kern_time.c revision 1.154 1 /* $NetBSD: kern_time.c,v 1.154 2008/10/15 06:51:20 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.154 2008/10/15 06:51:20 wrstuden Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 &pool_allocator_nointr, IPL_NONE);
98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 &pool_allocator_nointr, IPL_NONE);
100
101 /*
102 * Initialize timekeeping.
103 */
104 void
105 time_init(void)
106 {
107
108 /* nothing yet */
109 }
110
111 void
112 time_init2(void)
113 {
114
115 TAILQ_INIT(&timer_queue);
116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 timer_intr, NULL);
119 }
120
121 /* Time of day and interval timer support.
122 *
123 * These routines provide the kernel entry points to get and set
124 * the time-of-day and per-process interval timers. Subroutines
125 * here provide support for adding and subtracting timeval structures
126 * and decrementing interval timers, optionally reloading the interval
127 * timers when they expire.
128 */
129
130 /* This function is used by clock_settime and settimeofday */
131 static int
132 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
133 {
134 struct timeval delta, tv;
135 struct timeval now;
136 struct timespec ts1;
137 struct bintime btdelta;
138 lwp_t *l;
139 int s;
140
141 TIMESPEC_TO_TIMEVAL(&tv, ts);
142
143 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
144 s = splclock();
145 microtime(&now);
146 timersub(&tv, &now, &delta);
147
148 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
149 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
150 KAUTH_ARG(check_kauth ? false : true)) != 0) {
151 splx(s);
152 return (EPERM);
153 }
154
155 #ifdef notyet
156 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
157 splx(s);
158 return (EPERM);
159 }
160 #endif
161
162 TIMEVAL_TO_TIMESPEC(&tv, &ts1);
163 tc_setclock(&ts1);
164
165 timeradd(&boottime, &delta, &boottime);
166
167 /*
168 * XXXSMP: There is a short race between setting the time above
169 * and adjusting LWP's run times. Fixing this properly means
170 * pausing all CPUs while we adjust the clock.
171 */
172 timeval2bintime(&delta, &btdelta);
173 mutex_enter(proc_lock);
174 LIST_FOREACH(l, &alllwp, l_list) {
175 lwp_lock(l);
176 bintime_add(&l->l_stime, &btdelta);
177 lwp_unlock(l);
178 }
179 mutex_exit(proc_lock);
180 resettodr();
181 splx(s);
182
183 return (0);
184 }
185
186 int
187 settime(struct proc *p, struct timespec *ts)
188 {
189 return (settime1(p, ts, true));
190 }
191
192 /* ARGSUSED */
193 int
194 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
195 register_t *retval)
196 {
197 /* {
198 syscallarg(clockid_t) clock_id;
199 syscallarg(struct timespec *) tp;
200 } */
201 clockid_t clock_id;
202 struct timespec ats;
203
204 clock_id = SCARG(uap, clock_id);
205 switch (clock_id) {
206 case CLOCK_REALTIME:
207 nanotime(&ats);
208 break;
209 case CLOCK_MONOTONIC:
210 nanouptime(&ats);
211 break;
212 default:
213 return (EINVAL);
214 }
215
216 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
217 }
218
219 /* ARGSUSED */
220 int
221 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
222 register_t *retval)
223 {
224 /* {
225 syscallarg(clockid_t) clock_id;
226 syscallarg(const struct timespec *) tp;
227 } */
228
229 return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
230 true);
231 }
232
233
234 int
235 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
236 bool check_kauth)
237 {
238 struct timespec ats;
239 int error;
240
241 if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
242 return (error);
243
244 switch (clock_id) {
245 case CLOCK_REALTIME:
246 if ((error = settime1(p, &ats, check_kauth)) != 0)
247 return (error);
248 break;
249 case CLOCK_MONOTONIC:
250 return (EINVAL); /* read-only clock */
251 default:
252 return (EINVAL);
253 }
254
255 return 0;
256 }
257
258 int
259 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
260 register_t *retval)
261 {
262 /* {
263 syscallarg(clockid_t) clock_id;
264 syscallarg(struct timespec *) tp;
265 } */
266 clockid_t clock_id;
267 struct timespec ts;
268 int error = 0;
269
270 clock_id = SCARG(uap, clock_id);
271 switch (clock_id) {
272 case CLOCK_REALTIME:
273 case CLOCK_MONOTONIC:
274 ts.tv_sec = 0;
275 if (tc_getfrequency() > 1000000000)
276 ts.tv_nsec = 1;
277 else
278 ts.tv_nsec = 1000000000 / tc_getfrequency();
279 break;
280 default:
281 return (EINVAL);
282 }
283
284 if (SCARG(uap, tp))
285 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
286
287 return error;
288 }
289
290 /* ARGSUSED */
291 int
292 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
293 register_t *retval)
294 {
295 /* {
296 syscallarg(struct timespec *) rqtp;
297 syscallarg(struct timespec *) rmtp;
298 } */
299 struct timespec rmt, rqt;
300 int error, error1;
301
302 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
303 if (error)
304 return (error);
305
306 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
307 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
