Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.154
      1 /*	$NetBSD: kern_time.c,v 1.154 2008/10/15 06:51:20 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.154 2008/10/15 06:51:20 wrstuden Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/sa.h>
     79 #include <sys/savar.h>
     80 #include <sys/syscallargs.h>
     81 #include <sys/cpu.h>
     82 
     83 #include <uvm/uvm_extern.h>
     84 
     85 #include "opt_sa.h"
     86 
     87 static void	timer_intr(void *);
     88 static void	itimerfire(struct ptimer *);
     89 static void	itimerfree(struct ptimers *, int);
     90 
     91 kmutex_t	timer_lock;
     92 
     93 static void	*timer_sih;
     94 static TAILQ_HEAD(, ptimer) timer_queue;
     95 
     96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97     &pool_allocator_nointr, IPL_NONE);
     98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99     &pool_allocator_nointr, IPL_NONE);
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	/* nothing yet */
    109 }
    110 
    111 void
    112 time_init2(void)
    113 {
    114 
    115 	TAILQ_INIT(&timer_queue);
    116 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118 	    timer_intr, NULL);
    119 }
    120 
    121 /* Time of day and interval timer support.
    122  *
    123  * These routines provide the kernel entry points to get and set
    124  * the time-of-day and per-process interval timers.  Subroutines
    125  * here provide support for adding and subtracting timeval structures
    126  * and decrementing interval timers, optionally reloading the interval
    127  * timers when they expire.
    128  */
    129 
    130 /* This function is used by clock_settime and settimeofday */
    131 static int
    132 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    133 {
    134 	struct timeval delta, tv;
    135 	struct timeval now;
    136 	struct timespec ts1;
    137 	struct bintime btdelta;
    138 	lwp_t *l;
    139 	int s;
    140 
    141 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    142 
    143 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    144 	s = splclock();
    145 	microtime(&now);
    146 	timersub(&tv, &now, &delta);
    147 
    148 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    149 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    150 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    151 		splx(s);
    152 		return (EPERM);
    153 	}
    154 
    155 #ifdef notyet
    156 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    157 		splx(s);
    158 		return (EPERM);
    159 	}
    160 #endif
    161 
    162 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    163 	tc_setclock(&ts1);
    164 
    165 	timeradd(&boottime, &delta, &boottime);
    166 
    167 	/*
    168 	 * XXXSMP: There is a short race between setting the time above
    169 	 * and adjusting LWP's run times.  Fixing this properly means
    170 	 * pausing all CPUs while we adjust the clock.
    171 	 */
    172 	timeval2bintime(&delta, &btdelta);
    173 	mutex_enter(proc_lock);
    174 	LIST_FOREACH(l, &alllwp, l_list) {
    175 		lwp_lock(l);
    176 		bintime_add(&l->l_stime, &btdelta);
    177 		lwp_unlock(l);
    178 	}
    179 	mutex_exit(proc_lock);
    180 	resettodr();
    181 	splx(s);
    182 
    183 	return (0);
    184 }
    185 
    186 int
    187 settime(struct proc *p, struct timespec *ts)
    188 {
    189 	return (settime1(p, ts, true));
    190 }
    191 
    192 /* ARGSUSED */
    193 int
    194 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    195     register_t *retval)
    196 {
    197 	/* {
    198 		syscallarg(clockid_t) clock_id;
    199 		syscallarg(struct timespec *) tp;
    200 	} */
    201 	clockid_t clock_id;
    202 	struct timespec ats;
    203 
    204 	clock_id = SCARG(uap, clock_id);
    205 	switch (clock_id) {
    206 	case CLOCK_REALTIME:
    207 		nanotime(&ats);
    208 		break;
    209 	case CLOCK_MONOTONIC:
    210 		nanouptime(&ats);
    211 		break;
    212 	default:
    213 		return (EINVAL);
    214 	}
    215 
    216 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    217 }
    218 
    219 /* ARGSUSED */
    220 int
    221 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    222     register_t *retval)
    223 {
    224 	/* {
    225 		syscallarg(clockid_t) clock_id;
    226 		syscallarg(const struct timespec *) tp;
    227 	} */
    228 
    229 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    230 	    true);
    231 }
    232 
    233 
    234 int
    235 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    236     bool check_kauth)
    237 {
    238 	struct timespec ats;
    239 	int error;
    240 
    241 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    242 		return (error);
    243 
    244 	switch (clock_id) {
    245 	case CLOCK_REALTIME:
    246 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    247 			return (error);
    248 		break;
    249 	case CLOCK_MONOTONIC:
    250 		return (EINVAL);	/* read-only clock */
    251 	default:
    252 		return (EINVAL);
    253 	}
    254 
    255 	return 0;
    256 }
    257 
    258 int
    259 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    260     register_t *retval)
    261 {
    262 	/* {
    263 		syscallarg(clockid_t) clock_id;
    264 		syscallarg(struct timespec *) tp;
    265 	} */
    266 	clockid_t clock_id;
    267 	struct timespec ts;
    268 	int error = 0;
    269 
    270 	clock_id = SCARG(uap, clock_id);
    271 	switch (clock_id) {
    272 	case CLOCK_REALTIME:
    273 	case CLOCK_MONOTONIC:
    274 		ts.tv_sec = 0;
    275 		if (tc_getfrequency() > 1000000000)
    276 			ts.tv_nsec = 1;
    277 		else
    278 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    279 		break;
    280 	default:
    281 		return (EINVAL);
    282 	}
    283 
    284 	if (SCARG(uap, tp))
    285 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    286 
    287 	return error;
    288 }
    289 
    290 /* ARGSUSED */
