 struct ptimer *ptn;
713
714 KASSERT(mutex_owned(&timer_lock));
715
716 *aitv = pt->pt_time;
717 if (pt->pt_type == CLOCK_REALTIME) {
718 /*
719 * Convert from absolute to relative time in .it_value
720 * part of real time timer. If time for real time
721 * timer has passed return 0, else return difference
722 * between current time and time for the timer to go
723 * off.
724 */
725 if (timerisset(&aitv->it_value)) {
726 getmicrotime(&now);
727 if (timercmp(&aitv->it_value, &now, <))
728 timerclear(&aitv->it_value);
729 else
730 timersub(&aitv->it_value, &now,
731 &aitv->it_value);
732 }
733 } else if (pt->pt_active) {
734 if (pt->pt_type == CLOCK_VIRTUAL)
735 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
736 else
737 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
738 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
739 timeradd(&aitv->it_value,
740 &ptn->pt_time.it_value, &aitv->it_value);
741 KASSERT(ptn != NULL); /* pt should be findable on the list */
742 } else
743 timerclear(&aitv->it_value);
744 }
745
746
747
748 /* Set and arm a POSIX realtime timer */
749 int
750 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
751 register_t *retval)
752 {
753 /* {
754 syscallarg(timer_t) timerid;
755 syscallarg(int) flags;
756 syscallarg(const struct itimerspec *) value;
757 syscallarg(struct itimerspec *) ovalue;
758 } */
759 int error;
760 struct itimerspec value, ovalue, *ovp = NULL;
761
762 if ((error = copyin(SCARG(uap, value), &value,
763 sizeof(struct itimerspec))) != 0)
764 return (error);
765
766 if (SCARG(uap, ovalue))
767 ovp = &ovalue;
768
769 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
770 SCARG(uap, flags), l->l_proc)) != 0)
771 return error;
772
773 if (ovp)
774 return copyout(&ovalue, SCARG(uap, ovalue),
775 sizeof(struct itimerspec));
776 return 0;
777 }
778
779 int
780 dotimer_settime(int timerid, struct itimerspec *value,
781 struct itimerspec *ovalue, int flags, struct proc *p)
782 {
783 struct timeval now;
784 struct itimerval val, oval;
785 struct ptimers *pts;
786 struct ptimer *pt;
787
788 pts = p->p_timers;
789
790 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
791 return EINVAL;
792 TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
793 TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
794 if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
795 return (EINVAL);
796
797 mutex_spin_enter(&timer_lock);
798 if ((pt = pts->pts_timers[timerid]) == NULL) {
799 mutex_spin_exit(&timer_lock);
800 return (EINVAL);
801 }
802
803 oval = pt->pt_time;
804 pt->pt_time = val;
805
806 /*
807 * If we've been passed a relative time for a realtime timer,
808 * convert it to absolute; if an absolute time for a virtual
809 * timer, convert it to relative and make sure we don't set it
810 * to zero, which would cancel the timer, or let it go
811 * negative, which would confuse the comparison tests.
812 */
813 if (timerisset(&pt->pt_time.it_value)) {
814 if (pt->pt_type == CLOCK_REALTIME) {
815 if ((flags & TIMER_ABSTIME) == 0) {
816 getmicrotime(&now);
817 timeradd(&pt->pt_time.it_value, &now,
818 &pt->pt_time.it_value);
819 }
820 } else {
821 if ((flags & TIMER_ABSTIME) != 0) {
822 getmicrotime(&now);
823 timersub(&pt->pt_time.it_value, &now,
824 &pt->pt_time.it_value);
825 if (!timerisset(&pt->pt_time.it_value) ||
826 pt->pt_time.it_value.tv_sec < 0) {
827 pt->pt_time.it_value.tv_sec = 0;
828 pt->pt_time.it_value.tv_usec = 1;
829 }
830 }
831 }
832 }
833
834 timer_settime(pt);
835 mutex_spin_exit(&timer_lock);
836
837 if (ovalue) {
838 TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
839 TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
840 }
841
842 return (0);
843 }
844
845 /* Return the time remaining until a POSIX timer fires. */
846 int
847 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
848 register_t *retval)
849 {
850 /* {
851 syscallarg(timer_t) timerid;
852 syscallarg(struct itimerspec *) value;
853 } */
854 struct itimerspec its;
855 int error;
856
857 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
858 &its)) != 0)
859 return error;
860
861 return copyout(&its, SCARG(uap, value), sizeof(its));
862 }
863
864 int
865 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
866 {
867 struct ptimer *pt;
868 struct ptimers *pts;
869 struct itimerval aitv;
870
871 pts = p->p_timers;
872 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
873 return (EINVAL);
874 mutex_spin_enter(&timer_lock);
875 if ((pt = pts->pts_timers[timerid]) == NULL) {
876 mutex_spin_exit(&timer_lock);
877 return (EINVAL);
878 }
879 timer_gettime(pt, &aitv);
880 mutex_spin_exit(&timer_lock);
881
882 TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
883 TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
884
885 return 0;
886 }
887
888 /*
889 * Return the count of the number of times a periodic timer expired
890 * while a notification was already pending. The counter is reset when
891 * a timer expires and a notification can be posted.