308 return error;
309
310 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
311 return error1 ? error1 : error;
312 }
313
314 int
315 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
316 {
317 struct timespec rmtstart;
318 int error, timo;
319
320 if (itimespecfix(rqt))
321 return (EINVAL);
322
323 timo = tstohz(rqt);
324 /*
325 * Avoid inadvertantly sleeping forever
326 */
327 if (timo == 0)
328 timo = 1;
329 getnanouptime(&rmtstart);
330 again:
331 error = kpause("nanoslp", true, timo, NULL);
332 if (rmt != NULL || error == 0) {
333 struct timespec rmtend;
334 struct timespec t0;
335 struct timespec *t;
336
337 getnanouptime(&rmtend);
338 t = (rmt != NULL) ? rmt : &t0;
339 timespecsub(&rmtend, &rmtstart, t);
340 timespecsub(rqt, t, t);
341 if (t->tv_sec < 0)
342 timespecclear(t);
343 if (error == 0) {
344 timo = tstohz(t);
345 if (timo > 0)
346 goto again;
347 }
348 }
349
350 if (error == ERESTART)
351 error = EINTR;
352 if (error == EWOULDBLOCK)
353 error = 0;
354
355 return error;
356 }
357
358 /* ARGSUSED */
359 int
360 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
361 register_t *retval)
362 {
363 /* {
364 syscallarg(struct timeval *) tp;
365 syscallarg(void *) tzp; really "struct timezone *";
366 } */
367 struct timeval atv;
368 int error = 0;
369 struct timezone tzfake;
370
371 if (SCARG(uap, tp)) {
372 microtime(&atv);
373 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
374 if (error)
375 return (error);
376 }
377 if (SCARG(uap, tzp)) {
378 /*
379 * NetBSD has no kernel notion of time zone, so we just
380 * fake up a timezone struct and return it if demanded.
381 */
382 tzfake.tz_minuteswest = 0;
383 tzfake.tz_dsttime = 0;
384 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
385 }
386 return (error);
387 }
388
389 /* ARGSUSED */
390 int
391 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
392 register_t *retval)
393 {
394 /* {
395 syscallarg(const struct timeval *) tv;
396 syscallarg(const void *) tzp; really "const struct timezone *";
397 } */
398
399 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
400 }
401
402 int
403 settimeofday1(const struct timeval *utv, bool userspace,
404 const void *utzp, struct lwp *l, bool check_kauth)
405 {
406 struct timeval atv;
407 struct timespec ts;
408 int error;
409
410 /* Verify all parameters before changing time. */
411
412 /*
413 * NetBSD has no kernel notion of time zone, and only an
414 * obsolete program would try to set it, so we log a warning.
415 */
416 if (utzp)
417 log(LOG_WARNING, "pid %d attempted to set the "
418 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
419
420 if (utv == NULL)
421 return 0;
422
423 if (userspace) {
424 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
425 return error;
426 utv = &atv;
427 }
428
429 TIMEVAL_TO_TIMESPEC(utv, &ts);
430 return settime1(l->l_proc, &ts, check_kauth);
431 }
432
433 int time_adjusted; /* set if an adjustment is made */
434
435 /* ARGSUSED */
436 int
437 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
438 register_t *retval)
439 {
440 /* {
441 syscallarg(const struct timeval *) delta;
442 syscallarg(struct timeval *) olddelta;
443 } */
444 int error;
445
446 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
447 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
448 return (error);
449
450 return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
451 }
452
453 int
454 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
455 {
456 struct timeval atv;
457 int error = 0;
458
459 extern int64_t time_adjtime; /* in kern_ntptime.c */
460
461 if (olddelta) {
462 mutex_spin_enter(&timecounter_lock);
463 atv.tv_sec = time_adjtime / 1000000;
464 atv.tv_usec = time_adjtime % 1000000;
465 mutex_spin_exit(&timecounter_lock);
466 if (atv.tv_usec < 0) {
467 atv.tv_usec += 1000000;
468 atv.tv_sec--;
469 }
470 error = copyout(&atv, olddelta, sizeof(struct timeval));
471 if (error)
472 return (error);
473 }
474
475 if (delta) {
476 error = copyin(delta, &atv, sizeof(struct timeval));
477 if (error)
478 return (error);
479
480 mutex_spin_enter(&timecounter_lock);
481 time_adjtime = (int64_t)atv.tv_sec * 1000000 +
482 atv.tv_usec;
483 if (time_adjtime) {
484 /* We need to save the system time during shutdown */
485 time_adjusted |= 1;
486 }
487 mutex_spin_exit(&timecounter_lock);
488 }
489
490 return error;
491 }
492
493 /*
494 * Interval timer support. Both the BSD getitimer() family and the POSIX
495 * timer_*() family of routines are supported.
496 *
497 * All timers are kept in an array pointed to by p_timers, which is
498 * allocated on demand - many processes don't use timers at all. The
499 * first three elements in this array are reserved for the BSD timers:
500 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
501 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
502 * syscall.
503 *
504 * Realtime timers are kept in the ptimer structure as an absolute
505 * time; virtual time timers are kept as a linked list of deltas.