    291 int
    292 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    293     register_t *retval)
    294 {
    295 	/* {
    296 		syscallarg(struct timespec *) rqtp;
    297 		syscallarg(struct timespec *) rmtp;
    298 	} */
    299 	struct timespec rmt, rqt;
    300 	int error, error1;
    301 
    302 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    303 	if (error)
    304 		return (error);
    305 
    306 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    307 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    308 		return error;
    309 
    310 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    311 	return error1 ? error1 : error;
    312 }
    313 
    314 int
    315 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    316 {
    317 	struct timespec rmtstart;
    318 	int error, timo;
    319 
    320 	if (itimespecfix(rqt))
    321 		return (EINVAL);
    322 
    323 	timo = tstohz(rqt);
    324 	/*
    325 	 * Avoid inadvertantly sleeping forever
    326 	 */
    327 	if (timo == 0)
    328 		timo = 1;
    329 	getnanouptime(&rmtstart);
    330 again:
    331 	error = kpause("nanoslp", true, timo, NULL);
    332 	if (rmt != NULL || error == 0) {
    333 		struct timespec rmtend;
    334 		struct timespec t0;
    335 		struct timespec *t;
    336 
    337 		getnanouptime(&rmtend);
    338 		t = (rmt != NULL) ? rmt : &t0;
    339 		timespecsub(&rmtend, &rmtstart, t);
    340 		timespecsub(rqt, t, t);
    341 		if (t->tv_sec < 0)
    342 			timespecclear(t);
    343 		if (error == 0) {
    344 			timo = tstohz(t);
    345 			if (timo > 0)
    346 				goto again;
    347 		}
    348 	}
    349 
    350 	if (error == ERESTART)
    351 		error = EINTR;
    352 	if (error == EWOULDBLOCK)
    353 		error = 0;
    354 
    355 	return error;
    356 }
    357 
    358 /* ARGSUSED */
    359 int
    360 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    361     register_t *retval)
    362 {
    363 	/* {
    364 		syscallarg(struct timeval *) tp;
    365 		syscallarg(void *) tzp;		really "struct timezone *";
    366 	} */
    367 	struct timeval atv;
    368 	int error = 0;
    369 	struct timezone tzfake;
    370 
    371 	if (SCARG(uap, tp)) {
    372 		microtime(&atv);
    373 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    374 		if (error)
    375 			return (error);
    376 	}
    377 	if (SCARG(uap, tzp)) {
    378 		/*
    379 		 * NetBSD has no kernel notion of time zone, so we just
    380 		 * fake up a timezone struct and return it if demanded.
    381 		 */
    382 		tzfake.tz_minuteswest = 0;
    383 		tzfake.tz_dsttime = 0;
    384 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    385 	}
    386 	return (error);
    387 }
    388 
    389 /* ARGSUSED */
    390 int
    391 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    392     register_t *retval)
    393 {
    394 	/* {
    395 		syscallarg(const struct timeval *) tv;
    396 		syscallarg(const void *) tzp; really "const struct timezone *";
    397 	} */
    398 
    399 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    400 }
    401 
    402 int
    403 settimeofday1(const struct timeval *utv, bool userspace,
    404     const void *utzp, struct lwp *l, bool check_kauth)
    405 {
    406 	struct timeval atv;
    407 	struct timespec ts;
    408 	int error;
    409 
    410 	/* Verify all parameters before changing time. */
    411 
    412 	/*
    413 	 * NetBSD has no kernel notion of time zone, and only an
    414 	 * obsolete program would try to set it, so we log a warning.
    415 	 */
    416 	if (utzp)
    417 		log(LOG_WARNING, "pid %d attempted to set the "
    418 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    419 
    420 	if (utv == NULL)
    421 		return 0;
    422 
    423 	if (userspace) {
    424 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    425 			return error;
    426 		utv = &atv;
    427 	}
    428 
    429 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    430 	return settime1(l->l_proc, &ts, check_kauth);
    431 }
    432 
    433 int	time_adjusted;			/* set if an adjustment is made */
    434 
    435 /* ARGSUSED */
    436 int
    437 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    438     register_t *retval)
    439 {
    440 	/* {
    441 		syscallarg(const struct timeval *) delta;
    442 		syscallarg(struct timeval *) olddelta;
    443 	} */
    444 	int error;
    445 
    446 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    447 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    448 		return (error);
    449 
    450 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    451 }
    452 
    453 int
    454 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    455 {
    456 	struct timeval atv;
    457 	int error = 0;
    458 
    459 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    460 
    461 	if (olddelta) {
    462 		mutex_spin_enter(&timecounter_lock);
    463 		atv.tv_sec = time_adjtime / 1000000;
    464 		atv.tv_usec = time_adjtime % 1000000;
    465 		mutex_spin_exit(&timecounter_lock);
    466 		if (atv.tv_usec < 0) {
    467 			atv.tv_usec += 1000000;
    468 			atv.tv_sec--;
    469 		}
    470 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    471 		if (error)
    472 			return (error);
    473 	}
    474 
    475 	if (delta) {
    476 		error = copyin(delta, &atv, sizeof(struct timeval));
    477 		if (error)
    478 			return (error);
    479 
    480 		mutex_spin_enter(&timecounter_lock);
    481 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    482 			atv.tv_usec;
    483 		if (time_adjtime) {
    484 			/* We need to save the system time during shutdown */
    485 			time_adjusted |= 1;
    486 		}
    487 		mutex_spin_exit(&timecounter_lock);
    488 	}
    489 
    490 	return error;
    491 }
    492 
    493 /*
    494  * Interval timer support. Both the BSD getitimer() family and the POSIX
    495  * timer_*() family of routines are supported.
