kern_time.c revision 1.151 1 /* $NetBSD: kern_time.c,v 1.151 2008/08/08 16:44:52 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.151 2008/08/08 16:44:52 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/syscallargs.h>
79 #include <sys/cpu.h>
80
81 #include <uvm/uvm_extern.h>
82
83 static void timer_intr(void *);
84 static void itimerfire(struct ptimer *);
85 static void itimerfree(struct ptimers *, int);
86
87 kmutex_t timer_lock;
88
89 static void *timer_sih;
90 static TAILQ_HEAD(, ptimer) timer_queue;
91
92 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
93 &pool_allocator_nointr, IPL_NONE);
94 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
95 &pool_allocator_nointr, IPL_NONE);
96
97 /*
98 * Initialize timekeeping.
99 */
100 void
101 time_init(void)
102 {
103
104 /* nothing yet */
105 }
106
107 void
108 time_init2(void)
109 {
110
111 TAILQ_INIT(&timer_queue);
112 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
113 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
114 timer_intr, NULL);
115 }
116
117 /* Time of day and interval timer support.
118 *
119 * These routines provide the kernel entry points to get and set
120 * the time-of-day and per-process interval timers. Subroutines
121 * here provide support for adding and subtracting timeval structures
122 * and decrementing interval timers, optionally reloading the interval
123 * timers when they expire.
124 */
125
126 /* This function is used by clock_settime and settimeofday */
127 static int
128 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
129 {
130 struct timeval delta, tv;
131 struct timeval now;
132 struct timespec ts1;
133 struct bintime btdelta;
134 lwp_t *l;
135 int s;
136
137 TIMESPEC_TO_TIMEVAL(&tv, ts);
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 microtime(&now);
142 timersub(&tv, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
146 KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159 tc_setclock(&ts1);
160
161 timeradd(&boottime, &delta, &boottime);
162
163 /*
164 * XXXSMP: There is a short race between setting the time above
165 * and adjusting LWP's run times. Fixing this properly means
166 * pausing all CPUs while we adjust the clock.
167 */
168 timeval2bintime(&delta, &btdelta);
169 mutex_enter(proc_lock);
170 LIST_FOREACH(l, &alllwp, l_list) {
171 lwp_lock(l);
172 bintime_add(&l->l_stime, &btdelta);
173 lwp_unlock(l);
174 }
175 mutex_exit(proc_lock);
176 resettodr();
177 splx(s);
178
179 return (0);
180 }
181
182 int
183 settime(struct proc *p, struct timespec *ts)
184 {
185 return (settime1(p, ts, true));
186 }
187
188 /* ARGSUSED */
189 int
190 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
191 register_t *retval)
192 {
193 /* {
194 syscallarg(clockid_t) clock_id;
195 syscallarg(struct timespec *) tp;
196 } */
197 clockid_t clock_id;
198 struct timespec ats;
199
200 clock_id = SCARG(uap, clock_id);
201 switch (clock_id) {
202 case CLOCK_REALTIME:
203 nanotime(&ats);
204 break;
205 case CLOCK_MONOTONIC:
206 nanouptime(&ats);
207 break;
208 default:
209 return (EINVAL);
210 }
211
212 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
213 }
214
215 /* ARGSUSED */
216 int
217 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
218 register_t *retval)
219 {
220 /* {
221 syscallarg(clockid_t) clock_id;
222 syscallarg(const struct timespec *) tp;
223 } */
224
225 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226 true);
227 }
228
229
230 int
231 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 bool check_kauth)
233 {
234 struct timespec ats;
235 int error;
236
237 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238 return (error);
239
240 switch (clock_id) {
241 case CLOCK_REALTIME:
242 if ((error = settime1(p, &ats, check_kauth)) != 0)
243 return (error);
244 break;
245 case CLOCK_MONOTONIC:
246 return (EINVAL); /* read-only clock */
247 default:
248 return (EINVAL);
249 }
250
251 return 0;
252 }
253
254 int
255 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
256 register_t *retval)
257 {
258 /* {
259 syscallarg(clockid_t) clock_id;
260 syscallarg(struct timespec *) tp;
261 } */
262 clockid_t clock_id;
263 struct timespec ts;
264 int error = 0;
265
266 clock_id = SCARG(uap, clock_id);
267 switch (clock_id) {
268 case CLOCK_REALTIME:
269 case CLOCK_MONOTONIC:
270 ts.tv_sec = 0;
271 if (tc_getfrequency() > 1000000000)
272 ts.tv_nsec = 1;
273 else
274 ts.tv_nsec = 1000000000 / tc_getfrequency();
275 break;
276 default:
277 return (EINVAL);
278 }
279
280 if (SCARG(uap, tp))
281 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
282
283 return error;
284 }
285
286 /* ARGSUSED */
287 int
288 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
289 register_t *retval)
290 {
291 /* {
292 syscallarg(struct timespec *) rqtp;
