Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.155.4.2.4.1
      1 /*	$NetBSD: kern_time.c,v 1.155.4.2.4.1 2010/04/21 00:28:17 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.155.4.2.4.1 2010/04/21 00:28:17 matt Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/sa.h>
     79 #include <sys/savar.h>
     80 #include <sys/syscallargs.h>
     81 #include <sys/cpu.h>
     82 
     83 #include <uvm/uvm_extern.h>
     84 
     85 #include "opt_sa.h"
     86 
     87 static void	timer_intr(void *);
     88 static void	itimerfire(struct ptimer *);
     89 static void	itimerfree(struct ptimers *, int);
     90 
     91 kmutex_t	timer_lock;
     92 
     93 static void	*timer_sih;
     94 static TAILQ_HEAD(, ptimer) timer_queue;
     95 
     96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97     &pool_allocator_nointr, IPL_NONE);
     98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99     &pool_allocator_nointr, IPL_NONE);
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	/* nothing yet */
    109 }
    110 
    111 void
    112 time_init2(void)
    113 {
    114 
    115 	TAILQ_INIT(&timer_queue);
    116 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118 	    timer_intr, NULL);
    119 }
    120 
    121 /* Time of day and interval timer support.
    122  *
    123  * These routines provide the kernel entry points to get and set
    124  * the time-of-day and per-process interval timers.  Subroutines
    125  * here provide support for adding and subtracting timeval structures
    126  * and decrementing interval timers, optionally reloading the interval
    127  * timers when they expire.
    128  */
    129 
    130 /* This function is used by clock_settime and settimeofday */
    131 static int
    132 settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    133 {
    134 	struct timeval delta, tv;
    135 	struct timeval now;
    136 	struct timespec ts1;
    137 	int s;
    138 
    139 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    140 
    141 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    142 	s = splclock();
    143 	microtime(&now);
    144 	timersub(&tv, &now, &delta);
    145 
    146 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    147 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    148 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    149 		splx(s);
    150 		return (EPERM);
    151 	}
    152 
    153 #ifdef notyet
    154 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    155 		splx(s);
    156 		return (EPERM);
    157 	}
    158 #endif
    159 
    160 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    161 	tc_setclock(&ts1);
    162 
    163 	timeradd(&boottime, &delta, &boottime);
    164 
    165 	resettodr();
    166 	splx(s);
    167 
    168 	return (0);
    169 }
    170 
    171 int
    172 settime(struct proc *p, struct timespec *ts)
    173 {
    174 	return (settime1(p, ts, true));
    175 }
    176 
    177 /* ARGSUSED */
    178 int
    179 sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    180     register_t *retval)
    181 {
    182 	/* {
    183 		syscallarg(clockid_t) clock_id;
    184 		syscallarg(struct timespec *) tp;
    185 	} */
    186 	clockid_t clock_id;
    187 	struct timespec ats;
    188 
    189 	clock_id = SCARG(uap, clock_id);
    190 	switch (clock_id) {
    191 	case CLOCK_REALTIME:
    192 		nanotime(&ats);
    193 		break;
    194 	case CLOCK_MONOTONIC:
    195 		nanouptime(&ats);
    196 		break;
    197 	default:
    198 		return (EINVAL);
    199 	}
    200 
    201 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    202 }
    203 
    204 /* ARGSUSED */
    205 int
    206 sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    207     register_t *retval)
    208 {
    209 	/* {
    210 		syscallarg(clockid_t) clock_id;
    211 		syscallarg(const struct timespec *) tp;
    212 	} */
    213 
    214 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    215 	    true);
    216 }
    217 
    218 
    219 int
    220 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    221     bool check_kauth)
    222 {
    223 	struct timespec ats;
    224 	int error;
    225 
    226 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    227 		return (error);
    228 
    229 	switch (clock_id) {
    230 	case CLOCK_REALTIME:
    231 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    232 			return (error);
    233 		break;
    234 	case CLOCK_MONOTONIC:
    235 		return (EINVAL);	/* read-only clock */