    496  *
    497  * All timers are kept in an array pointed to by p_timers, which is
    498  * allocated on demand - many processes don't use timers at all. The
    499  * first three elements in this array are reserved for the BSD timers:
    500  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    501  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    502  * syscall.
    503  *
    504  * Realtime timers are kept in the ptimer structure as an absolute
    505  * time; virtual time timers are kept as a linked list of deltas.
    506  * Virtual time timers are processed in the hardclock() routine of
    507  * kern_clock.c.  The real time timer is processed by a callout
    508  * routine, called from the softclock() routine.  Since a callout may
    509  * be delayed in real time due to interrupt processing in the system,
    510  * it is possible for the real time timeout routine (realtimeexpire,
    511  * given below), to be delayed in real time past when it is supposed
    512  * to occur.  It does not suffice, therefore, to reload the real timer
    513  * .it_value from the real time timers .it_interval.  Rather, we
    514  * compute the next time in absolute time the timer should go off.  */
    515 
    516 /* Allocate a POSIX realtime timer. */
    517 int
    518 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    519     register_t *retval)
    520 {
    521 	/* {
    522 		syscallarg(clockid_t) clock_id;
    523 		syscallarg(struct sigevent *) evp;
    524 		syscallarg(timer_t *) timerid;
    525 	} */
    526 
    527 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    528 	    SCARG(uap, evp), copyin, l);
    529 }
    530 
    531 int
    532 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    533     copyin_t fetch_event, struct lwp *l)
    534 {
    535 	int error;
    536 	timer_t timerid;
    537 	struct ptimers *pts;
    538 	struct ptimer *pt;
    539 	struct proc *p;
    540 
    541 	p = l->l_proc;
    542 
    543 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    544 		return (EINVAL);
    545 
    546 	if ((pts = p->p_timers) == NULL)
    547 		pts = timers_alloc(p);
    548 
    549 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    550 	if (evp != NULL) {
    551 		if (((error =
    552 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    553 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    554 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    555 			pool_put(&ptimer_pool, pt);
    556 			return (error ? error : EINVAL);
    557 		}
    558 	}
    559 
    560 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    561 	mutex_spin_enter(&timer_lock);
    562 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    563 		if (pts->pts_timers[timerid] == NULL)
    564 			break;
    565 	if (timerid == TIMER_MAX) {
    566 		mutex_spin_exit(&timer_lock);
    567 		pool_put(&ptimer_pool, pt);
    568 		return EAGAIN;
    569 	}
    570 	if (evp == NULL) {
    571 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    572 		switch (id) {
    573 		case CLOCK_REALTIME:
    574 			pt->pt_ev.sigev_signo = SIGALRM;
    575 			break;
    576 		case CLOCK_VIRTUAL:
    577 			pt->pt_ev.sigev_signo = SIGVTALRM;
    578 			break;
    579 		case CLOCK_PROF:
    580 			pt->pt_ev.sigev_signo = SIGPROF;
    581 			break;
    582 		}
    583 		pt->pt_ev.sigev_value.sival_int = timerid;
    584 	}
    585 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    586 	pt->pt_info.ksi_errno = 0;
    587 	pt->pt_info.ksi_code = 0;
    588 	pt->pt_info.ksi_pid = p->p_pid;
    589 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    590 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    591 	pt->pt_type = id;
    592 	pt->pt_proc = p;
    593 	pt->pt_overruns = 0;
    594 	pt->pt_poverruns = 0;
    595 	pt->pt_entry = timerid;
    596 	pt->pt_queued = false;
    597 	timespecclear(&pt->pt_time.it_value);
    598 	if (id == CLOCK_REALTIME)
    599 		callout_init(&pt->pt_ch, 0);
    600 	else
    601 		pt->pt_active = 0;
    602 
    603 	pts->pts_timers[timerid] = pt;
    604 	mutex_spin_exit(&timer_lock);
    605 
    606 	return copyout(&timerid, tid, sizeof(timerid));
    607 }
    608 
    609 /* Delete a POSIX realtime timer */
    610 int
    611 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    612     register_t *retval)
    613 {
    614 	/* {
    615 		syscallarg(timer_t) timerid;
    616 	} */
    617 	struct proc *p = l->l_proc;
    618 	timer_t timerid;
    619 	struct ptimers *pts;
    620 	struct ptimer *pt, *ptn;
    621 
    622 	timerid = SCARG(uap, timerid);
    623 	pts = p->p_timers;
    624 
    625 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    626 		return (EINVAL);
    627 
    628 	mutex_spin_enter(&timer_lock);
    629 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    630 		mutex_spin_exit(&timer_lock);
    631 		return (EINVAL);
    632 	}
    633 	if (pt->pt_type != CLOCK_REALTIME) {
    634 		if (pt->pt_active) {
    635 			ptn = LIST_NEXT(pt, pt_list);
    636 			LIST_REMOVE(pt, pt_list);
    637 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    638 				timespecadd(&pt->pt_time.it_value,
    639 				    &ptn->pt_time.it_value,
    640 				    &ptn->pt_time.it_value);
    641 			pt->pt_active = 0;
    642 		}
    643 	}
    644 	itimerfree(pts, timerid);
    645 
    646 	return (0);
    647 }
    648 
    649 /*
    650  * Set up the given timer. The value in pt->pt_time.it_value is taken
    651  * to be an absolute time for CLOCK_REALTIME timers and a relative
    652  * time for virtual timers.