892 */
893 int
894 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
895 register_t *retval)
896 {
897 /* {
898 syscallarg(timer_t) timerid;
899 } */
900 struct proc *p = l->l_proc;
901 struct ptimers *pts;
902 int timerid;
903 struct ptimer *pt;
904
905 timerid = SCARG(uap, timerid);
906
907 pts = p->p_timers;
908 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
909 return (EINVAL);
910 mutex_spin_enter(&timer_lock);
911 if ((pt = pts->pts_timers[timerid]) == NULL) {
912 mutex_spin_exit(&timer_lock);
913 return (EINVAL);
914 }
915 *retval = pt->pt_poverruns;
916 mutex_spin_exit(&timer_lock);
917
918 return (0);
919 }
920
921 /*
922 * Real interval timer expired:
923 * send process whose timer expired an alarm signal.
924 * If time is not set up to reload, then just return.
925 * Else compute next time timer should go off which is > current time.
926 * This is where delay in processing this timeout causes multiple
927 * SIGALRM calls to be compressed into one.
928 */
929 void
930 realtimerexpire(void *arg)
931 {
932 uint64_t last_val, next_val, interval, now_ms;
933 struct timeval now, next;
934 struct ptimer *pt;
935 int backwards;
936
937 pt = arg;
938
939 mutex_spin_enter(&timer_lock);
940 itimerfire(pt);
941
942 if (!timerisset(&pt->pt_time.it_interval)) {
943 timerclear(&pt->pt_time.it_value);
944 mutex_spin_exit(&timer_lock);
945 return;
946 }
947
948 getmicrotime(&now);
949 backwards = (timercmp(&pt->pt_time.it_value, &now, >));
950 timeradd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
951 /* Handle the easy case of non-overflown timers first. */
952 if (!backwards && timercmp(&next, &now, >)) {
953 pt->pt_time.it_value = next;
954 } else {
955 #define TV2MS(x) (((uint64_t)(x)->tv_sec) * 1000000 + (x)->tv_usec)
956 now_ms = TV2MS(&now);
957 last_val = TV2MS(&pt->pt_time.it_value);
958 interval = TV2MS(&pt->pt_time.it_interval);
959 #undef TV2MS
960
961 next_val = now_ms +
962 (now_ms - last_val + interval - 1) % interval;
963
964 if (backwards)
965 next_val += interval;
966 else
967 pt->pt_overruns += (now_ms - last_val) / interval;
968
969 pt->pt_time.it_value.tv_sec = next_val / 1000000;
970 pt->pt_time.it_value.tv_usec = next_val % 1000000;
971 }
972
973 /*
974 * Don't need to check hzto() return value, here.
975 * callout_reset() does it for us.