    236 	default:
    237 		return (EINVAL);
    238 	}
    239 
    240 	return 0;
    241 }
    242 
    243 int
    244 sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    245     register_t *retval)
    246 {
    247 	/* {
    248 		syscallarg(clockid_t) clock_id;
    249 		syscallarg(struct timespec *) tp;
    250 	} */
    251 	clockid_t clock_id;
    252 	struct timespec ts;
    253 	int error = 0;
    254 
    255 	clock_id = SCARG(uap, clock_id);
    256 	switch (clock_id) {
    257 	case CLOCK_REALTIME:
    258 	case CLOCK_MONOTONIC:
    259 		ts.tv_sec = 0;
    260 		if (tc_getfrequency() > 1000000000)
    261 			ts.tv_nsec = 1;
    262 		else
    263 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    264 		break;
    265 	default:
    266 		return (EINVAL);
    267 	}
    268 
    269 	if (SCARG(uap, tp))
    270 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    271 
    272 	return error;
    273 }
    274 
    275 /* ARGSUSED */
    276 int
    277 sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    278     register_t *retval)
    279 {
    280 	/* {
    281 		syscallarg(struct timespec *) rqtp;
    282 		syscallarg(struct timespec *) rmtp;
    283 	} */
    284 	struct timespec rmt, rqt;
    285 	int error, error1;
    286 
    287 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    288 	if (error)
    289 		return (error);
    290 
    291 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    292 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    293 		return error;
    294 
    295 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    296 	return error1 ? error1 : error;
    297 }
    298 
    299 int
    300 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    301 {
    302 	struct timespec rmtstart;
    303 	int error, timo;
    304 
    305 	if (itimespecfix(rqt))
    306 		return (EINVAL);
    307 
    308 	timo = tstohz(rqt);
    309 	/*
    310 	 * Avoid inadvertantly sleeping forever
    311 	 */
    312 	if (timo == 0)
    313 		timo = 1;
    314 	getnanouptime(&rmtstart);
    315 again:
    316 	error = kpause("nanoslp", true, timo, NULL);
    317 	if (rmt != NULL || error == 0) {
    318 		struct timespec rmtend;
    319 		struct timespec t0;
    320 		struct timespec *t;
    321 
    322 		getnanouptime(&rmtend);
    323 		t = (rmt != NULL) ? rmt : &t0;
    324 		timespecsub(&rmtend, &rmtstart, t);
    325 		timespecsub(rqt, t, t);
    326 		if (t->tv_sec < 0)
    327 			timespecclear(t);
    328 		if (error == 0) {
    329 			timo = tstohz(t);
    330 			if (timo > 0)
    331 				goto again;
    332 		}
    333 	}
    334 
    335 	if (error == ERESTART)
    336 		error = EINTR;
    337 	if (error == EWOULDBLOCK)
    338 		error = 0;
    339 
    340 	return error;
    341 }
    342 
    343 /* ARGSUSED */
    344 int
    345 sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    346     register_t *retval)
    347 {
    348 	/* {
    349 		syscallarg(struct timeval *) tp;
    350 		syscallarg(void *) tzp;		really "struct timezone *";
    351 	} */
    352 	struct timeval atv;
    353 	int error = 0;
    354 	struct timezone tzfake;
    355 
    356 	if (SCARG(uap, tp)) {
    357 		microtime(&atv);
    358 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    359 		if (error)
    360 			return (error);
    361 	}
    362 	if (SCARG(uap, tzp)) {
    363 		/*
    364 		 * NetBSD has no kernel notion of time zone, so we just
    365 		 * fake up a timezone struct and return it if demanded.
    366 		 */
    367 		tzfake.tz_minuteswest = 0;
    368 		tzfake.tz_dsttime = 0;
    369 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    370 	}
    371 	return (error);
    372 }
    373 
    374 /* ARGSUSED */
    375 int
    376 sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    377     register_t *retval)
    378 {
    379 	/* {
    380 		syscallarg(const struct timeval *) tv;
    381 		syscallarg(const void *) tzp; really "const struct timezone *";
    382 	} */
    383 
    384 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    385 }
    386 
    387 int
    388 settimeofday1(const struct timeval *utv, bool userspace,
    389     const void *utzp, struct lwp *l, bool check_kauth)
    390 {
    391 	struct timeval atv;
    392 	struct timespec ts;
    393 	int error;
    394 
    395 	/* Verify all parameters before changing time. */
    396 
    397 	/*
    398 	 * NetBSD has no kernel notion of time zone, and only an
    399 	 * obsolete program would try to set it, so we log a warning.