    653  * Must be called at splclock().
    654  */
    655 void
    656 timer_settime(struct ptimer *pt)
    657 {
    658 	struct ptimer *ptn, *pptn;
    659 	struct ptlist *ptl;
    660 
    661 	KASSERT(mutex_owned(&timer_lock));
    662 
    663 	if (pt->pt_type == CLOCK_REALTIME) {
    664 		callout_stop(&pt->pt_ch);
    665 		if (timespecisset(&pt->pt_time.it_value)) {
    666 			/*
    667 			 * Don't need to check tshzto() return value, here.
    668 			 * callout_reset() does it for us.
    669 			 */
    670 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    671 			    realtimerexpire, pt);
    672 		}
    673 	} else {
    674 		if (pt->pt_active) {
    675 			ptn = LIST_NEXT(pt, pt_list);
    676 			LIST_REMOVE(pt, pt_list);
    677 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    678 				timespecadd(&pt->pt_time.it_value,
    679 				    &ptn->pt_time.it_value,
    680 				    &ptn->pt_time.it_value);
    681 		}
    682 		if (timespecisset(&pt->pt_time.it_value)) {
    683 			if (pt->pt_type == CLOCK_VIRTUAL)
    684 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    685 			else
    686 				ptl = &pt->pt_proc->p_timers->pts_prof;
    687 
    688 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    689 			     ptn && timespeccmp(&pt->pt_time.it_value,
    690 				 &ptn->pt_time.it_value, >);
    691 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    692 				timespecsub(&pt->pt_time.it_value,
    693 				    &ptn->pt_time.it_value,
    694 				    &pt->pt_time.it_value);
    695 
    696 			if (pptn)
    697 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    698 			else
    699 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    700 
    701 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    702 				timespecsub(&ptn->pt_time.it_value,
    703 				    &pt->pt_time.it_value,
    704 				    &ptn->pt_time.it_value);
    705 
    706 			pt->pt_active = 1;
    707 		} else
    708 			pt->pt_active = 0;
    709 	}
    710 }
    711 
    712 void
    713 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    714 {
    715 	struct timespec now;
    716 	struct ptimer *ptn;
    717 
    718 	KASSERT(mutex_owned(&timer_lock));
    719 
    720 	*aits = pt->pt_time;
    721 	if (pt->pt_type == CLOCK_REALTIME) {
    722 		/*
    723 		 * Convert from absolute to relative time in .it_value
    724 		 * part of real time timer.  If time for real time
    725 		 * timer has passed return 0, else return difference
    726 		 * between current time and time for the timer to go
    727 		 * off.
    728 		 */
    729 		if (timespecisset(&aits->it_value)) {
    730 			getnanotime(&now);
    731 			if (timespeccmp(&aits->it_value, &now, <))
    732 				timespecclear(&aits->it_value);
    733 			else
    734 				timespecsub(&aits->it_value, &now,
    735 				    &aits->it_value);
    736 		}
    737 	} else if (pt->pt_active) {
    738 		if (pt->pt_type == CLOCK_VIRTUAL)
    739 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    740 		else
    741 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    742 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    743 			timespecadd(&aits->it_value,
    744 			    &ptn->pt_time.it_value, &aits->it_value);
    745 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    746 	} else
    747 		timespecclear(&aits->it_value);
    748 }
    749 
    750 
    751 
    752 /* Set and arm a POSIX realtime timer */
    753 int
    754 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    755     register_t *retval)
    756 {
    757 	/* {
    758 		syscallarg(timer_t) timerid;
    759 		syscallarg(int) flags;
    760 		syscallarg(const struct itimerspec *) value;
    761 		syscallarg(struct itimerspec *) ovalue;
    762 	} */
    763 	int error;
    764 	struct itimerspec value, ovalue, *ovp = NULL;
    765 
    766 	if ((error = copyin(SCARG(uap, value), &value,
    767 	    sizeof(struct itimerspec))) != 0)
    768 		return (error);
    769 
    770 	if (SCARG(uap, ovalue))
    771 		ovp = &ovalue;
    772 
    773 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    774 	    SCARG(uap, flags), l->l_proc)) != 0)
    775 		return error;
    776 
    777 	if (ovp)
    778 		return copyout(&ovalue, SCARG(uap, ovalue),
    779 		    sizeof(struct itimerspec));
    780 	return 0;
    781 }
    782 
    783 int
    784 dotimer_settime(int timerid, struct itimerspec *value,
    785     struct itimerspec *ovalue, int flags, struct proc *p)
    786 {
    787 	struct timespec now;
    788 	struct itimerspec val, oval;
    789 	struct ptimers *pts;
    790 	struct ptimer *pt;
    791 
    792 	pts = p->p_timers;
    793 
    794 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    795 		return EINVAL;
    796 	val = *value;
    797 	if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
    798 		return EINVAL;
    799 
    800 	mutex_spin_enter(&timer_lock);
    801 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    802 		mutex_spin_exit(&timer_lock);
    803 		return EINVAL;
    804 	}
    805 
    806 	oval = pt->pt_time;
    807 	pt->pt_time = val;
    808 
    809 	/*
    810 	 * If we've been passed a relative time for a realtime timer,
    811 	 * convert it to absolute; if an absolute time for a virtual
    812 	 * timer, convert it to relative and make sure we don't set it
    813 	 * to zero, which would cancel the timer, or let it go
    814 	 * negative, which would confuse the comparison tests.