293 syscallarg(struct timespec *) rmtp;
294 } */
295 struct timespec rmt, rqt;
296 int error, error1;
297
298 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
299 if (error)
300 return (error);
301
302 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
303 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
304 return error;
305
306 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
307 return error1 ? error1 : error;
308 }
309
310 int
311 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
312 {
313 struct timespec rmtstart;
314 int error, timo;
315
316 if (itimespecfix(rqt))
317 return (EINVAL);
318
319 timo = tstohz(rqt);
320 /*
321 * Avoid inadvertantly sleeping forever
322 */
323 if (timo == 0)
324 timo = 1;
325 getnanouptime(&rmtstart);
326 again:
327 error = kpause("nanoslp", true, timo, NULL);
328 if (rmt != NULL || error == 0) {
329 struct timespec rmtend;
330 struct timespec t0;
331 struct timespec *t;
332
333 getnanouptime(&rmtend);
334 t = (rmt != NULL) ? rmt : &t0;
335 timespecsub(&rmtend, &rmtstart, t);
336 timespecsub(rqt, t, t);
337 if (t->tv_sec < 0)
338 timespecclear(t);
339 if (error == 0) {
340 timo = tstohz(t);
341 if (timo > 0)
342 goto again;
343 }
344 }
345
346 if (error == ERESTART)
347 error = EINTR;
348 if (error == EWOULDBLOCK)
349 error = 0;
350
351 return error;
352 }
353
354 /* ARGSUSED */
355 int
356 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
357 register_t *retval)
358 {
359 /* {
360 syscallarg(struct timeval *) tp;
361 syscallarg(void *) tzp; really "struct timezone *";
362 } */
363 struct timeval atv;
364 int error = 0;
365 struct timezone tzfake;
366
367 if (SCARG(uap, tp)) {
368 microtime(&atv);
369 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
370 if (error)
371 return (error);
372 }
373 if (SCARG(uap, tzp)) {
374 /*
375 * NetBSD has no kernel notion of time zone, so we just
376 * fake up a timezone struct and return it if demanded.
377 */
378 tzfake.tz_minuteswest = 0;
379 tzfake.tz_dsttime = 0;
380 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
381 }
382 return (error);
383 }
384
385 /* ARGSUSED */
386 int
387 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
388 register_t *retval)
389 {
390 /* {
391 syscallarg(const struct timeval *) tv;
392 syscallarg(const void *) tzp; really "const struct timezone *";
393 } */
394
395 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
396 }
397
398 int
399 settimeofday1(const struct timeval *utv, bool userspace,
400 const void *utzp, struct lwp *l, bool check_kauth)
401 {
402 struct timeval atv;
403 struct timespec ts;
404 int error;
405
406 /* Verify all parameters before changing time. */
407
408 /*
409 * NetBSD has no kernel notion of time zone, and only an
410 * obsolete program would try to set it, so we log a warning.
411 */
412 if (utzp)
413 log(LOG_WARNING, "pid %d attempted to set the "
414 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
415
416 if (utv == NULL)
417 return 0;
418
419 if (userspace) {
420 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
421 return error;
422 utv = &atv;
423 }
424
425 TIMEVAL_TO_TIMESPEC(utv, &ts);
426 return settime1(l->l_proc, &ts, check_kauth);
427 }
428
429 int time_adjusted; /* set if an adjustment is made */
430
431 /* ARGSUSED */
432 int
433 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
434 register_t *retval)
435 {
436 /* {
437 syscallarg(const struct timeval *) delta;
438 syscallarg(struct timeval *) olddelta;
439 } */
440 int error;
441
442 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
443 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
444 return (error);
445
446 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
447 }
448
449 int
450 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
451 {
452 struct timeval atv;
453 int error = 0;
454
455 extern int64_t time_adjtime; /* in kern_ntptime.c */
456
457 if (olddelta) {
458 mutex_spin_enter(&timecounter_lock);
459 atv.tv_sec = time_adjtime / 1000000;
460 atv.tv_usec = time_adjtime % 1000000;
461 mutex_spin_exit(&timecounter_lock);
462 if (atv.tv_usec < 0) {
463 atv.tv_usec += 1000000;
464 atv.tv_sec--;
465 }
466 error = copyout(&atv, olddelta, sizeof(struct timeval));
467 if (error)
468 return (error);
469 }
470
471 if (delta) {
472 error = copyin(delta, &atv, sizeof(struct timeval));
473 if (error)
474 return (error);
475
476 mutex_spin_enter(&timecounter_lock);
477 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
478 atv.tv_usec;
479 if (time_adjtime) {
480 /* We need to save the system time during shutdown */
481 time_adjusted |= 1;
482 }
483 mutex_spin_exit(&timecounter_lock);
484 }
485
486 return error;
487 }
488
489 /*
490 * Interval timer support. Both the BSD getitimer() family and the POSIX
491 * timer_*() family of routines are supported.