    400 	 */
    401 	if (utzp)
    402 		log(LOG_WARNING, "pid %d attempted to set the "
    403 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    404 
    405 	if (utv == NULL)
    406 		return 0;
    407 
    408 	if (userspace) {
    409 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    410 			return error;
    411 		utv = &atv;
    412 	}
    413 
    414 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    415 	return settime1(l->l_proc, &ts, check_kauth);
    416 }
    417 
    418 int	time_adjusted;			/* set if an adjustment is made */
    419 
    420 /* ARGSUSED */
    421 int
    422 sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    423     register_t *retval)
    424 {
    425 	/* {
    426 		syscallarg(const struct timeval *) delta;
    427 		syscallarg(struct timeval *) olddelta;
    428 	} */
    429 	int error;
    430 
    431 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    432 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    433 		return (error);
    434 
    435 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    436 }
    437 
    438 int
    439 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    440 {
    441 	struct timeval atv;
    442 	int error = 0;
    443 
    444 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    445 
    446 	if (olddelta) {
    447 		mutex_spin_enter(&timecounter_lock);
    448 		atv.tv_sec = time_adjtime / 1000000;
    449 		atv.tv_usec = time_adjtime % 1000000;
    450 		mutex_spin_exit(&timecounter_lock);
    451 		if (atv.tv_usec < 0) {
    452 			atv.tv_usec += 1000000;
    453 			atv.tv_sec--;
    454 		}
    455 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    456 		if (error)
    457 			return (error);
    458 	}
    459 
    460 	if (delta) {
    461 		error = copyin(delta, &atv, sizeof(struct timeval));
    462 		if (error)
    463 			return (error);
    464 
    465 		mutex_spin_enter(&timecounter_lock);
    466 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    467 			atv.tv_usec;
    468 		if (time_adjtime) {
    469 			/* We need to save the system time during shutdown */
    470 			time_adjusted |= 1;
    471 		}
    472 		mutex_spin_exit(&timecounter_lock);
    473 	}
    474 
    475 	return error;
    476 }
    477 
    478 /*
    479  * Interval timer support. Both the BSD getitimer() family and the POSIX
    480  * timer_*() family of routines are supported.
    481  *
    482  * All timers are kept in an array pointed to by p_timers, which is
    483  * allocated on demand - many processes don't use timers at all. The
    484  * first three elements in this array are reserved for the BSD timers:
    485  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    486  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    487  * syscall.
    488  *
    489  * Realtime timers are kept in the ptimer structure as an absolute
    490  * time; virtual time timers are kept as a linked list of deltas.
    491  * Virtual time timers are processed in the hardclock() routine of
    492  * kern_clock.c.  The real time timer is processed by a callout
    493  * routine, called from the softclock() routine.  Since a callout may
    494  * be delayed in real time due to interrupt processing in the system,
    495  * it is possible for the real time timeout routine (realtimeexpire,
    496  * given below), to be delayed in real time past when it is supposed
    497  * to occur.  It does not suffice, therefore, to reload the real timer
    498  * .it_value from the real time timers .it_interval.  Rather, we
    499  * compute the next time in absolute time the timer should go off.  */
    500 
    501 /* Allocate a POSIX realtime timer. */
    502 int
    503 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    504     register_t *retval)
    505 {
    506 	/* {
    507 		syscallarg(clockid_t) clock_id;
    508 		syscallarg(struct sigevent *) evp;
    509 		syscallarg(timer_t *) timerid;
    510 	} */
    511 
    512 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    513 	    SCARG(uap, evp), copyin, l);
    514 }
    515 
    516 int
    517 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    518     copyin_t fetch_event, struct lwp *l)
    519 {
    520 	int error;
    521 	timer_t timerid;
    522 	struct ptimers *pts;
    523 	struct ptimer *pt;