506 * Virtual time timers are processed in the hardclock() routine of
507 * kern_clock.c. The real time timer is processed by a callout
508 * routine, called from the softclock() routine. Since a callout may
509 * be delayed in real time due to interrupt processing in the system,
510 * it is possible for the real time timeout routine (realtimeexpire,
511 * given below), to be delayed in real time past when it is supposed
512 * to occur. It does not suffice, therefore, to reload the real timer
513 * .it_value from the real time timers .it_interval. Rather, we
514 * compute the next time in absolute time the timer should go off. */
515
516 /* Allocate a POSIX realtime timer. */
517 int
518 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
519 register_t *retval)
520 {
521 /* {
522 syscallarg(clockid_t) clock_id;
523 syscallarg(struct sigevent *) evp;
524 syscallarg(timer_t *) timerid;
525 } */
526
527 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
528 SCARG(uap, evp), copyin, l);
529 }
530
531 int
532 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
533 copyin_t fetch_event, struct lwp *l)
534 {
535 int error;
536 timer_t timerid;
537 struct ptimers *pts;
538 struct ptimer *pt;
539 struct proc *p;
540
541 p = l->l_proc;
542
543 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
544 return (EINVAL);
545
546 if ((pts = p->p_timers) == NULL)
547 pts = timers_alloc(p);
548
549 pt = pool_get(&ptimer_pool, PR_WAITOK);
550 if (evp != NULL) {
551 if (((error =
552 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
553 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
554 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
555 pool_put(&ptimer_pool, pt);
556 return (error ? error : EINVAL);
557 }
558 }
559
560 /* Find a free timer slot, skipping those reserved for setitimer(). */
561 mutex_spin_enter(&timer_lock);
562 for (timerid = 3; timerid < TIMER_MAX; timerid++)
563 if (pts->pts_timers[timerid] == NULL)
564 break;
565 if (timerid == TIMER_MAX) {
566 mutex_spin_exit(&timer_lock);
567 pool_put(&ptimer_pool, pt);
568 return EAGAIN;
569 }
570 if (evp == NULL) {
571 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
572 switch (id) {
573 case CLOCK_REALTIME:
574 pt->pt_ev.sigev_signo = SIGALRM;
575 break;
576 case CLOCK_VIRTUAL:
577 pt->pt_ev.sigev_signo = SIGVTALRM;
578 break;
579 case CLOCK_PROF:
580 pt->pt_ev.sigev_signo = SIGPROF;
581 break;
582 }
583 pt->pt_ev.sigev_value.sival_int = timerid;
584 }
585 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
586 pt->pt_info.ksi_errno = 0;
587 pt->pt_info.ksi_code = 0;
588 pt->pt_info.ksi_pid = p->p_pid;
589 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
590 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
591 pt->pt_type = id;
592 pt->pt_proc = p;
593 pt->pt_overruns = 0;
594 pt->pt_poverruns = 0;
595 pt->pt_entry = timerid;
596 pt->pt_queued = false;
597 timespecclear(&pt->pt_time.it_value);
598 if (id == CLOCK_REALTIME)
599 callout_init(&pt->pt_ch, 0);
600 else
601 pt->pt_active = 0;
602
603 pts->pts_timers[timerid] = pt;
604 mutex_spin_exit(&timer_lock);
605
606 return copyout(&timerid, tid, sizeof(timerid));
607 }
608
609 /* Delete a POSIX realtime timer */
610 int
611 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
612 register_t *retval)
613 {
614 /* {
615 syscallarg(timer_t) timerid;
616 } */
617 struct proc *p = l->l_proc;
618 timer_t timerid;
619 struct ptimers *pts;
620 struct ptimer *pt, *ptn;
621
622 timerid = SCARG(uap, timerid);
623 pts = p->p_timers;
624
625 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
626 return (EINVAL);
627
628 mutex_spin_enter(&timer_lock);
629 if ((pt = pts->pts_timers[timerid]) == NULL) {
630 mutex_spin_exit(&timer_lock);
631 return (EINVAL);
632 }
633 if (pt->pt_type != CLOCK_REALTIME) {
634 if (pt->pt_active) {
635 ptn = LIST_NEXT(pt, pt_list);
636 LIST_REMOVE(pt, pt_list);
637 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
638 timespecadd(&pt->pt_time.it_value,
639 &ptn->pt_time.it_value,
640 &ptn->pt_time.it_value);
641 pt->pt_active = 0;
642 }
643 }
644 itimerfree(pts, timerid);
645
646 return (0);
647 }
648
649 /*
650 * Set up the given timer. The value in pt->pt_time.it_value is taken
651 * to be an absolute time for CLOCK_REALTIME timers and a relative
652 * time for virtual timers.
653 * Must be called at splclock().
654 */
655 void
656 timer_settime(struct ptimer *pt)
657 {
658 struct ptimer *ptn, *pptn;
659 struct ptlist *ptl;
660
661 KASSERT(mutex_owned(&timer_lock));
662
663 if (pt->pt_type == CLOCK_REALTIME) {
664 callout_stop(&pt->pt_ch);
665 if (timespecisset(&pt->pt_time.it_value)) {
666 /*
667 * Don't need to check tshzto() return value, here.