492 *
493 * All timers are kept in an array pointed to by p_timers, which is
494 * allocated on demand - many processes don't use timers at all. The
495 * first three elements in this array are reserved for the BSD timers:
496 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
497 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
498 * syscall.
499 *
500 * Realtime timers are kept in the ptimer structure as an absolute
501 * time; virtual time timers are kept as a linked list of deltas.
502 * Virtual time timers are processed in the hardclock() routine of
503 * kern_clock.c. The real time timer is processed by a callout
504 * routine, called from the softclock() routine. Since a callout may
505 * be delayed in real time due to interrupt processing in the system,
506 * it is possible for the real time timeout routine (realtimeexpire,
507 * given below), to be delayed in real time past when it is supposed
508 * to occur. It does not suffice, therefore, to reload the real timer
509 * .it_value from the real time timers .it_interval. Rather, we
510 * compute the next time in absolute time the timer should go off. */
511
512 /* Allocate a POSIX realtime timer. */
513 int
514 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
515 register_t *retval)
516 {
517 /* {
518 syscallarg(clockid_t) clock_id;
519 syscallarg(struct sigevent *) evp;
520 syscallarg(timer_t *) timerid;
521 } */
522
523 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
524 SCARG(uap, evp), copyin, l);
525 }
526
527 int
528 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
529 copyin_t fetch_event, struct lwp *l)
530 {
531 int error;
532 timer_t timerid;
533 struct ptimers *pts;
534 struct ptimer *pt;
535 struct proc *p;
536
537 p = l->l_proc;
538
539 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
540 return (EINVAL);
541
542 if ((pts = p->p_timers) == NULL)
543 pts = timers_alloc(p);
544
545 pt = pool_get(&ptimer_pool, PR_WAITOK);
546 if (evp != NULL) {
547 if (((error =
548 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
549 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
550 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
551 pool_put(&ptimer_pool, pt);
552 return (error ? error : EINVAL);
553 }
554 }
555
556 /* Find a free timer slot, skipping those reserved for setitimer(). */
557 mutex_spin_enter(&timer_lock);
558 for (timerid = 3; timerid < TIMER_MAX; timerid++)
559 if (pts->pts_timers[timerid] == NULL)
560 break;
561 if (timerid == TIMER_MAX) {
562 mutex_spin_exit(&timer_lock);
563 pool_put(&ptimer_pool, pt);
564 return EAGAIN;
565 }
566 if (evp == NULL) {
567 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
568 switch (id) {
569 case CLOCK_REALTIME:
570 pt->pt_ev.sigev_signo = SIGALRM;
571 break;
572 case CLOCK_VIRTUAL:
573 pt->pt_ev.sigev_signo = SIGVTALRM;
574 break;
575 case CLOCK_PROF:
576 pt->pt_ev.sigev_signo = SIGPROF;
577 break;
578 }
579 pt->pt_ev.sigev_value.sival_int = timerid;
580 }
581 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
582 pt->pt_info.ksi_errno = 0;
583 pt->pt_info.ksi_code = 0;
584 pt->pt_info.ksi_pid = p->p_pid;
585 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
586 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
587 pt->pt_type = id;
588 pt->pt_proc = p;
589 pt->pt_overruns = 0;
590 pt->pt_poverruns = 0;
591 pt->pt_entry = timerid;
592 pt->pt_queued = false;
593 timespecclear(&pt->pt_time.it_value);
594 if (id == CLOCK_REALTIME)
595 callout_init(&pt->pt_ch, 0);
596 else
597 pt->pt_active = 0;
598
599 pts->pts_timers[timerid] = pt;
600 mutex_spin_exit(&timer_lock);
601
602 return copyout(&timerid, tid, sizeof(timerid));
603 }
604
605 /* Delete a POSIX realtime timer */
606 int
607 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
608 register_t *retval)
609 {
610 /* {
611 syscallarg(timer_t) timerid;
612 } */
613 struct proc *p = l->l_proc;
614 timer_t timerid;
615 struct ptimers *pts;
616 struct ptimer *pt, *ptn;
617
618 timerid = SCARG(uap, timerid);
619 pts = p->p_timers;
620
621 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
622 return (EINVAL);
623
624 mutex_spin_enter(&timer_lock);
625 if ((pt = pts->pts_timers[timerid]) == NULL) {
626 mutex_spin_exit(&timer_lock);
627 return (EINVAL);
628 }
629 if (pt->pt_type != CLOCK_REALTIME) {
630 if (pt->pt_active) {
631 ptn = LIST_NEXT(pt, pt_list);
632 LIST_REMOVE(pt, pt_list);
633 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
634 timespecadd(&pt->pt_time.it_value,
635 &ptn->pt_time.it_value,
636 &ptn->pt_time.it_value);
637 pt->pt_active = 0;
638 }
639 }
640 itimerfree(pts, timerid);
641
642 return (0);
643 }
644
645 /*
646 * Set up the given timer. The value in pt->pt_time.it_value is taken
647 * to be an absolute time for CLOCK_REALTIME timers and a relative
648 * time for virtual timers.