    524 	struct proc *p;
    525 
    526 	p = l->l_proc;
    527 
    528 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    529 		return (EINVAL);
    530 
    531 	if ((pts = p->p_timers) == NULL)
    532 		pts = timers_alloc(p);
    533 
    534 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    535 	if (evp != NULL) {
    536 		if (((error =
    537 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    538 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    539 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    540 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    541 			 (pt->pt_ev.sigev_signo <= 0 ||
    542 			  pt->pt_ev.sigev_signo >= NSIG))) {
    543 			pool_put(&ptimer_pool, pt);
    544 			return (error ? error : EINVAL);
    545 		}
    546 	}
    547 
    548 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    549 	mutex_spin_enter(&timer_lock);
    550 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    551 		if (pts->pts_timers[timerid] == NULL)
    552 			break;
    553 	if (timerid == TIMER_MAX) {
    554 		mutex_spin_exit(&timer_lock);
    555 		pool_put(&ptimer_pool, pt);
    556 		return EAGAIN;
    557 	}
    558 	if (evp == NULL) {
    559 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    560 		switch (id) {
    561 		case CLOCK_REALTIME:
    562 			pt->pt_ev.sigev_signo = SIGALRM;
    563 			break;
    564 		case CLOCK_VIRTUAL:
    565 			pt->pt_ev.sigev_signo = SIGVTALRM;
    566 			break;
    567 		case CLOCK_PROF:
    568 			pt->pt_ev.sigev_signo = SIGPROF;
    569 			break;
    570 		}
    571 		pt->pt_ev.sigev_value.sival_int = timerid;
    572 	}
    573 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    574 	pt->pt_info.ksi_errno = 0;
    575 	pt->pt_info.ksi_code = 0;
    576 	pt->pt_info.ksi_pid = p->p_pid;
    577 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    578 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    579 	pt->pt_type = id;
    580 	pt->pt_proc = p;
    581 	pt->pt_overruns = 0;
    582 	pt->pt_poverruns = 0;
    583 	pt->pt_entry = timerid;
    584 	pt->pt_queued = false;
    585 	timespecclear(&pt->pt_time.it_value);
    586 	if (id == CLOCK_REALTIME)
    587 		callout_init(&pt->pt_ch, 0);
    588 	else
    589 		pt->pt_active = 0;
    590 
    591 	pts->pts_timers[timerid] = pt;
    592 	mutex_spin_exit(&timer_lock);
    593 
    594 	return copyout(&timerid, tid, sizeof(timerid));
    595 }
    596 
    597 /* Delete a POSIX realtime timer */
    598 int
    599 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    600     register_t *retval)
    601 {
    602 	/* {
    603 		syscallarg(timer_t) timerid;
    604 	} */
    605 	struct proc *p = l->l_proc;
    606 	timer_t timerid;
    607 	struct ptimers *pts;
    608 	struct ptimer *pt, *ptn;
    609 
    610 	timerid = SCARG(uap, timerid);
    611 	pts = p->p_timers;
    612 
    613 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    614 		return (EINVAL);
    615 
    616 	mutex_spin_enter(&timer_lock);
    617 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    618 		mutex_spin_exit(&timer_lock);
    619 		return (EINVAL);
    620 	}
    621 	if (pt->pt_type != CLOCK_REALTIME) {
    622 		if (pt->pt_active) {
    623 			ptn = LIST_NEXT(pt, pt_list);
    624 			LIST_REMOVE(pt, pt_list);
    625 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    626 				timespecadd(&pt->pt_time.it_value,
    627 				    &ptn->pt_time.it_value,
    628 				    &ptn->pt_time.it_value);
    629 			pt->pt_active = 0;
    630 		}
    631 	}
    632 	itimerfree(pts, timerid);
    633 
    634 	return (0);
    635 }
    636 
    637 /*
    638  * Set up the given timer. The value in pt->pt_time.it_value is taken
    639  * to be an absolute time for CLOCK_REALTIME timers and a relative
    640  * time for virtual timers.
    641  * Must be called at splclock().
    642  */
    643 void
    644 timer_settime(struct ptimer *pt)
    645 {
    646 	struct ptimer *ptn, *pptn;
    647 	struct ptlist *ptl;
    648 
    649 	KASSERT(mutex_owned(&timer_lock));
    650 
    651 	if (pt->pt_type == CLOCK_REALTIME) {
    652 		callout_stop(&pt->pt_ch);
    653 		if (timespecisset(&pt->pt_time.it_value)) {
    654 			/*
    655 			 * Don't need to check tshzto() return value, here.
    656 			 * callout_reset() does it for us.