976 */
977 callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
978 realtimerexpire, pt);
979 mutex_spin_exit(&timer_lock);
980 }
981
982 /* BSD routine to get the value of an interval timer. */
983 /* ARGSUSED */
984 int
985 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
986 register_t *retval)
987 {
988 /* {
989 syscallarg(int) which;
990 syscallarg(struct itimerval *) itv;
991 } */
992 struct proc *p = l->l_proc;
993 struct itimerval aitv;
994 int error;
995
996 error = dogetitimer(p, SCARG(uap, which), &aitv);
997 if (error)
998 return error;
999 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1000 }
1001
1002 int
1003 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1004 {
1005 struct ptimers *pts;
1006 struct ptimer *pt;
1007
1008 if ((u_int)which > ITIMER_PROF)
1009 return (EINVAL);
1010
1011 mutex_spin_enter(&timer_lock);
1012 pts = p->p_timers;
1013 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1014 timerclear(&itvp->it_value);
1015 timerclear(&itvp->it_interval);
1016 } else
1017 timer_gettime(pt, itvp);
1018 mutex_spin_exit(&timer_lock);
1019
1020 return 0;
1021 }
1022
1023 /* BSD routine to set/arm an interval timer. */
1024 /* ARGSUSED */
1025 int
1026 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1027 register_t *retval)
1028 {
1029 /* {
1030 syscallarg(int) which;
1031 syscallarg(const struct itimerval *) itv;
1032 syscallarg(struct itimerval *) oitv;
1033 } */
1034 struct proc *p = l->l_proc;
1035 int which = SCARG(uap, which);
1036 struct sys_getitimer_args getargs;
1037 const struct itimerval *itvp;
1038 struct itimerval aitv;
1039 int error;
1040
1041 if ((u_int)which > ITIMER_PROF)
1042 return (EINVAL);
1043 itvp = SCARG(uap, itv);
1044 if (itvp &&
1045 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1046 return (error);
1047 if (SCARG(uap, oitv) != NULL) {
1048 SCARG(&getargs, which) = which;
1049 SCARG(&getargs, itv) = SCARG(uap, oitv);
1050 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1051 return (error);
1052 }
1053 if (itvp == 0)
1054 return (0);
1055
1056 return dosetitimer(p, which, &aitv);
1057 }
1058
1059 int
1060 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1061 {
1062 struct timeval now;
1063 struct ptimers *pts;
1064 struct ptimer *pt, *spare;
1065
1066 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1067 return (EINVAL);
1068
1069 /*
1070 * Don't bother allocating data structures if the process just
1071 * wants to clear the timer.
1072 */
1073 spare = NULL;
1074 pts = p->p_timers;
1075 retry:
1076 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1077 pts->pts_timers[which] == NULL))
1078 return (0);
1079 if (pts == NULL)
1080 pts = timers_alloc(p);
1081 mutex_spin_enter(&timer_lock);
1082 pt = pts->pts_timers[which];
1083 if (pt == NULL) {
1084 if (spare == NULL) {
1085 mutex_spin_exit(&timer_lock);
1086 spare = pool_get(&ptimer_pool, PR_WAITOK);
1087 goto retry;
1088 }
1089 pt = spare;
1090 spare = NULL;
1091 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1092 pt->pt_ev.sigev_value.sival_int = which;
1093 pt->pt_overruns = 0;
1094 pt->pt_proc = p;
1095 pt->pt_type = which;
1096 pt->pt_entry = which;
1097 pt->pt_queued = false;
1098 if (pt->pt_type == CLOCK_REALTIME)
1099 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1100 else
1101 pt->pt_active = 0;
1102
1103 switch (which) {
1104 case ITIMER_REAL:
1105 pt->pt_ev.sigev_signo = SIGALRM;
1106 break;
1107 case ITIMER_VIRTUAL:
1108 pt->pt_ev.sigev_signo = SIGVTALRM;
1109 break;
1110 case ITIMER_PROF:
1111 pt->pt_ev.sigev_signo = SIGPROF;
1112 break;
1113 }
1114 pts->pts_timers[which] = pt;
1115 }
1116 pt->pt_time = *itvp;
1117
1118 if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1119 /* Convert to absolute time */
1120 /* XXX need to wrap in splclock for timecounters case? */
1121 getmicrotime(&now);
1122 timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1123 }
1124 timer_settime(pt);
1125 mutex_spin_exit(&timer_lock);
1126 if (spare != NULL)
1127 pool_put(&ptimer_pool, spare);
1128
1129 return (0);
1130 }
1131
1132 /* Utility routines to manage the array of pointers to timers. */
1133 struct ptimers *
1134 timers_alloc(struct proc *p)
1135 {
1136 struct ptimers *pts;
1137 int i;
1138
1139 pts = pool_get(&ptimers_pool, PR_WAITOK);
1140 LIST_INIT(&pts->pts_virtual);
1141 LIST_INIT(&pts->pts_prof);
1142 for (i = 0; i < TIMER_MAX; i++)
1143 pts->pts_timers[i] = NULL;
1144 pts->pts_fired = 0;
1145 mutex_spin_enter(&timer_lock);
1146 if (p->p_timers == NULL) {
1147 p->p_timers = pts;
1148 mutex_spin_exit(&timer_lock);
1149 return pts;
1150 }
1151 mutex_spin_exit(&timer_lock);
1152 pool_put(&ptimers_pool, pts);
1153 return p->p_timers;
1154 }
1155
1156 /*
1157 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1158 * then clean up all timers and free all the data structures. If
1159 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1160 * by timer_create(), not the BSD setitimer() timers, and only free the
1161 * structure if none of those remain.