649 * Must be called at splclock().
650 */
651 void
652 timer_settime(struct ptimer *pt)
653 {
654 struct ptimer *ptn, *pptn;
655 struct ptlist *ptl;
656
657 KASSERT(mutex_owned(&timer_lock));
658
659 if (pt->pt_type == CLOCK_REALTIME) {
660 callout_stop(&pt->pt_ch);
661 if (timespecisset(&pt->pt_time.it_value)) {
662 /*
663 * Don't need to check tshzto() return value, here.
664 * callout_reset() does it for us.
665 */
666 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
667 realtimerexpire, pt);
668 }
669 } else {
670 if (pt->pt_active) {
671 ptn = LIST_NEXT(pt, pt_list);
672 LIST_REMOVE(pt, pt_list);
673 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
674 timespecadd(&pt->pt_time.it_value,
675 &ptn->pt_time.it_value,
676 &ptn->pt_time.it_value);
677 }
678 if (timespecisset(&pt->pt_time.it_value)) {
679 if (pt->pt_type == CLOCK_VIRTUAL)
680 ptl = &pt->pt_proc->p_timers->pts_virtual;
681 else
682 ptl = &pt->pt_proc->p_timers->pts_prof;
683
684 for (ptn = LIST_FIRST(ptl), pptn = NULL;
685 ptn && timespeccmp(&pt->pt_time.it_value,
686 &ptn->pt_time.it_value, >);
687 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
688 timespecsub(&pt->pt_time.it_value,
689 &ptn->pt_time.it_value,
690 &pt->pt_time.it_value);
691
692 if (pptn)
693 LIST_INSERT_AFTER(pptn, pt, pt_list);
694 else
695 LIST_INSERT_HEAD(ptl, pt, pt_list);
696
697 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
698 timespecsub(&ptn->pt_time.it_value,
699 &pt->pt_time.it_value,
700 &ptn->pt_time.it_value);
701
702 pt->pt_active = 1;
703 } else
704 pt->pt_active = 0;
705 }
706 }
707
708 void
709 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
710 {
711 struct timespec now;
712 struct ptimer *ptn;
713
714 KASSERT(mutex_owned(&timer_lock));
715
716 *aits = pt->pt_time;
717 if (pt->pt_type == CLOCK_REALTIME) {
718 /*
719 * Convert from absolute to relative time in .it_value
720 * part of real time timer. If time for real time
721 * timer has passed return 0, else return difference
722 * between current time and time for the timer to go
723 * off.
724 */
725 if (timespecisset(&aits->it_value)) {
726 getnanotime(&now);
727 if (timespeccmp(&aits->it_value, &now, <))
728 timespecclear(&aits->it_value);
729 else
730 timespecsub(&aits->it_value, &now,
731 &aits->it_value);
732 }
733 } else if (pt->pt_active) {
734 if (pt->pt_type == CLOCK_VIRTUAL)
735 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
736 else
737 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
738 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
739 timespecadd(&aits->it_value,
740 &ptn->pt_time.it_value, &aits->it_value);
741 KASSERT(ptn != NULL); /* pt should be findable on the list */
742 } else
743 timespecclear(&aits->it_value);
744 }
745
746
747
748 /* Set and arm a POSIX realtime timer */
749 int
750 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
751 register_t *retval)
752 {
753 /* {
754 syscallarg(timer_t) timerid;
755 syscallarg(int) flags;
756 syscallarg(const struct itimerspec *) value;
757 syscallarg(struct itimerspec *) ovalue;
758 } */
759 int error;
760 struct itimerspec value, ovalue, *ovp = NULL;
761
762 if ((error = copyin(SCARG(uap, value), &value,
763 sizeof(struct itimerspec))) != 0)
764 return (error);
765
766 if (SCARG(uap, ovalue))
767 ovp = &ovalue;
768
769 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
770 SCARG(uap, flags), l->l_proc)) != 0)
771 return error;
772
773 if (ovp)
774 return copyout(&ovalue, SCARG(uap, ovalue),
775 sizeof(struct itimerspec));
776 return 0;
777 }
778
779 int
780 dotimer_settime(int timerid, struct itimerspec *value,
781 struct itimerspec *ovalue, int flags, struct proc *p)
782 {
783 struct timespec now;
784 struct itimerspec val, oval;
785 struct ptimers *pts;
786 struct ptimer *pt;
787
788 pts = p->p_timers;
789
790 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
791 return EINVAL;
792 val = *value;
793 if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
794 return EINVAL;
795
796 mutex_spin_enter(&timer_lock);
797 if ((pt = pts->pts_timers[timerid]) == NULL) {
798 mutex_spin_exit(&timer_lock);
799 return EINVAL;
800 }
801
802 oval = pt->pt_time;
803 pt->pt_time = val;
804
805 /*
806 * If we've been passed a relative time for a realtime timer,
807 * convert it to absolute; if an absolute time for a virtual
808 * timer, convert it to relative and make sure we don't set it
809 * to zero, which would cancel the timer, or let it go
810 * negative, which would confuse the comparison tests.