    657 			 */
    658 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    659 			    realtimerexpire, pt);
    660 		}
    661 	} else {
    662 		if (pt->pt_active) {
    663 			ptn = LIST_NEXT(pt, pt_list);
    664 			LIST_REMOVE(pt, pt_list);
    665 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    666 				timespecadd(&pt->pt_time.it_value,
    667 				    &ptn->pt_time.it_value,
    668 				    &ptn->pt_time.it_value);
    669 		}
    670 		if (timespecisset(&pt->pt_time.it_value)) {
    671 			if (pt->pt_type == CLOCK_VIRTUAL)
    672 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    673 			else
    674 				ptl = &pt->pt_proc->p_timers->pts_prof;
    675 
    676 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    677 			     ptn && timespeccmp(&pt->pt_time.it_value,
    678 				 &ptn->pt_time.it_value, >);
    679 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    680 				timespecsub(&pt->pt_time.it_value,
    681 				    &ptn->pt_time.it_value,
    682 				    &pt->pt_time.it_value);
    683 
    684 			if (pptn)
    685 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    686 			else
    687 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    688 
    689 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    690 				timespecsub(&ptn->pt_time.it_value,
    691 				    &pt->pt_time.it_value,
    692 				    &ptn->pt_time.it_value);
    693 
    694 			pt->pt_active = 1;
    695 		} else
    696 			pt->pt_active = 0;
    697 	}
    698 }
    699 
    700 void
    701 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    702 {
    703 	struct timespec now;
    704 	struct ptimer *ptn;
    705 
    706 	KASSERT(mutex_owned(&timer_lock));
    707 
    708 	*aits = pt->pt_time;
    709 	if (pt->pt_type == CLOCK_REALTIME) {
    710 		/*
    711 		 * Convert from absolute to relative time in .it_value
    712 		 * part of real time timer.  If time for real time
    713 		 * timer has passed return 0, else return difference
    714 		 * between current time and time for the timer to go
    715 		 * off.
    716 		 */
    717 		if (timespecisset(&aits->it_value)) {
    718 			getnanotime(&now);
    719 			if (timespeccmp(&aits->it_value, &now, <))
    720 				timespecclear(&aits->it_value);
    721 			else
    722 				timespecsub(&aits->it_value, &now,
    723 				    &aits->it_value);
    724 		}
    725 	} else if (pt->pt_active) {
    726 		if (pt->pt_type == CLOCK_VIRTUAL)
    727 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    728 		else
    729 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    730 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    731 			timespecadd(&aits->it_value,
    732 			    &ptn->pt_time.it_value, &aits->it_value);
    733 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    734 	} else
    735 		timespecclear(&aits->it_value);
    736 }
    737 
    738 
    739 
    740 /* Set and arm a POSIX realtime timer */
    741 int
    742 sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    743     register_t *retval)
    744 {
    745 	/* {
    746 		syscallarg(timer_t) timerid;
    747 		syscallarg(int) flags;
    748 		syscallarg(const struct itimerspec *) value;
    749 		syscallarg(struct itimerspec *) ovalue;
    750 	} */
    751 	int error;
    752 	struct itimerspec value, ovalue, *ovp = NULL;
    753 
    754 	if ((error = copyin(SCARG(uap, value), &value,
    755 	    sizeof(struct itimerspec))) != 0)
    756 		return (error);
    757 
    758 	if (SCARG(uap, ovalue))
    759 		ovp = &ovalue;
    760 
    761 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    762 	    SCARG(uap, flags), l->l_proc)) != 0)
    763 		return error;
    764 
    765 	if (ovp)
    766 		return copyout(&ovalue, SCARG(uap, ovalue),
    767 		    sizeof(struct itimerspec));
    768 	return 0;
    769 }
    770 
    771 int
    772 dotimer_settime(int timerid, struct itimerspec *value,
    773     struct itimerspec *ovalue, int flags, struct proc *p)
    774 {
    775 	struct timespec now;
    776 	struct itimerspec val, oval;
    777 	struct ptimers *pts;
    778 	struct ptimer *pt;
    779 
    780 	pts = p->p_timers;
    781 
    782 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    783 		return EINVAL;
    784 	val = *value;
    785 	if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
    786 		return EINVAL;
    787 
    788 	mutex_spin_enter(&timer_lock);
    789 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    790 		mutex_spin_exit(&timer_lock);
    791 		return EINVAL;
    792 	}
    793 
    794 	oval = pt->pt_time;
    795 	pt->pt_time = val;
    796 
    797 	/*
    798 	 * If we've been passed a relative time for a realtime timer,
    799 	 * convert it to absolute; if an absolute time for a virtual
    800 	 * timer, convert it to relative and make sure we don't set it
    801 	 * to zero, which would cancel the timer, or let it go
    802 	 * negative, which would confuse the comparison tests.