    815 	 */
    816 	if (timespecisset(&pt->pt_time.it_value)) {
    817 		if (pt->pt_type == CLOCK_REALTIME) {
    818 			if ((flags & TIMER_ABSTIME) == 0) {
    819 				getnanotime(&now);
    820 				timespecadd(&pt->pt_time.it_value, &now,
    821 				    &pt->pt_time.it_value);
    822 			}
    823 		} else {
    824 			if ((flags & TIMER_ABSTIME) != 0) {
    825 				getnanotime(&now);
    826 				timespecsub(&pt->pt_time.it_value, &now,
    827 				    &pt->pt_time.it_value);
    828 				if (!timespecisset(&pt->pt_time.it_value) ||
    829 				    pt->pt_time.it_value.tv_sec < 0) {
    830 					pt->pt_time.it_value.tv_sec = 0;
    831 					pt->pt_time.it_value.tv_nsec = 1;
    832 				}
    833 			}
    834 		}
    835 	}
    836 
    837 	timer_settime(pt);
    838 	mutex_spin_exit(&timer_lock);
    839 
    840 	if (ovalue)
    841 		*ovalue = oval;
    842 
    843 	return (0);
    844 }
    845 
    846 /* Return the time remaining until a POSIX timer fires. */
    847 int
    848 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    849     register_t *retval)
    850 {
    851 	/* {
    852 		syscallarg(timer_t) timerid;
    853 		syscallarg(struct itimerspec *) value;
    854 	} */
    855 	struct itimerspec its;
    856 	int error;
    857 
    858 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    859 	    &its)) != 0)
    860 		return error;
    861 
    862 	return copyout(&its, SCARG(uap, value), sizeof(its));
    863 }
    864 
    865 int
    866 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    867 {
    868 	struct ptimer *pt;
    869 	struct ptimers *pts;
    870 
    871 	pts = p->p_timers;
    872 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    873 		return (EINVAL);
    874 	mutex_spin_enter(&timer_lock);
    875 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    876 		mutex_spin_exit(&timer_lock);
    877 		return (EINVAL);
    878 	}
    879 	timer_gettime(pt, its);
    880 	mutex_spin_exit(&timer_lock);
    881 
    882 	return 0;
    883 }
    884 
    885 /*
    886  * Return the count of the number of times a periodic timer expired
    887  * while a notification was already pending. The counter is reset when
    888  * a timer expires and a notification can be posted.
    889  */
    890 int
    891 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    892     register_t *retval)
    893 {
    894 	/* {
    895 		syscallarg(timer_t) timerid;
    896 	} */
    897 	struct proc *p = l->l_proc;
    898 	struct ptimers *pts;
    899 	int timerid;
    900 	struct ptimer *pt;
    901 
    902 	timerid = SCARG(uap, timerid);
    903 
    904 	pts = p->p_timers;
    905 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    906 		return (EINVAL);
    907 	mutex_spin_enter(&timer_lock);
    908 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    909 		mutex_spin_exit(&timer_lock);
    910 		return (EINVAL);
    911 	}
    912 	*retval = pt->pt_poverruns;
    913 	mutex_spin_exit(&timer_lock);
    914 
    915 	return (0);
    916 }
    917 
    918 #ifdef KERN_SA
    919 /* Glue function that triggers an upcall; called from userret(). */
    920 void
    921 timerupcall(struct lwp *l)
    922 {
    923 	struct ptimers *pt = l->l_proc->p_timers;
    924 	struct proc *p = l->l_proc;
    925 	unsigned int i, fired, done;
    926 
    927 	KDASSERT(l->l_proc->p_sa);
    928 	/* Bail out if we do not own the virtual processor */
    929 	if (l->l_savp->savp_lwp != l)
    930 		return ;
    931 
    932 	mutex_enter(p->p_lock);
    933 
    934 	fired = pt->pts_fired;
    935 	done = 0;
    936 	while ((i = ffs(fired)) != 0) {
    937 		siginfo_t *si;
    938 		int mask = 1 << --i;
    939 		int f;
    940 
    941 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    942 		l->l_pflag |= LP_SA_NOBLOCK;
    943 		si = siginfo_alloc(PR_WAITOK);
    944 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    945 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    946 		    sizeof(*si), si, siginfo_free) != 0) {
    947 			siginfo_free(si);
    948 			/* XXX What do we do here?? */
    949 		} else
    950 			done |= mask;
    951 		fired &= ~mask;
    952 		l->l_pflag ^= f;
    953 	}
    954 	pt->pts_fired &= ~done;
    955 	if (pt->pts_fired == 0)
    956 		l->l_proc->p_timerpend = 0;
    957 
    958 	mutex_exit(p->p_lock);
    959 }
    960 #endif /* KERN_SA */
    961 
    962 /*
    963  * Real interval timer expired:
    964  * send process whose timer expired an alarm signal.
    965  * If time is not set up to reload, then just return.
    966  * Else compute next time timer should go off which is > current time.
    967  * This is where delay in processing this timeout causes multiple
    968  * SIGALRM calls to be compressed into one.