811 */
812 if (timespecisset(&pt->pt_time.it_value)) {
813 if (pt->pt_type == CLOCK_REALTIME) {
814 if ((flags & TIMER_ABSTIME) == 0) {
815 getnanotime(&now);
816 timespecadd(&pt->pt_time.it_value, &now,
817 &pt->pt_time.it_value);
818 }
819 } else {
820 if ((flags & TIMER_ABSTIME) != 0) {
821 getnanotime(&now);
822 timespecsub(&pt->pt_time.it_value, &now,
823 &pt->pt_time.it_value);
824 if (!timespecisset(&pt->pt_time.it_value) ||
825 pt->pt_time.it_value.tv_sec < 0) {
826 pt->pt_time.it_value.tv_sec = 0;
827 pt->pt_time.it_value.tv_nsec = 1;
828 }
829 }
830 }
831 }
832
833 timer_settime(pt);
834 mutex_spin_exit(&timer_lock);
835
836 if (ovalue)
837 *ovalue = oval;
838
839 return (0);
840 }
841
842 /* Return the time remaining until a POSIX timer fires. */
843 int
844 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
845 register_t *retval)
846 {
847 /* {
848 syscallarg(timer_t) timerid;
849 syscallarg(struct itimerspec *) value;
850 } */
851 struct itimerspec its;
852 int error;
853
854 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
855 &its)) != 0)
856 return error;
857
858 return copyout(&its, SCARG(uap, value), sizeof(its));
859 }
860
861 int
862 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
863 {
864 struct ptimer *pt;
865 struct ptimers *pts;
866
867 pts = p->p_timers;
868 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
869 return (EINVAL);
870 mutex_spin_enter(&timer_lock);
871 if ((pt = pts->pts_timers[timerid]) == NULL) {
872 mutex_spin_exit(&timer_lock);
873 return (EINVAL);
874 }
875 timer_gettime(pt, its);
876 mutex_spin_exit(&timer_lock);
877
878 return 0;
879 }
880
881 /*
882 * Return the count of the number of times a periodic timer expired
883 * while a notification was already pending. The counter is reset when
884 * a timer expires and a notification can be posted.
885 */
886 int
887 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
888 register_t *retval)
889 {
890 /* {
891 syscallarg(timer_t) timerid;
892 } */
893 struct proc *p = l->l_proc;
894 struct ptimers *pts;
895 int timerid;
896 struct ptimer *pt;
897
898 timerid = SCARG(uap, timerid);
899
900 pts = p->p_timers;
901 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
902 return (EINVAL);
903 mutex_spin_enter(&timer_lock);
904 if ((pt = pts->pts_timers[timerid]) == NULL) {
905 mutex_spin_exit(&timer_lock);
906 return (EINVAL);
907 }
908 *retval = pt->pt_poverruns;
909 mutex_spin_exit(&timer_lock);
910
911 return (0);
912 }
913
914 /*
915 * Real interval timer expired:
916 * send process whose timer expired an alarm signal.
917 * If time is not set up to reload, then just return.
918 * Else compute next time timer should go off which is > current time.
919 * This is where delay in processing this timeout causes multiple
920 * SIGALRM calls to be compressed into one.
921 */
922 void
923 realtimerexpire(void *arg)
924 {
925 uint64_t last_val, next_val, interval, now_ms;
926 struct timespec now, next;
927 struct ptimer *pt;
928 int backwards;
929
930 pt = arg;
931
932 mutex_spin_enter(&timer_lock);
933 itimerfire(pt);
934
935 if (!timespecisset(&pt->pt_time.it_interval)) {
936 timespecclear(&pt->pt_time.it_value);
937 mutex_spin_exit(&timer_lock);
938 return;
939 }
940
941 getnanotime(&now);
942 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
943 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
944 /* Handle the easy case of non-overflown timers first. */
945 if (!backwards && timespeccmp(&next, &now, >)) {
946 pt->pt_time.it_value = next;
947 } else {
948 now_ms = timespec2ns(&now);
949 last_val = timespec2ns(&pt->pt_time.it_value);
950 interval = timespec2ns(&pt->pt_time.it_interval);
951
952 next_val = now_ms +
953 (now_ms - last_val + interval - 1) % interval;
954
955 if (backwards)
956 next_val += interval;
957 else
958 pt->pt_overruns += (now_ms - last_val) / interval;
959
960 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
961 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
962 }
963
964 /*
965 * Don't need to check tshzto() return value, here.
966 * callout_reset() does it for us.