    803 	 */
    804 	if (timespecisset(&pt->pt_time.it_value)) {
    805 		if (pt->pt_type == CLOCK_REALTIME) {
    806 			if ((flags & TIMER_ABSTIME) == 0) {
    807 				getnanotime(&now);
    808 				timespecadd(&pt->pt_time.it_value, &now,
    809 				    &pt->pt_time.it_value);
    810 			}
    811 		} else {
    812 			if ((flags & TIMER_ABSTIME) != 0) {
    813 				getnanotime(&now);
    814 				timespecsub(&pt->pt_time.it_value, &now,
    815 				    &pt->pt_time.it_value);
    816 				if (!timespecisset(&pt->pt_time.it_value) ||
    817 				    pt->pt_time.it_value.tv_sec < 0) {
    818 					pt->pt_time.it_value.tv_sec = 0;
    819 					pt->pt_time.it_value.tv_nsec = 1;
    820 				}
    821 			}
    822 		}
    823 	}
    824 
    825 	timer_settime(pt);
    826 	mutex_spin_exit(&timer_lock);
    827 
    828 	if (ovalue)
    829 		*ovalue = oval;
    830 
    831 	return (0);
    832 }
    833 
    834 /* Return the time remaining until a POSIX timer fires. */
    835 int
    836 sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    837     register_t *retval)
    838 {
    839 	/* {
    840 		syscallarg(timer_t) timerid;
    841 		syscallarg(struct itimerspec *) value;
    842 	} */
    843 	struct itimerspec its;
    844 	int error;
    845 
    846 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    847 	    &its)) != 0)
    848 		return error;
    849 
    850 	return copyout(&its, SCARG(uap, value), sizeof(its));
    851 }
    852 
    853 int
    854 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    855 {
    856 	struct ptimer *pt;
    857 	struct ptimers *pts;
    858 
    859 	pts = p->p_timers;
    860 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    861 		return (EINVAL);
    862 	mutex_spin_enter(&timer_lock);
    863 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    864 		mutex_spin_exit(&timer_lock);
    865 		return (EINVAL);
    866 	}
    867 	timer_gettime(pt, its);
    868 	mutex_spin_exit(&timer_lock);
    869 
    870 	return 0;
    871 }
    872 
    873 /*
    874  * Return the count of the number of times a periodic timer expired
    875  * while a notification was already pending. The counter is reset when
    876  * a timer expires and a notification can be posted.
    877  */
    878 int
    879 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    880     register_t *retval)
    881 {
    882 	/* {
    883 		syscallarg(timer_t) timerid;
    884 	} */
    885 	struct proc *p = l->l_proc;
    886 	struct ptimers *pts;
    887 	int timerid;
    888 	struct ptimer *pt;
    889 
    890 	timerid = SCARG(uap, timerid);
    891 
    892 	pts = p->p_timers;
    893 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    894 		return (EINVAL);
    895 	mutex_spin_enter(&timer_lock);
    896 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    897 		mutex_spin_exit(&timer_lock);
    898 		return (EINVAL);
    899 	}
    900 	*retval = pt->pt_poverruns;
    901 	mutex_spin_exit(&timer_lock);
    902 
    903 	return (0);
    904 }
    905 
    906 #ifdef KERN_SA
    907 /* Glue function that triggers an upcall; called from userret(). */
    908 void
    909 timerupcall(struct lwp *l)
    910 {
    911 	struct ptimers *pt = l->l_proc->p_timers;
    912 	struct proc *p = l->l_proc;
    913 	unsigned int i, fired, done;
    914 
    915 	KDASSERT(l->l_proc->p_sa);
    916 	/* Bail out if we do not own the virtual processor */
    917 	if (l->l_savp->savp_lwp != l)
    918 		return ;
    919 
    920 	mutex_enter(p->p_lock);
    921 
    922 	fired = pt->pts_fired;
    923 	done = 0;
    924 	while ((i = ffs(fired)) != 0) {
    925 		siginfo_t *si;
    926 		int mask = 1 << --i;
    927 		int f;
    928 
    929 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    930 		l->l_pflag |= LP_SA_NOBLOCK;
    931 		si = siginfo_alloc(PR_WAITOK);
    932 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    933 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    934 		    sizeof(*si), si, siginfo_free) != 0) {
    935 			siginfo_free(si);
    936 			/* XXX What do we do here?? */
    937 		} else
    938 			done |= mask;
    939 		fired &= ~mask;
    940 		l->l_pflag ^= f;
    941 	}
    942 	pt->pts_fired &= ~done;
    943 	if (pt->pts_fired == 0)
    944 		l->l_proc->p_timerpend = 0;
    945 
    946 	mutex_exit(p->p_lock);
    947 }
    948 #endif /* KERN_SA */
    949 
    950 /*
    951  * Real interval timer expired:
    952  * send process whose timer expired an alarm signal.