    969  */
    970 void
    971 realtimerexpire(void *arg)
    972 {
    973 	uint64_t last_val, next_val, interval, now_ms;
    974 	struct timespec now, next;
    975 	struct ptimer *pt;
    976 	int backwards;
    977 
    978 	pt = arg;
    979 
    980 	mutex_spin_enter(&timer_lock);
    981 	itimerfire(pt);
    982 
    983 	if (!timespecisset(&pt->pt_time.it_interval)) {
    984 		timespecclear(&pt->pt_time.it_value);
    985 		mutex_spin_exit(&timer_lock);
    986 		return;
    987 	}
    988 
    989 	getnanotime(&now);
    990 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    991 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    992 	/* Handle the easy case of non-overflown timers first. */
    993 	if (!backwards && timespeccmp(&next, &now, >)) {
    994 		pt->pt_time.it_value = next;
    995 	} else {
    996 		now_ms = timespec2ns(&now);
    997 		last_val = timespec2ns(&pt->pt_time.it_value);
    998 		interval = timespec2ns(&pt->pt_time.it_interval);
    999 
   1000 		next_val = now_ms +
   1001 		    (now_ms - last_val + interval - 1) % interval;
   1002 
   1003 		if (backwards)
   1004 			next_val += interval;
   1005 		else
   1006 			pt->pt_overruns += (now_ms - last_val) / interval;
   1007 
   1008 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
   1009 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
   1010 	}
   1011 
   1012 	/*
   1013 	 * Don't need to check tshzto() return value, here.
   1014 	 * callout_reset() does it for us.
   1015 	 */
   1016 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1017 	    realtimerexpire, pt);
   1018 	mutex_spin_exit(&timer_lock);
   1019 }
   1020 
   1021 /* BSD routine to get the value of an interval timer. */
   1022 /* ARGSUSED */
   1023 int
   1024 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1025     register_t *retval)
   1026 {
   1027 	/* {
   1028 		syscallarg(int) which;
   1029 		syscallarg(struct itimerval *) itv;
   1030 	} */
   1031 	struct proc *p = l->l_proc;
   1032 	struct itimerval aitv;
   1033 	int error;
   1034 
   1035 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1036 	if (error)
   1037 		return error;
   1038 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1039 }
   1040 
   1041 int
   1042 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1043 {
   1044 	struct ptimers *pts;
   1045 	struct ptimer *pt;
   1046 	struct itimerspec its;
   1047 
   1048 	if ((u_int)which > ITIMER_PROF)
   1049 		return (EINVAL);
   1050 
   1051 	mutex_spin_enter(&timer_lock);
   1052 	pts = p->p_timers;
   1053 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1054 		timerclear(&itvp->it_value);
   1055 		timerclear(&itvp->it_interval);
   1056 	} else {
   1057 		timer_gettime(pt, &its);
   1058 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1059 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1060 	}
   1061 	mutex_spin_exit(&timer_lock);
   1062 
   1063 	return 0;
   1064 }
   1065 
   1066 /* BSD routine to set/arm an interval timer. */
   1067 /* ARGSUSED */
   1068 int
   1069 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1070     register_t *retval)
   1071 {
   1072 	/* {
   1073 		syscallarg(int) which;
   1074 		syscallarg(const struct itimerval *) itv;
   1075 		syscallarg(struct itimerval *) oitv;
   1076 	} */
   1077 	struct proc *p = l->l_proc;
   1078 	int which = SCARG(uap, which);
   1079 	struct sys_getitimer_args getargs;
   1080 	const struct itimerval *itvp;
   1081 	struct itimerval aitv;
   1082 	int error;
   1083 
   1084 	if ((u_int)which > ITIMER_PROF)
   1085 		return (EINVAL);
   1086 	itvp = SCARG(uap, itv);
   1087 	if (itvp &&
   1088 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1089 		return (error);
   1090 	if (SCARG(uap, oitv) != NULL) {
   1091 		SCARG(&getargs, which) = which;
   1092 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1093 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1094 			return (error);
   1095 	}
   1096 	if (itvp == 0)
   1097 		return (0);
   1098 
   1099 	return dosetitimer(p, which, &aitv);
   1100 }
   1101 
   1102 int
   1103 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1104 {
   1105 	struct timespec now;
   1106 	struct ptimers *pts;
   1107 	struct ptimer *pt, *spare;
   1108 
   1109 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1110 		return (EINVAL);
   1111 
   1112 	/*
   1113 	 * Don't bother allocating data structures if the process just
   1114 	 * wants to clear the timer.
   1115 	 */
   1116 	spare = NULL;
   1117 	pts = p->p_timers;
   1118  retry:
   1119 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1120 	    pts->pts_timers[which] == NULL))
   1121 		return (0);
   1122 	if (pts == NULL)
   1123 		pts = timers_alloc(p);
   1124 	mutex_spin_enter(&timer_lock);
   1125 	pt = pts->pts_timers[which];
   1126 	if (pt == NULL) {
   1127 		if (spare == NULL) {
   1128 			mutex_spin_exit(&timer_lock);
   1129 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1130 			goto retry;
   1131 		}
   1132 		pt = spare;
   1133 		spare = NULL;
   1134 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1135 		pt->pt_ev.sigev_value.sival_int = which;
   1136 		pt->pt_overruns = 0;
   1137 		pt->pt_proc = p;
   1138 		pt->pt_type = which;
   1139 		pt->pt_entry = which;
   1140 		pt->pt_queued = false;
   1141 		if (pt->pt_type == CLOCK_REALTIME)
   1142 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1143 		else
   1144 			pt->pt_active = 0;
   1145 
   1146 		switch (which) {
   1147 		case ITIMER_REAL:
   1148 			pt->pt_ev.sigev_signo = SIGALRM;
   1149 			break;
   1150 		case ITIMER_VIRTUAL:
   1151 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1152 			break;
   1153 		case ITIMER_PROF:
   1154 			pt->pt_ev.sigev_signo = SIGPROF;
   1155 			break;
   1156 		}
   1157 		pts->pts_timers[which] = pt;
   1158 	}
   1159 
   1160 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1161 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1162 
   1163 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1164 		/* Convert to absolute time */
   1165 		/* XXX need to wrap in splclock for timecounters case? */
   1166 		getnanotime(&now);
   1167 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1168 	}
   1169 	timer_settime(pt);
   1170 	mutex_spin_exit(&timer_lock);
   1171 	if (spare != NULL)
   1172 		pool_put(&ptimer_pool, spare);
   1173 
   1174 	return (0);
   1175 }
   1176 
   1177 /* Utility routines to manage the array of pointers to timers. */
   1178 struct ptimers *
   1179 timers_alloc(struct proc *p)
   1180 {
   1181 	struct ptimers *pts;
   1182 	int i;
   1183 
   1184 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1185 	LIST_INIT(&pts->pts_virtual);
   1186 	LIST_INIT(&pts->pts_prof);
   1187 	for (i = 0; i < TIMER_MAX; i++)
   1188 		pts->pts_timers[i] = NULL;
   1189 	pts->pts_fired = 0;
   1190 	mutex_spin_enter(&timer_lock);
   1191 	if (p->p_timers == NULL) {
   1192 		p->p_timers = pts;
   1193 		mutex_spin_exit(&timer_lock);
   1194 		return pts;
   1195 	}
   1196 	mutex_spin_exit(&timer_lock);
   1197 	pool_put(&ptimers_pool, pts);
   1198 	return p->p_timers;
   1199 }
   1200 
   1201 /*
   1202  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1203  * then clean up all timers and free all the data structures. If
   1204  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1205  * by timer_create(), not the BSD setitimer() timers, and only free the
   1206  * structure if none of those remain.