967 */
968 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
969 realtimerexpire, pt);
970 mutex_spin_exit(&timer_lock);
971 }
972
973 /* BSD routine to get the value of an interval timer. */
974 /* ARGSUSED */
975 int
976 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
977 register_t *retval)
978 {
979 /* {
980 syscallarg(int) which;
981 syscallarg(struct itimerval *) itv;
982 } */
983 struct proc *p = l->l_proc;
984 struct itimerval aitv;
985 int error;
986
987 error = dogetitimer(p, SCARG(uap, which), &aitv);
988 if (error)
989 return error;
990 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
991 }
992
993 int
994 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
995 {
996 struct ptimers *pts;
997 struct ptimer *pt;
998 struct itimerspec its;
999
1000 if ((u_int)which > ITIMER_PROF)
1001 return (EINVAL);
1002
1003 mutex_spin_enter(&timer_lock);
1004 pts = p->p_timers;
1005 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1006 timerclear(&itvp->it_value);
1007 timerclear(&itvp->it_interval);
1008 } else {
1009 timer_gettime(pt, &its);
1010 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1011 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1012 }
1013 mutex_spin_exit(&timer_lock);
1014
1015 return 0;
1016 }
1017
1018 /* BSD routine to set/arm an interval timer. */
1019 /* ARGSUSED */
1020 int
1021 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1022 register_t *retval)
1023 {
1024 /* {
1025 syscallarg(int) which;
1026 syscallarg(const struct itimerval *) itv;
1027 syscallarg(struct itimerval *) oitv;
1028 } */
1029 struct proc *p = l->l_proc;
1030 int which = SCARG(uap, which);
1031 struct sys_getitimer_args getargs;
1032 const struct itimerval *itvp;
1033 struct itimerval aitv;
1034 int error;
1035
1036 if ((u_int)which > ITIMER_PROF)
1037 return (EINVAL);
1038 itvp = SCARG(uap, itv);
1039 if (itvp &&
1040 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1041 return (error);
1042 if (SCARG(uap, oitv) != NULL) {
1043 SCARG(&getargs, which) = which;
1044 SCARG(&getargs, itv) = SCARG(uap, oitv);
1045 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1046 return (error);
1047 }
1048 if (itvp == 0)
1049 return (0);
1050
1051 return dosetitimer(p, which, &aitv);
1052 }
1053
1054 int
1055 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1056 {
1057 struct timespec now;
1058 struct ptimers *pts;
1059 struct ptimer *pt, *spare;
1060
1061 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1062 return (EINVAL);
1063
1064 /*
1065 * Don't bother allocating data structures if the process just
1066 * wants to clear the timer.
1067 */
1068 spare = NULL;
1069 pts = p->p_timers;
1070 retry:
1071 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1072 pts->pts_timers[which] == NULL))
1073 return (0);
1074 if (pts == NULL)
1075 pts = timers_alloc(p);
1076 mutex_spin_enter(&timer_lock);
1077 pt = pts->pts_timers[which];
1078 if (pt == NULL) {
1079 if (spare == NULL) {
1080 mutex_spin_exit(&timer_lock);
1081 spare = pool_get(&ptimer_pool, PR_WAITOK);
1082 goto retry;
1083 }
1084 pt = spare;
1085 spare = NULL;
1086 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1087 pt->pt_ev.sigev_value.sival_int = which;
1088 pt->pt_overruns = 0;
1089 pt->pt_proc = p;
1090 pt->pt_type = which;
1091 pt->pt_entry = which;
1092 pt->pt_queued = false;
1093 if (pt->pt_type == CLOCK_REALTIME)
1094 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1095 else
1096 pt->pt_active = 0;
1097
1098 switch (which) {
1099 case ITIMER_REAL:
1100 pt->pt_ev.sigev_signo = SIGALRM;
1101 break;
1102 case ITIMER_VIRTUAL:
1103 pt->pt_ev.sigev_signo = SIGVTALRM;
1104 break;
1105 case ITIMER_PROF:
1106 pt->pt_ev.sigev_signo = SIGPROF;
1107 break;
1108 }
1109 pts->pts_timers[which] = pt;
1110 }
1111
1112 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1113 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1114
1115 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1116 /* Convert to absolute time */
1117 /* XXX need to wrap in splclock for timecounters case? */
1118 getnanotime(&now);
1119 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1120 }
1121 timer_settime(pt);
1122 mutex_spin_exit(&timer_lock);
1123 if (spare != NULL)
1124 pool_put(&ptimer_pool, spare);
1125
1126 return (0);
1127 }
1128
1129 /* Utility routines to manage the array of pointers to timers. */
1130 struct ptimers *
1131 timers_alloc(struct proc *p)
1132 {
1133 struct ptimers *pts;
1134 int i;
1135
1136 pts = pool_get(&ptimers_pool, PR_WAITOK);
1137 LIST_INIT(&pts->pts_virtual);
1138 LIST_INIT(&pts->pts_prof);
1139 for (i = 0; i < TIMER_MAX; i++)
1140 pts->pts_timers[i] = NULL;
1141 pts->pts_fired = 0;
1142 mutex_spin_enter(&timer_lock);
1143 if (p->p_timers == NULL) {
1144 p->p_timers = pts;
1145 mutex_spin_exit(&timer_lock);
1146 return pts;
1147 }
1148 mutex_spin_exit(&timer_lock);
1149 pool_put(&ptimers_pool, pts);
1150 return p->p_timers;
1151 }
1152
1153 /*
1154 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1155 * then clean up all timers and free all the data structures. If
1156 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1157 * by timer_create(), not the BSD setitimer() timers, and only free the
1158 * structure if none of those remain.