    953  * If time is not set up to reload, then just return.
    954  * Else compute next time timer should go off which is > current time.
    955  * This is where delay in processing this timeout causes multiple
    956  * SIGALRM calls to be compressed into one.
    957  */
    958 void
    959 realtimerexpire(void *arg)
    960 {
    961 	uint64_t last_val, next_val, interval, now_ms;
    962 	struct timespec now, next;
    963 	struct ptimer *pt;
    964 	int backwards;
    965 
    966 	pt = arg;
    967 
    968 	mutex_spin_enter(&timer_lock);
    969 	itimerfire(pt);
    970 
    971 	if (!timespecisset(&pt->pt_time.it_interval)) {
    972 		timespecclear(&pt->pt_time.it_value);
    973 		mutex_spin_exit(&timer_lock);
    974 		return;
    975 	}
    976 
    977 	getnanotime(&now);
    978 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    979 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    980 	/* Handle the easy case of non-overflown timers first. */
    981 	if (!backwards && timespeccmp(&next, &now, >)) {
    982 		pt->pt_time.it_value = next;
    983 	} else {
    984 		now_ms = timespec2ns(&now);
    985 		last_val = timespec2ns(&pt->pt_time.it_value);
    986 		interval = timespec2ns(&pt->pt_time.it_interval);
    987 
    988 		next_val = now_ms +
    989 		    (now_ms - last_val + interval - 1) % interval;
    990 
    991 		if (backwards)
    992 			next_val += interval;
    993 		else
    994 			pt->pt_overruns += (now_ms - last_val) / interval;
    995 
    996 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    997 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
    998 	}
    999 
   1000 	/*
   1001 	 * Don't need to check tshzto() return value, here.
   1002 	 * callout_reset() does it for us.
   1003 	 */
   1004 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1005 	    realtimerexpire, pt);
   1006 	mutex_spin_exit(&timer_lock);
   1007 }
   1008 
   1009 /* BSD routine to get the value of an interval timer. */
   1010 /* ARGSUSED */
   1011 int
   1012 sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
   1013     register_t *retval)
   1014 {
   1015 	/* {
   1016 		syscallarg(int) which;
   1017 		syscallarg(struct itimerval *) itv;
   1018 	} */
   1019 	struct proc *p = l->l_proc;
   1020 	struct itimerval aitv;
   1021 	int error;
   1022 
   1023 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1024 	if (error)
   1025 		return error;
   1026 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1027 }
   1028 
   1029 int
   1030 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1031 {
   1032 	struct ptimers *pts;
   1033 	struct ptimer *pt;
   1034 	struct itimerspec its;
   1035 
   1036 	if ((u_int)which > ITIMER_PROF)
   1037 		return (EINVAL);
   1038 
   1039 	mutex_spin_enter(&timer_lock);
   1040 	pts = p->p_timers;
   1041 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1042 		timerclear(&itvp->it_value);
   1043 		timerclear(&itvp->it_interval);
   1044 	} else {
   1045 		timer_gettime(pt, &its);
   1046 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1047 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1048 	}
   1049 	mutex_spin_exit(&timer_lock);
   1050 
   1051 	return 0;
   1052 }
   1053 
   1054 /* BSD routine to set/arm an interval timer. */
   1055 /* ARGSUSED */
   1056 int
   1057 sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1058     register_t *retval)
   1059 {
   1060 	/* {
   1061 		syscallarg(int) which;
   1062 		syscallarg(const struct itimerval *) itv;
   1063 		syscallarg(struct itimerval *) oitv;
   1064 	} */
   1065 	struct proc *p = l->l_proc;
   1066 	int which = SCARG(uap, which);
   1067 	struct sys_getitimer_args getargs;
   1068 	const struct itimerval *itvp;
   1069 	struct itimerval aitv;
   1070 	int error;
   1071 
   1072 	if ((u_int)which > ITIMER_PROF)
   1073 		return (EINVAL);
   1074 	itvp = SCARG(uap, itv);
   1075 	if (itvp &&
   1076 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1077 		return (error);
   1078 	if (SCARG(uap, oitv) != NULL) {
   1079 		SCARG(&getargs, which) = which;
   1080 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1081 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1082 			return (error);
   1083 	}
   1084 	if (itvp == 0)
   1085 		return (0);
   1086 
   1087 	return dosetitimer(p, which, &aitv);
   1088 }
   1089 
   1090 int
   1091 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1092 {
   1093 	struct timespec now;
   1094 	struct ptimers *pts;
   1095 	struct ptimer *pt, *spare;
   1096 
   1097 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1098 		return (EINVAL);
   1099 
   1100 	/*
   1101 	 * Don't bother allocating data structures if the process just
   1102 	 * wants to clear the timer.