668 * callout_reset() does it for us.
669 */
670 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
671 realtimerexpire, pt);
672 }
673 } else {
674 if (pt->pt_active) {
675 ptn = LIST_NEXT(pt, pt_list);
676 LIST_REMOVE(pt, pt_list);
677 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
678 timespecadd(&pt->pt_time.it_value,
679 &ptn->pt_time.it_value,
680 &ptn->pt_time.it_value);
681 }
682 if (timespecisset(&pt->pt_time.it_value)) {
683 if (pt->pt_type == CLOCK_VIRTUAL)
684 ptl = &pt->pt_proc->p_timers->pts_virtual;
685 else
686 ptl = &pt->pt_proc->p_timers->pts_prof;
687
688 for (ptn = LIST_FIRST(ptl), pptn = NULL;
689 ptn && timespeccmp(&pt->pt_time.it_value,
690 &ptn->pt_time.it_value, >);
691 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
692 timespecsub(&pt->pt_time.it_value,
693 &ptn->pt_time.it_value,
694 &pt->pt_time.it_value);
695
696 if (pptn)
697 LIST_INSERT_AFTER(pptn, pt, pt_list);
698 else
699 LIST_INSERT_HEAD(ptl, pt, pt_list);
700
701 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
702 timespecsub(&ptn->pt_time.it_value,
703 &pt->pt_time.it_value,
704 &ptn->pt_time.it_value);
705
706 pt->pt_active = 1;
707 } else
708 pt->pt_active = 0;
709 }
710 }
711
712 void
713 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
714 {
715 struct timespec now;
716 struct ptimer *ptn;
717
718 KASSERT(mutex_owned(&timer_lock));
719
720 *aits = pt->pt_time;
721 if (pt->pt_type == CLOCK_REALTIME) {
722 /*
723 * Convert from absolute to relative time in .it_value
724 * part of real time timer. If time for real time
725 * timer has passed return 0, else return difference
726 * between current time and time for the timer to go
727 * off.
728 */
729 if (timespecisset(&aits->it_value)) {
730 getnanotime(&now);
731 if (timespeccmp(&aits->it_value, &now, <))
732 timespecclear(&aits->it_value);
733 else
734 timespecsub(&aits->it_value, &now,
735 &aits->it_value);
736 }
737 } else if (pt->pt_active) {
738 if (pt->pt_type == CLOCK_VIRTUAL)
739 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
740 else
741 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
742 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
743 timespecadd(&aits->it_value,
744 &ptn->pt_time.it_value, &aits->it_value);
745 KASSERT(ptn != NULL); /* pt should be findable on the list */
746 } else
747 timespecclear(&aits->it_value);
748 }
749
750
751
752 /* Set and arm a POSIX realtime timer */
753 int
754 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
755 register_t *retval)
756 {
757 /* {
758 syscallarg(timer_t) timerid;
759 syscallarg(int) flags;
760 syscallarg(const struct itimerspec *) value;
761 syscallarg(struct itimerspec *) ovalue;
762 } */
763 int error;
764 struct itimerspec value, ovalue, *ovp = NULL;
765
766 if ((error = copyin(SCARG(uap, value), &value,
767 sizeof(struct itimerspec))) != 0)
768 return (error);
769
770 if (SCARG(uap, ovalue))
771 ovp = &ovalue;
772
773 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
774 SCARG(uap, flags), l->l_proc)) != 0)
775 return error;
776
777 if (ovp)
778 return copyout(&ovalue, SCARG(uap, ovalue),
779 sizeof(struct itimerspec));
780 return 0;
781 }
782
783 int
784 dotimer_settime(int timerid, struct itimerspec *value,
785 struct itimerspec *ovalue, int flags, struct proc *p)
786 {
787 struct timespec now;
788 struct itimerspec val, oval;
789 struct ptimers *pts;
790 struct ptimer *pt;
791
792 pts = p->p_timers;
793
794 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
795 return EINVAL;
796 val = *value;
797 if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
798 return EINVAL;
799
800 mutex_spin_enter(&timer_lock);
801 if ((pt = pts->pts_timers[timerid]) == NULL) {
802 mutex_spin_exit(&timer_lock);
803 return EINVAL;
804 }
805
806 oval = pt->pt_time;
807 pt->pt_time = val;
808
809 /*
810 * If we've been passed a relative time for a realtime timer,
811 * convert it to absolute; if an absolute time for a virtual
812 * timer, convert it to relative and make sure we don't set it
813 * to zero, which would cancel the timer, or let it go
814 * negative, which would confuse the comparison tests.