1159 */
1160 void
1161 timers_free(struct proc *p, int which)
1162 {
1163 struct ptimers *pts;
1164 struct ptimer *ptn;
1165 struct timespec ts;
1166 int i;
1167
1168 if (p->p_timers == NULL)
1169 return;
1170
1171 pts = p->p_timers;
1172 mutex_spin_enter(&timer_lock);
1173 if (which == TIMERS_ALL) {
1174 p->p_timers = NULL;
1175 i = 0;
1176 } else {
1177 timespecclear(&ts);
1178 for (ptn = LIST_FIRST(&pts->pts_virtual);
1179 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1180 ptn = LIST_NEXT(ptn, pt_list)) {
1181 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1182 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1183 }
1184 LIST_FIRST(&pts->pts_virtual) = NULL;
1185 if (ptn) {
1186 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1187 timespecadd(&ts, &ptn->pt_time.it_value,
1188 &ptn->pt_time.it_value);
1189 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1190 }
1191 timespecclear(&ts);
1192 for (ptn = LIST_FIRST(&pts->pts_prof);
1193 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1194 ptn = LIST_NEXT(ptn, pt_list)) {
1195 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1196 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1197 }
1198 LIST_FIRST(&pts->pts_prof) = NULL;
1199 if (ptn) {
1200 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1201 timespecadd(&ts, &ptn->pt_time.it_value,
1202 &ptn->pt_time.it_value);
1203 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1204 }
1205 i = 3;
1206 }
1207 for ( ; i < TIMER_MAX; i++) {
1208 if (pts->pts_timers[i] != NULL) {
1209 itimerfree(pts, i);
1210 mutex_spin_enter(&timer_lock);
1211 }
1212 }
1213 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1214 pts->pts_timers[2] == NULL) {
1215 p->p_timers = NULL;
1216 mutex_spin_exit(&timer_lock);
1217 pool_put(&ptimers_pool, pts);
1218 } else
1219 mutex_spin_exit(&timer_lock);
1220 }
1221
1222 static void
1223 itimerfree(struct ptimers *pts, int index)
1224 {
1225 struct ptimer *pt;
1226
1227 KASSERT(mutex_owned(&timer_lock));
1228
1229 pt = pts->pts_timers[index];
1230 pts->pts_timers[index] = NULL;
1231 if (pt->pt_type == CLOCK_REALTIME)
1232 callout_halt(&pt->pt_ch, &timer_lock);
1233 else if (pt->pt_queued)
1234 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1235 mutex_spin_exit(&timer_lock);
1236 if (pt->pt_type == CLOCK_REALTIME)
1237 callout_destroy(&pt->pt_ch);
1238 pool_put(&ptimer_pool, pt);
1239 }
1240
1241 /*
1242 * Decrement an interval timer by a specified number
1243 * of microseconds, which must be less than a second,
1244 * i.e. < 1000000. If the timer expires, then reload
1245 * it. In this case, carry over (usec - old value) to
1246 * reduce the value reloaded into the timer so that
1247 * the timer does not drift. This routine assumes
1248 * that it is called in a context where the timers
1249 * on which it is operating cannot change in value.
1250 */
1251 static int
1252 itimerdecr(struct ptimer *pt, int usec)
1253 {
1254 struct itimerspec *itp;
1255 int nsec = usec * 1000;
1256
1257 KASSERT(mutex_owned(&timer_lock));
1258
1259 itp = &pt->pt_time;
1260 if (itp->it_value.tv_nsec < nsec) {
1261 if (itp->it_value.tv_sec == 0) {
1262 /* expired, and already in next interval */
1263 nsec -= itp->it_value.tv_nsec;
1264 goto expire;
1265 }
1266 itp->it_value.tv_nsec += 1000000000;
1267 itp->it_value.tv_sec--;
1268 }
1269 itp->it_value.tv_nsec -= usec;
1270 usec = 0;
1271 if (timespecisset(&itp->it_value))
1272 return (1);
1273 /* expired, exactly at end of interval */
1274 expire:
1275 if (timespecisset(&itp->it_interval)) {
1276 itp->it_value = itp->it_interval;
1277 itp->it_value.tv_nsec -= nsec;
1278 if (itp->it_value.tv_nsec < 0) {
1279 itp->it_value.tv_nsec += 1000000000;
1280 itp->it_value.tv_sec--;
1281 }
1282 timer_settime(pt);
1283 } else
1284 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1285 return (0);
1286 }
1287
1288 static void
1289 itimerfire(struct ptimer *pt)
1290 {
1291
1292 KASSERT(mutex_owned(&timer_lock));
1293
1294 /*
1295 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1296 * XXX Relying on the clock interrupt is stupid.