   1207  */
   1208 void
   1209 timers_free(struct proc *p, int which)
   1210 {
   1211 	struct ptimers *pts;
   1212 	struct ptimer *ptn;
   1213 	struct timespec ts;
   1214 	int i;
   1215 
   1216 	if (p->p_timers == NULL)
   1217 		return;
   1218 
   1219 	pts = p->p_timers;
   1220 	mutex_spin_enter(&timer_lock);
   1221 	if (which == TIMERS_ALL) {
   1222 		p->p_timers = NULL;
   1223 		i = 0;
   1224 	} else {
   1225 		timespecclear(&ts);
   1226 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1227 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1228 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1229 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1230 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1231 		}
   1232 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1233 		if (ptn) {
   1234 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1235 			timespecadd(&ts, &ptn->pt_time.it_value,
   1236 			    &ptn->pt_time.it_value);
   1237 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1238 		}
   1239 		timespecclear(&ts);
   1240 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1241 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1242 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1243 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1244 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1245 		}
   1246 		LIST_FIRST(&pts->pts_prof) = NULL;
   1247 		if (ptn) {
   1248 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1249 			timespecadd(&ts, &ptn->pt_time.it_value,
   1250 			    &ptn->pt_time.it_value);
   1251 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1252 		}
   1253 		i = 3;
   1254 	}
   1255 	for ( ; i < TIMER_MAX; i++) {
   1256 		if (pts->pts_timers[i] != NULL) {
   1257 			itimerfree(pts, i);
   1258 			mutex_spin_enter(&timer_lock);
   1259 		}
   1260 	}
   1261 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1262 	    pts->pts_timers[2] == NULL) {
   1263 		p->p_timers = NULL;
   1264 		mutex_spin_exit(&timer_lock);
   1265 		pool_put(&ptimers_pool, pts);
   1266 	} else
   1267 		mutex_spin_exit(&timer_lock);
   1268 }
   1269 
   1270 static void
   1271 itimerfree(struct ptimers *pts, int index)
   1272 {
   1273 	struct ptimer *pt;
   1274 
   1275 	KASSERT(mutex_owned(&timer_lock));
   1276 
   1277 	pt = pts->pts_timers[index];
   1278 	pts->pts_timers[index] = NULL;
   1279 	if (pt->pt_type == CLOCK_REALTIME)
   1280 		callout_halt(&pt->pt_ch, &timer_lock);
   1281 	else if (pt->pt_queued)
   1282 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1283 	mutex_spin_exit(&timer_lock);
   1284 	if (pt->pt_type == CLOCK_REALTIME)
   1285 		callout_destroy(&pt->pt_ch);
   1286 	pool_put(&ptimer_pool, pt);
   1287 }
   1288 
   1289 /*
   1290  * Decrement an interval timer by a specified number
   1291  * of nanoseconds, which must be less than a second,
   1292  * i.e. < 1000000000.  If the timer expires, then reload
   1293  * it.  In this case, carry over (nsec - old value) to
   1294  * reduce the value reloaded into the timer so that
   1295  * the timer does not drift.  This routine assumes
   1296  * that it is called in a context where the timers
   1297  * on which it is operating cannot change in value.
   1298  */
   1299 static int
   1300 itimerdecr(struct ptimer *pt, int nsec)
   1301 {
   1302 	struct itimerspec *itp;
   1303 
   1304 	KASSERT(mutex_owned(&timer_lock));
   1305 
   1306 	itp = &pt->pt_time;
   1307 	if (itp->it_value.tv_nsec < nsec) {
   1308 		if (itp->it_value.tv_sec == 0) {
   1309 			/* expired, and already in next interval */
   1310 			nsec -= itp->it_value.tv_nsec;
   1311 			goto expire;
   1312 		}
   1313 		itp->it_value.tv_nsec += 1000000000;
   1314 		itp->it_value.tv_sec--;
   1315 	}
   1316 	itp->it_value.tv_nsec -= nsec;
   1317 	nsec = 0;
   1318 	if (timespecisset(&itp->it_value))
   1319 		return (1);
   1320 	/* expired, exactly at end of interval */
   1321 expire:
   1322 	if (timespecisset(&itp->it_interval)) {
   1323 		itp->it_value = itp->it_interval;
   1324 		itp->it_value.tv_nsec -= nsec;
   1325 		if (itp->it_value.tv_nsec < 0) {
   1326 			itp->it_value.tv_nsec += 1000000000;
   1327 			itp->it_value.tv_sec--;
   1328 		}
   1329 		timer_settime(pt);
   1330 	} else
   1331 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1332 	return (0);
   1333 }
   1334 
   1335 static void
   1336 itimerfire(struct ptimer *pt)
   1337 {
   1338 
   1339 	KASSERT(mutex_owned(&timer_lock));
   1340 
   1341 	/*
   1342 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1343 	 * XXX Relying on the clock interrupt is stupid.