815 */
816 if (timespecisset(&pt->pt_time.it_value)) {
817 if (pt->pt_type == CLOCK_REALTIME) {
818 if ((flags & TIMER_ABSTIME) == 0) {
819 getnanotime(&now);
820 timespecadd(&pt->pt_time.it_value, &now,
821 &pt->pt_time.it_value);
822 }
823 } else {
824 if ((flags & TIMER_ABSTIME) != 0) {
825 getnanotime(&now);
826 timespecsub(&pt->pt_time.it_value, &now,
827 &pt->pt_time.it_value);
828 if (!timespecisset(&pt->pt_time.it_value) ||
829 pt->pt_time.it_value.tv_sec < 0) {
830 pt->pt_time.it_value.tv_sec = 0;
831 pt->pt_time.it_value.tv_nsec = 1;
832 }
833 }
834 }
835 }
836
837 timer_settime(pt);
838 mutex_spin_exit(&timer_lock);
839
840 if (ovalue)
841 *ovalue = oval;
842
843 return (0);
844 }
845
846 /* Return the time remaining until a POSIX timer fires. */
847 int
848 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
849 register_t *retval)
850 {
851 /* {
852 syscallarg(timer_t) timerid;
853 syscallarg(struct itimerspec *) value;
854 } */
855 struct itimerspec its;
856 int error;
857
858 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
859 &its)) != 0)
860 return error;
861
862 return copyout(&its, SCARG(uap, value), sizeof(its));
863 }
864
865 int
866 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
867 {
868 struct ptimer *pt;
869 struct ptimers *pts;
870
871 pts = p->p_timers;
872 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
873 return (EINVAL);
874 mutex_spin_enter(&timer_lock);
875 if ((pt = pts->pts_timers[timerid]) == NULL) {
876 mutex_spin_exit(&timer_lock);
877 return (EINVAL);
878 }
879 timer_gettime(pt, its);
880 mutex_spin_exit(&timer_lock);
881
882 return 0;
883 }
884
885 /*
886 * Return the count of the number of times a periodic timer expired
887 * while a notification was already pending. The counter is reset when
888 * a timer expires and a notification can be posted.
889 */
890 int
891 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
892 register_t *retval)
893 {
894 /* {
895 syscallarg(timer_t) timerid;
896 } */
897 struct proc *p = l->l_proc;
898 struct ptimers *pts;
899 int timerid;
900 struct ptimer *pt;
901
902 timerid = SCARG(uap, timerid);
903
904 pts = p->p_timers;
905 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
906 return (EINVAL);
907 mutex_spin_enter(&timer_lock);
908 if ((pt = pts->pts_timers[timerid]) == NULL) {
909 mutex_spin_exit(&timer_lock);
910 return (EINVAL);
911 }
912 *retval = pt->pt_poverruns;
913 mutex_spin_exit(&timer_lock);
914
915 return (0);
916 }
917
918 #ifdef KERN_SA
919 /* Glue function that triggers an upcall; called from userret(). */
920 void
921 timerupcall(struct lwp *l)
922 {
923 struct ptimers *pt = l->l_proc->p_timers;
924 struct proc *p = l->l_proc;
925 unsigned int i, fired, done;
926
927 KDASSERT(l->l_proc->p_sa);
928 /* Bail out if we do not own the virtual processor */
929 if (l->l_savp->savp_lwp != l)
930 return ;
931
932 mutex_enter(p->p_lock);
933
934 fired = pt->pts_fired;
935 done = 0;
936 while ((i = ffs(fired)) != 0) {
937 siginfo_t *si;
938 int mask = 1 << --i;
939 int f;
940
941 f = ~l->l_pflag & LP_SA_NOBLOCK;
942 l->l_pflag |= LP_SA_NOBLOCK;
943 si = siginfo_alloc(PR_WAITOK);
944 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
945 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
946 sizeof(*si), si, siginfo_free) != 0) {
947 siginfo_free(si);
948 /* XXX What do we do here?? */
949 } else
950 done |= mask;
951 fired &= ~mask;
952 l->l_pflag ^= f;
953 }
954 pt->pts_fired &= ~done;
955 if (pt->pts_fired == 0)
956 l->l_proc->p_timerpend = 0;
957
958 mutex_exit(p->p_lock);
959 }
960 #endif /* KERN_SA */
961
962 /*
963 * Real interval timer expired:
964 * send process whose timer expired an alarm signal.
965 * If time is not set up to reload, then just return.
966 * Else compute next time timer should go off which is > current time.
967 * This is where delay in processing this timeout causes multiple
968 * SIGALRM calls to be compressed into one.
969 */
970 void
971 realtimerexpire(void *arg)
972 {
973 uint64_t last_val, next_val, interval, now_ms;
974 struct timespec now, next;
975 struct ptimer *pt;
976 int backwards;
977
978 pt = arg;
979
980 mutex_spin_enter(&timer_lock);
981 itimerfire(pt);
982
983 if (!timespecisset(&pt->pt_time.it_interval)) {
984 timespecclear(&pt->pt_time.it_value);
985 mutex_spin_exit(&timer_lock);
986 return;
987 }
988
989 getnanotime(&now);
990 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
991 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
992 /* Handle the easy case of non-overflown timers first. */
993 if (!backwards && timespeccmp(&next, &now, >)) {
994 pt->pt_time.it_value = next;
995 } else {
996 now_ms = timespec2ns(&now);
997 last_val = timespec2ns(&pt->pt_time.it_value);
998 interval = timespec2ns(&pt->pt_time.it_interval);
999
1000 next_val = now_ms +
1001 (now_ms - last_val + interval - 1) % interval;
1002
1003 if (backwards)
1004 next_val += interval;
1005 else
1006 pt->pt_overruns += (now_ms - last_val) / interval;
1007
1008 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1009 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1010 }
1011
1012 /*
1013 * Don't need to check tshzto() return value, here.