1297 */
1298 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1299 return;
1300 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1301 pt->pt_queued = true;
1302 softint_schedule(timer_sih);
1303 }
1304
1305 void
1306 timer_tick(lwp_t *l, bool user)
1307 {
1308 struct ptimers *pts;
1309 struct ptimer *pt;
1310 proc_t *p;
1311
1312 p = l->l_proc;
1313 if (p->p_timers == NULL)
1314 return;
1315
1316 mutex_spin_enter(&timer_lock);
1317 if ((pts = l->l_proc->p_timers) != NULL) {
1318 /*
1319 * Run current process's virtual and profile time, as needed.
1320 */
1321 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1322 if (itimerdecr(pt, tick) == 0)
1323 itimerfire(pt);
1324 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1325 if (itimerdecr(pt, tick) == 0)
1326 itimerfire(pt);
1327 }
1328 mutex_spin_exit(&timer_lock);
1329 }
1330
1331 static void
1332 timer_intr(void *cookie)
1333 {
1334 ksiginfo_t ksi;
1335 struct ptimer *pt;
1336 proc_t *p;
1337
1338 mutex_spin_enter(&timer_lock);
1339 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1340 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1341 KASSERT(pt->pt_queued);
1342 pt->pt_queued = false;
1343
1344 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1345 continue;
1346 p = pt->pt_proc;
1347 if (pt->pt_proc->p_timers == NULL) {
1348 /* Process is dying. */
1349 continue;
1350 }
1351 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1352 pt->pt_overruns++;
1353 continue;
1354 }
1355
1356 KSI_INIT(&ksi);
1357 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1358 ksi.ksi_code = SI_TIMER;
1359 ksi.ksi_value = pt->pt_ev.sigev_value;
1360 pt->pt_poverruns = pt->pt_overruns;
1361 pt->pt_overruns = 0;
1362 mutex_spin_exit(&timer_lock);
1363
1364 mutex_enter(proc_lock);
1365 kpsignal(p, &ksi, NULL);
1366 mutex_exit(proc_lock);
1367
1368 mutex_spin_enter(&timer_lock);
1369 }
1370 mutex_spin_exit(&timer_lock);
1371 }
1372
1373 /*
1374 * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1375 * for usage and rationale.
1376 */
1377 int
1378 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1379 {
1380 struct timeval tv, delta;
1381 int rv = 0;
1382
1383 getmicrouptime(&tv);
1384 timersub(&tv, lasttime, &delta);
1385
1386 /*
1387 * check for 0,0 is so that the message will be seen at least once,
1388 * even if interval is huge.
1389 */
1390 if (timercmp(&delta, mininterval, >=) ||
1391 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1392 *lasttime = tv;
1393 rv = 1;
1394 }
1395
1396 return (rv);
1397 }
1398
1399 /*
1400 * ppsratecheck(): packets (or events) per second limitation.
1401 */
1402 int
1403 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1404 {
1405 struct timeval tv, delta;
1406 int rv;
1407
1408 getmicrouptime(&tv);
1409 timersub(&tv, lasttime, &delta);
1410
1411 /*
1412 * check for 0,0 is so that the message will be seen at least once.
1413 * if more than one second have passed since the last update of
1414 * lasttime, reset the counter.
1415 *
1416 * we do increment *curpps even in *curpps < maxpps case, as some may
1417 * try to use *curpps for stat purposes as well.
1418 */
1419 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1420 delta.tv_sec >= 1) {
1421 *lasttime = tv;
1422 *curpps = 0;
1423 }
1424 if (maxpps < 0)
1425 rv = 1;
1426 else if (*curpps < maxpps)
1427 rv = 1;
1428 else
1429 rv = 0;
1430
1431 #if 1 /*DIAGNOSTIC?*/
1432 /* be careful about wrap-around */
1433 if (*curpps + 1 > *curpps)
1434 *curpps = *curpps + 1;
1435 #else
1436 /*
1437 * assume that there's not too many calls to this function.
1438 * not sure if the assumption holds, as it depends on *caller's*
1439 * behavior, not the behavior of this function.
1440 * IMHO it is wrong to make assumption on the caller's behavior,
1441 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1442 */
1443 *curpps = *curpps + 1;
1444 #endif
1445
1446 return (rv);
1447 }
1448