1162 */
1163 void
1164 timers_free(struct proc *p, int which)
1165 {
1166 struct ptimers *pts;
1167 struct ptimer *ptn;
1168 struct timeval tv;
1169 int i;
1170
1171 if (p->p_timers == NULL)
1172 return;
1173
1174 pts = p->p_timers;
1175 mutex_spin_enter(&timer_lock);
1176 if (which == TIMERS_ALL) {
1177 p->p_timers = NULL;
1178 i = 0;
1179 } else {
1180 timerclear(&tv);
1181 for (ptn = LIST_FIRST(&pts->pts_virtual);
1182 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1183 ptn = LIST_NEXT(ptn, pt_list)) {
1184 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1185 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1186 }
1187 LIST_FIRST(&pts->pts_virtual) = NULL;
1188 if (ptn) {
1189 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1190 timeradd(&tv, &ptn->pt_time.it_value,
1191 &ptn->pt_time.it_value);
1192 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1193 }
1194 timerclear(&tv);
1195 for (ptn = LIST_FIRST(&pts->pts_prof);
1196 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1197 ptn = LIST_NEXT(ptn, pt_list)) {
1198 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1199 timeradd(&tv, &ptn->pt_time.it_value, &tv);
1200 }
1201 LIST_FIRST(&pts->pts_prof) = NULL;
1202 if (ptn) {
1203 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1204 timeradd(&tv, &ptn->pt_time.it_value,
1205 &ptn->pt_time.it_value);
1206 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1207 }
1208 i = 3;
1209 }
1210 for ( ; i < TIMER_MAX; i++) {
1211 if (pts->pts_timers[i] != NULL) {
1212 itimerfree(pts, i);
1213 mutex_spin_enter(&timer_lock);
1214 }
1215 }
1216 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1217 pts->pts_timers[2] == NULL) {
1218 p->p_timers = NULL;
1219 mutex_spin_exit(&timer_lock);
1220 pool_put(&ptimers_pool, pts);
1221 } else
1222 mutex_spin_exit(&timer_lock);
1223 }
1224
1225 static void
1226 itimerfree(struct ptimers *pts, int index)
1227 {
1228 struct ptimer *pt;
1229
1230 KASSERT(mutex_owned(&timer_lock));
1231
1232 pt = pts->pts_timers[index];
1233 pts->pts_timers[index] = NULL;
1234 if (pt->pt_type == CLOCK_REALTIME)
1235 callout_halt(&pt->pt_ch, &timer_lock);
1236 else if (pt->pt_queued)
1237 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1238 mutex_spin_exit(&timer_lock);
1239 if (pt->pt_type == CLOCK_REALTIME)
1240 callout_destroy(&pt->pt_ch);
1241 pool_put(&ptimer_pool, pt);
1242 }
1243
1244 /*
1245 * Decrement an interval timer by a specified number
1246 * of microseconds, which must be less than a second,
1247 * i.e. < 1000000. If the timer expires, then reload
1248 * it. In this case, carry over (usec - old value) to
1249 * reduce the value reloaded into the timer so that
1250 * the timer does not drift. This routine assumes
1251 * that it is called in a context where the timers
1252 * on which it is operating cannot change in value.
1253 */
1254 static int
1255 itimerdecr(struct ptimer *pt, int usec)
1256 {
1257 struct itimerval *itp;
1258
1259 KASSERT(mutex_owned(&timer_lock));
1260
1261 itp = &pt->pt_time;
1262 if (itp->it_value.tv_usec < usec) {
1263 if (itp->it_value.tv_sec == 0) {
1264 /* expired, and already in next interval */
1265 usec -= itp->it_value.tv_usec;
1266 goto expire;
1267 }
1268 itp->it_value.tv_usec += 1000000;
1269 itp->it_value.tv_sec--;
1270 }
1271 itp->it_value.tv_usec -= usec;
1272 usec = 0;
1273 if (timerisset(&itp->it_value))
1274 return (1);
1275 /* expired, exactly at end of interval */
1276 expire:
1277 if (timerisset(&itp->it_interval)) {
1278 itp->it_value = itp->it_interval;
1279 itp->it_value.tv_usec -= usec;
1280 if (itp->it_value.tv_usec < 0) {
1281 itp->it_value.tv_usec += 1000000;
1282 itp->it_value.tv_sec--;
1283 }
1284 timer_settime(pt);
1285 } else
1286 itp->it_value.tv_usec = 0; /* sec is already 0 */
1287 return (0);
1288 }
1289
1290 static void
1291 itimerfire(struct ptimer *pt)
1292 {
1293
1294 KASSERT(mutex_owned(&timer_lock));
1295
1296 /*
1297 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1298 * XXX Relying on the clock interrupt is stupid.