1014 * callout_reset() does it for us.
1015 */
1016 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1017 realtimerexpire, pt);
1018 mutex_spin_exit(&timer_lock);
1019 }
1020
1021 /* BSD routine to get the value of an interval timer. */
1022 /* ARGSUSED */
1023 int
1024 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
1025 register_t *retval)
1026 {
1027 /* {
1028 syscallarg(int) which;
1029 syscallarg(struct itimerval *) itv;
1030 } */
1031 struct proc *p = l->l_proc;
1032 struct itimerval aitv;
1033 int error;
1034
1035 error = dogetitimer(p, SCARG(uap, which), &aitv);
1036 if (error)
1037 return error;
1038 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1039 }
1040
1041 int
1042 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1043 {
1044 struct ptimers *pts;
1045 struct ptimer *pt;
1046 struct itimerspec its;
1047
1048 if ((u_int)which > ITIMER_PROF)
1049 return (EINVAL);
1050
1051 mutex_spin_enter(&timer_lock);
1052 pts = p->p_timers;
1053 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1054 timerclear(&itvp->it_value);
1055 timerclear(&itvp->it_interval);
1056 } else {
1057 timer_gettime(pt, &its);
1058 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1059 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1060 }
1061 mutex_spin_exit(&timer_lock);
1062
1063 return 0;
1064 }
1065
1066 /* BSD routine to set/arm an interval timer. */
1067 /* ARGSUSED */
1068 int
1069 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1070 register_t *retval)
1071 {
1072 /* {
1073 syscallarg(int) which;
1074 syscallarg(const struct itimerval *) itv;
1075 syscallarg(struct itimerval *) oitv;
1076 } */
1077 struct proc *p = l->l_proc;
1078 int which = SCARG(uap, which);
1079 struct sys_getitimer_args getargs;
1080 const struct itimerval *itvp;
1081 struct itimerval aitv;
1082 int error;
1083
1084 if ((u_int)which > ITIMER_PROF)
1085 return (EINVAL);
1086 itvp = SCARG(uap, itv);
1087 if (itvp &&
1088 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1089 return (error);
1090 if (SCARG(uap, oitv) != NULL) {
1091 SCARG(&getargs, which) = which;
1092 SCARG(&getargs, itv) = SCARG(uap, oitv);
1093 if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1094 return (error);
1095 }
1096 if (itvp == 0)
1097 return (0);
1098
1099 return dosetitimer(p, which, &aitv);
1100 }
1101
1102 int
1103 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1104 {
1105 struct timespec now;
1106 struct ptimers *pts;
1107 struct ptimer *pt, *spare;
1108
1109 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1110 return (EINVAL);
1111
1112 /*
1113 * Don't bother allocating data structures if the process just
1114 * wants to clear the timer.
1115 */
1116 spare = NULL;
1117 pts = p->p_timers;
1118 retry:
1119 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1120 pts->pts_timers[which] == NULL))
1121 return (0);
1122 if (pts == NULL)
1123 pts = timers_alloc(p);
1124 mutex_spin_enter(&timer_lock);
1125 pt = pts->pts_timers[which];
1126 if (pt == NULL) {
1127 if (spare == NULL) {
1128 mutex_spin_exit(&timer_lock);
1129 spare = pool_get(&ptimer_pool, PR_WAITOK);
1130 goto retry;
1131 }
1132 pt = spare;
1133 spare = NULL;
1134 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1135 pt->pt_ev.sigev_value.sival_int = which;
1136 pt->pt_overruns = 0;
1137 pt->pt_proc = p;
1138 pt->pt_type = which;
1139 pt->pt_entry = which;
1140 pt->pt_queued = false;
1141 if (pt->pt_type == CLOCK_REALTIME)
1142 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1143 else
1144 pt->pt_active = 0;
1145
1146 switch (which) {
1147 case ITIMER_REAL:
1148 pt->pt_ev.sigev_signo = SIGALRM;
1149 break;
1150 case ITIMER_VIRTUAL:
1151 pt->pt_ev.sigev_signo = SIGVTALRM;
1152 break;
1153 case ITIMER_PROF:
1154 pt->pt_ev.sigev_signo = SIGPROF;
1155 break;
1156 }
1157 pts->pts_timers[which] = pt;
1158 }
1159
1160 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1161 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1162
1163 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1164 /* Convert to absolute time */
1165 /* XXX need to wrap in splclock for timecounters case? */
1166 getnanotime(&now);
1167 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1168 }
1169 timer_settime(pt);
1170 mutex_spin_exit(&timer_lock);
1171 if (spare != NULL)
1172 pool_put(&ptimer_pool, spare);
1173
1174 return (0);
1175 }
1176
1177 /* Utility routines to manage the array of pointers to timers. */
1178 struct ptimers *
1179 timers_alloc(struct proc *p)
1180 {
1181 struct ptimers *pts;
1182 int i;
1183
1184 pts = pool_get(&ptimers_pool, PR_WAITOK);
1185 LIST_INIT(&pts->pts_virtual);
1186 LIST_INIT(&pts->pts_prof);
1187 for (i = 0; i < TIMER_MAX; i++)
1188 pts->pts_timers[i] = NULL;
1189 pts->pts_fired = 0;
1190 mutex_spin_enter(&timer_lock);
1191 if (p->p_timers == NULL) {
1192 p->p_timers = pts;
1193 mutex_spin_exit(&timer_lock);
1194 return pts;
1195 }
1196 mutex_spin_exit(&timer_lock);
1197 pool_put(&ptimers_pool, pts);
1198 return p->p_timers;
1199 }
1200
1201 /*
1202 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1203 * then clean up all timers and free all the data structures. If
1204 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1205 * by timer_create(), not the BSD setitimer() timers, and only free the
1206 * structure if none of those remain.