   1344 	 */
   1345 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1346 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1347 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1348 		return;
   1349 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1350 	pt->pt_queued = true;
   1351 	softint_schedule(timer_sih);
   1352 }
   1353 
   1354 void
   1355 timer_tick(lwp_t *l, bool user)
   1356 {
   1357 	struct ptimers *pts;
   1358 	struct ptimer *pt;
   1359 	proc_t *p;
   1360 
   1361 	p = l->l_proc;
   1362 	if (p->p_timers == NULL)
   1363 		return;
   1364 
   1365 	mutex_spin_enter(&timer_lock);
   1366 	if ((pts = l->l_proc->p_timers) != NULL) {
   1367 		/*
   1368 		 * Run current process's virtual and profile time, as needed.
   1369 		 */
   1370 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1371 			if (itimerdecr(pt, tick * 1000) == 0)
   1372 				itimerfire(pt);
   1373 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1374 			if (itimerdecr(pt, tick * 1000) == 0)
   1375 				itimerfire(pt);
   1376 	}
   1377 	mutex_spin_exit(&timer_lock);
   1378 }
   1379 
   1380 #ifdef KERN_SA
   1381 /*
   1382  * timer_sa_intr:
   1383  *
   1384  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1385  * with the timer lock held. We know that the process had SA enabled
   1386  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1387  * handler, SA should still be enabled by the time we get here.
   1388  *
   1389  * XXX Is it legit to lock p_lock and the lwp at this time?
   1390  */
   1391 static void
   1392 timer_sa_intr(struct ptimer *pt, proc_t *p)
   1393 {
   1394 	unsigned int i;
   1395 	struct sadata_vp *vp;
   1396 
   1397 	/* Cause the process to generate an upcall when it returns. */
   1398 	if (!p->p_timerpend) {
   1399 		/*
   1400 		 * XXX stop signals can be processed inside tsleep,
   1401 		 * which can be inside sa_yield's inner loop, which
   1402 		 * makes testing for sa_idle alone insuffucent to
   1403 		 * determine if we really should call setrunnable.
   1404 		 */
   1405 		pt->pt_poverruns = pt->pt_overruns;
   1406 		pt->pt_overruns = 0;
   1407 		i = 1 << pt->pt_entry;
   1408 		p->p_timers->pts_fired = i;
   1409 		p->p_timerpend = 1;
   1410 
   1411 		mutex_enter(p->p_lock);
   1412 		SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1413 			lwp_lock(vp->savp_lwp);
   1414 			lwp_need_userret(vp->savp_lwp);
   1415 			if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
   1416 				vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
   1417 				lwp_unsleep(vp->savp_lwp, true);
   1418 				break;
   1419 			}
   1420 			lwp_unlock(vp->savp_lwp);
   1421 		}
   1422 		mutex_exit(p->p_lock);
   1423 	} else {
   1424 		i = 1 << pt->pt_entry;
   1425 		if ((p->p_timers->pts_fired & i) == 0) {
   1426 			pt->pt_poverruns = pt->pt_overruns;
   1427 			pt->pt_overruns = 0;
   1428 			p->p_timers->pts_fired |= i;
   1429 		} else
   1430 			pt->pt_overruns++;
   1431 	}
   1432 }
   1433 #endif /* KERN_SA */
   1434 
   1435 static void
   1436 timer_intr(void *cookie)
   1437 {
   1438 	ksiginfo_t ksi;
   1439 	struct ptimer *pt;
   1440 	proc_t *p;
   1441 
   1442 	mutex_spin_enter(&timer_lock);
   1443 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1444 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1445 		KASSERT(pt->pt_queued);
   1446 		pt->pt_queued = false;
   1447 
   1448 		if (pt->pt_proc->p_timers == NULL) {
   1449 			/* Process is dying. */
   1450 			continue;
   1451 		}
   1452 		p = pt->pt_proc;
   1453 #ifdef KERN_SA
   1454 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1455 			timer_sa_intr(pt, p);
   1456 			continue;
   1457 		}
   1458 #endif /* KERN_SA */
   1459 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1460 			continue;
   1461 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1462 			pt->pt_overruns++;
   1463 			continue;
   1464 		}
   1465 
   1466 		KSI_INIT(&ksi);
   1467 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1468 		ksi.ksi_code = SI_TIMER;
   1469 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1470 		pt->pt_poverruns = pt->pt_overruns;
   1471 		pt->pt_overruns = 0;
   1472 		mutex_spin_exit(&timer_lock);
   1473 
   1474 		mutex_enter(proc_lock);
   1475 		kpsignal(p, &ksi, NULL);
   1476 		mutex_exit(proc_lock);
   1477 
   1478 		mutex_spin_enter(&timer_lock);
   1479 	}
   1480 	mutex_spin_exit(&timer_lock);
   1481 }
   1482