1299 */
1300 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1301 return;
1302 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1303 pt->pt_queued = true;
1304 softint_schedule(timer_sih);
1305 }
1306
1307 void
1308 timer_tick(lwp_t *l, bool user)
1309 {
1310 struct ptimers *pts;
1311 struct ptimer *pt;
1312 proc_t *p;
1313
1314 p = l->l_proc;
1315 if (p->p_timers == NULL)
1316 return;
1317
1318 mutex_spin_enter(&timer_lock);
1319 if ((pts = l->l_proc->p_timers) != NULL) {
1320 /*
1321 * Run current process's virtual and profile time, as needed.
1322 */
1323 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1324 if (itimerdecr(pt, tick) == 0)
1325 itimerfire(pt);
1326 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1327 if (itimerdecr(pt, tick) == 0)
1328 itimerfire(pt);
1329 }
1330 mutex_spin_exit(&timer_lock);
1331 }
1332
1333 static void
1334 timer_intr(void *cookie)
1335 {
1336 ksiginfo_t ksi;
1337 struct ptimer *pt;
1338 proc_t *p;
1339
1340 mutex_spin_enter(&timer_lock);
1341 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1342 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1343 KASSERT(pt->pt_queued);
1344 pt->pt_queued = false;
1345
1346 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1347 continue;
1348 p = pt->pt_proc;
1349 if (pt->pt_proc->p_timers == NULL) {
1350 /* Process is dying. */
1351 continue;
1352 }
1353 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1354 pt->pt_overruns++;
1355 continue;
1356 }
1357
1358 KSI_INIT(&ksi);
1359 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1360 ksi.ksi_code = SI_TIMER;
1361 ksi.ksi_value = pt->pt_ev.sigev_value;
1362 pt->pt_poverruns = pt->pt_overruns;
1363 pt->pt_overruns = 0;
1364 mutex_spin_exit(&timer_lock);
1365
1366 mutex_enter(proc_lock);
1367 kpsignal(p, &ksi, NULL);
1368 mutex_exit(proc_lock);
1369
1370 mutex_spin_enter(&timer_lock);
1371 }
1372 mutex_spin_exit(&timer_lock);
1373 }
1374
1375 /*
1376 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1377 * for usage and rationale.
1378 */
1379 int
1380 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1381 {
1382 struct timeval tv, delta;
1383 int rv = 0;
1384
1385 getmicrouptime(&tv);
1386 timersub(&tv, lasttime, &delta);
1387
1388 /*
1389 * check for 0,0 is so that the message will be seen at least once,
1390 * even if interval is huge.
1391 */
1392 if (timercmp(&delta, mininterval, >=) ||
1393 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1394 *lasttime = tv;
1395 rv = 1;
1396 }
1397
1398 return (rv);
1399 }
1400
1401 /*
1402 * ppsratecheck(): packets (or events) per second limitation.
1403 */
1404 int
1405 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1406 {
1407 struct timeval tv, delta;
1408 int rv;
1409
1410 getmicrouptime(&tv);
1411 timersub(&tv, lasttime, &delta);
1412
1413 /*
1414 * check for 0,0 is so that the message will be seen at least once.
1415 * if more than one second have passed since the last update of
1416 * lasttime, reset the counter.
1417 *
1418 * we do increment *curpps even in *curpps < maxpps case, as some may
1419 * try to use *curpps for stat purposes as well.
1420 */
1421 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1422 delta.tv_sec >= 1) {
1423 *lasttime = tv;
1424 *curpps = 0;
1425 }
1426 if (maxpps < 0)
1427 rv = 1;
1428 else if (*curpps < maxpps)
1429 rv = 1;
1430 else
1431 rv = 0;
1432
1433 #if 1 /*DIAGNOSTIC?*/
1434 /* be careful about wrap-around */
1435 if (*curpps + 1 > *curpps)
1436 *curpps = *curpps + 1;
1437 #else
1438 /*
1439 * assume that there's not too many calls to this function.
1440 * not sure if the assumption holds, as it depends on *caller's*
1441 * behavior, not the behavior of this function.
1442 * IMHO it is wrong to make assumption on the caller's behavior,
1443 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1444 */
1445 *curpps = *curpps + 1;
1446 #endif
1447
1448 return (rv);
1449 }
1450