1207 */
1208 void
1209 timers_free(struct proc *p, int which)
1210 {
1211 struct ptimers *pts;
1212 struct ptimer *ptn;
1213 struct timespec ts;
1214 int i;
1215
1216 if (p->p_timers == NULL)
1217 return;
1218
1219 pts = p->p_timers;
1220 mutex_spin_enter(&timer_lock);
1221 if (which == TIMERS_ALL) {
1222 p->p_timers = NULL;
1223 i = 0;
1224 } else {
1225 timespecclear(&ts);
1226 for (ptn = LIST_FIRST(&pts->pts_virtual);
1227 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1228 ptn = LIST_NEXT(ptn, pt_list)) {
1229 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1230 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1231 }
1232 LIST_FIRST(&pts->pts_virtual) = NULL;
1233 if (ptn) {
1234 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1235 timespecadd(&ts, &ptn->pt_time.it_value,
1236 &ptn->pt_time.it_value);
1237 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1238 }
1239 timespecclear(&ts);
1240 for (ptn = LIST_FIRST(&pts->pts_prof);
1241 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1242 ptn = LIST_NEXT(ptn, pt_list)) {
1243 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1244 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1245 }
1246 LIST_FIRST(&pts->pts_prof) = NULL;
1247 if (ptn) {
1248 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1249 timespecadd(&ts, &ptn->pt_time.it_value,
1250 &ptn->pt_time.it_value);
1251 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1252 }
1253 i = 3;
1254 }
1255 for ( ; i < TIMER_MAX; i++) {
1256 if (pts->pts_timers[i] != NULL) {
1257 itimerfree(pts, i);
1258 mutex_spin_enter(&timer_lock);
1259 }
1260 }
1261 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1262 pts->pts_timers[2] == NULL) {
1263 p->p_timers = NULL;
1264 mutex_spin_exit(&timer_lock);
1265 pool_put(&ptimers_pool, pts);
1266 } else
1267 mutex_spin_exit(&timer_lock);
1268 }
1269
1270 static void
1271 itimerfree(struct ptimers *pts, int index)
1272 {
1273 struct ptimer *pt;
1274
1275 KASSERT(mutex_owned(&timer_lock));
1276
1277 pt = pts->pts_timers[index];
1278 pts->pts_timers[index] = NULL;
1279 if (pt->pt_type == CLOCK_REALTIME)
1280 callout_halt(&pt->pt_ch, &timer_lock);
1281 else if (pt->pt_queued)
1282 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1283 mutex_spin_exit(&timer_lock);
1284 if (pt->pt_type == CLOCK_REALTIME)
1285 callout_destroy(&pt->pt_ch);
1286 pool_put(&ptimer_pool, pt);
1287 }
1288
1289 /*
1290 * Decrement an interval timer by a specified number
1291 * of nanoseconds, which must be less than a second,
1292 * i.e. < 1000000000. If the timer expires, then reload
1293 * it. In this case, carry over (nsec - old value) to
1294 * reduce the value reloaded into the timer so that
1295 * the timer does not drift. This routine assumes
1296 * that it is called in a context where the timers
1297 * on which it is operating cannot change in value.
1298 */
1299 static int
1300 itimerdecr(struct ptimer *pt, int nsec)
1301 {
1302 struct itimerspec *itp;
1303
1304 KASSERT(mutex_owned(&timer_lock));
1305
1306 itp = &pt->pt_time;
1307 if (itp->it_value.tv_nsec < nsec) {
1308 if (itp->it_value.tv_sec == 0) {
1309 /* expired, and already in next interval */
1310 nsec -= itp->it_value.tv_nsec;
1311 goto expire;
1312 }
1313 itp->it_value.tv_nsec += 1000000000;
1314 itp->it_value.tv_sec--;
1315 }
1316 itp->it_value.tv_nsec -= nsec;
1317 nsec = 0;
1318 if (timespecisset(&itp->it_value))
1319 return (1);
1320 /* expired, exactly at end of interval */
1321 expire:
1322 if (timespecisset(&itp->it_interval)) {
1323 itp->it_value = itp->it_interval;
1324 itp->it_value.tv_nsec -= nsec;
1325 if (itp->it_value.tv_nsec < 0) {
1326 itp->it_value.tv_nsec += 1000000000;
1327 itp->it_value.tv_sec--;
1328 }
1329 timer_settime(pt);
1330 } else
1331 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1332 return (0);
1333 }
1334
1335 static void
1336 itimerfire(struct ptimer *pt)
1337 {
1338
1339 KASSERT(mutex_owned(&timer_lock));
1340
1341 /*
1342 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1343 * XXX Relying on the clock interrupt is stupid.
1344 */
1345 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1346 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1347 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1348 return;
1349 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1350 pt->pt_queued = true;
1351 softint_schedule(timer_sih);
1352 }
1353
1354 void
1355 timer_tick(lwp_t *l, bool user)
1356 {
1357 struct ptimers *pts;
1358 struct ptimer *pt;
1359 proc_t *p;
1360
1361 p = l->l_proc;
1362 if (p->p_timers == NULL)
1363 return;
1364
1365 mutex_spin_enter(&timer_lock);
1366 if ((pts = l->l_proc->p_timers) != NULL) {
1367 /*
1368 * Run current process's virtual and profile time, as needed.
1369 */
1370 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1371 if (itimerdecr(pt, tick * 1000) == 0)
1372 itimerfire(pt);
1373 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1374 if (itimerdecr(pt, tick * 1000) == 0)
1375 itimerfire(pt);
1376 }
1377 mutex_spin_exit(&timer_lock);
1378 }
1379
1380 #ifdef KERN_SA
1381 /*
1382 * timer_sa_intr:
1383 *
1384 * SIGEV_SA handling for timer_intr(). We are called (and return)
1385 * with the timer lock held. We know that the process had SA enabled
1386 * when this timer was enqueued. As timer_intr() is a soft interrupt
1387 * handler, SA should still be enabled by the time we get here.
1388 *
1389 * XXX Is it legit to lock p_lock and the lwp at this time?
1390 */
1391 static void
1392 timer_sa_intr(struct ptimer *pt, proc_t *p)
1393 {
1394 unsigned int i;
1395 struct sadata_vp *vp;
1396
1397 /* Cause the process to generate an upcall when it returns. */
1398 if (!p->p_timerpend) {
1399 /*
1400 * XXX stop signals can be processed inside tsleep,
1401 * which can be inside sa_yield's inner loop, which
1402 * makes testing for sa_idle alone insuffucent to
1403 * determine if we really should call setrunnable.
1404 */
1405 pt->pt_poverruns = pt->pt_overruns;
1406 pt->pt_overruns = 0;
1407 i = 1 << pt->pt_entry;
1408 p->p_timers->pts_fired = i;
1409 p->p_timerpend = 1;
1410
1411 mutex_enter(p->p_lock);
1412 SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1413 lwp_lock(vp->savp_lwp);
1414 lwp_need_userret(vp->savp_lwp);
1415 if (vp->savp_lwp->l_flag & LW_SA_IDLE) {
1416 vp->savp_lwp->l_flag &= ~LW_SA_IDLE;
1417 lwp_unsleep(vp->savp_lwp, true);
1418 break;
1419 }
1420 lwp_unlock(vp->savp_lwp);
1421 }
1422 mutex_exit(p->p_lock);
1423 } else {
1424 i = 1 << pt->pt_entry;
1425 if ((p->p_timers->pts_fired & i) == 0) {
1426 pt->pt_poverruns = pt->pt_overruns;
1427 pt->pt_overruns = 0;
1428 p->p_timers->pts_fired |= i;
1429 } else
1430 pt->pt_overruns++;
1431 }
1432 }
1433 #endif /* KERN_SA */
1434
1435 static void
1436 timer_intr(void *cookie)
1437 {
1438 ksiginfo_t ksi;
1439 struct ptimer *pt;
1440 proc_t *p;
1441
1442 mutex_spin_enter(&timer_lock);
1443 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1444 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1445 KASSERT(pt->pt_queued);
1446 pt->pt_queued = false;
1447
1448 if (pt->pt_proc->p_timers == NULL) {
1449 /* Process is dying. */
1450 continue;
1451 }
1452 p = pt->pt_proc;
1453 #ifdef KERN_SA
1454 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1455 timer_sa_intr(pt, p);
1456 continue;
1457 }
1458 #endif /* KERN_SA */
1459 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1460 continue;
1461 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1462 pt->pt_overruns++;
1463 continue;
1464 }
1465
1466 KSI_INIT(&ksi);
1467 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1468 ksi.ksi_code = SI_TIMER;
1469 ksi.ksi_value = pt->pt_ev.sigev_value;
1470 pt->pt_poverruns = pt->pt_overruns;
1471 pt->pt_overruns = 0;
1472 mutex_spin_exit(&timer_lock);
1473
1474 mutex_enter(proc_lock);
1475 kpsignal(p, &ksi, NULL);
1476 mutex_exit(proc_lock);
1477
1478 mutex_spin_enter(&timer_lock);
1479 }
1480 mutex_spin_exit(&timer_lock);
1481 }
1482