   1103 	 */
   1104 	spare = NULL;
   1105 	pts = p->p_timers;
   1106  retry:
   1107 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1108 	    pts->pts_timers[which] == NULL))
   1109 		return (0);
   1110 	if (pts == NULL)
   1111 		pts = timers_alloc(p);
   1112 	mutex_spin_enter(&timer_lock);
   1113 	pt = pts->pts_timers[which];
   1114 	if (pt == NULL) {
   1115 		if (spare == NULL) {
   1116 			mutex_spin_exit(&timer_lock);
   1117 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1118 			goto retry;
   1119 		}
   1120 		pt = spare;
   1121 		spare = NULL;
   1122 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1123 		pt->pt_ev.sigev_value.sival_int = which;
   1124 		pt->pt_overruns = 0;
   1125 		pt->pt_proc = p;
   1126 		pt->pt_type = which;
   1127 		pt->pt_entry = which;
   1128 		pt->pt_queued = false;
   1129 		if (pt->pt_type == CLOCK_REALTIME)
   1130 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1131 		else
   1132 			pt->pt_active = 0;
   1133 
   1134 		switch (which) {
   1135 		case ITIMER_REAL:
   1136 			pt->pt_ev.sigev_signo = SIGALRM;
   1137 			break;
   1138 		case ITIMER_VIRTUAL:
   1139 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1140 			break;
   1141 		case ITIMER_PROF:
   1142 			pt->pt_ev.sigev_signo = SIGPROF;
   1143 			break;
   1144 		}
   1145 		pts->pts_timers[which] = pt;
   1146 	}
   1147 
   1148 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1149 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1150 
   1151 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1152 		/* Convert to absolute time */
   1153 		/* XXX need to wrap in splclock for timecounters case? */
   1154 		getnanotime(&now);
   1155 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1156 	}
   1157 	timer_settime(pt);
   1158 	mutex_spin_exit(&timer_lock);
   1159 	if (spare != NULL)
   1160 		pool_put(&ptimer_pool, spare);
   1161 
   1162 	return (0);
   1163 }
   1164 
   1165 /* Utility routines to manage the array of pointers to timers. */
   1166 struct ptimers *
   1167 timers_alloc(struct proc *p)
   1168 {
   1169 	struct ptimers *pts;
   1170 	int i;
   1171 
   1172 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1173 	LIST_INIT(&pts->pts_virtual);
   1174 	LIST_INIT(&pts->pts_prof);
   1175 	for (i = 0; i < TIMER_MAX; i++)
   1176 		pts->pts_timers[i] = NULL;
   1177 	pts->pts_fired = 0;
   1178 	mutex_spin_enter(&timer_lock);
   1179 	if (p->p_timers == NULL) {
   1180 		p->p_timers = pts;
   1181 		mutex_spin_exit(&timer_lock);
   1182 		return pts;
   1183 	}
   1184 	mutex_spin_exit(&timer_lock);
   1185 	pool_put(&ptimers_pool, pts);
   1186 	return p->p_timers;
   1187 }
   1188 
   1189 /*
   1190  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1191  * then clean up all timers and free all the data structures. If
   1192  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1193  * by timer_create(), not the BSD setitimer() timers, and only free the
   1194  * structure if none of those remain.
   1195  */
   1196 void
   1197 timers_free(struct proc *p, int which)
   1198 {
   1199 	struct ptimers *pts;
   1200 	struct ptimer *ptn;
   1201 	struct timespec ts;
   1202 	int i;
   1203 
   1204 	if (p->p_timers == NULL)
   1205 		return;
   1206 
   1207 	pts = p->p_timers;
   1208 	mutex_spin_enter(&timer_lock);
   1209 	if (which == TIMERS_ALL) {
   1210 		p->p_timers = NULL;
   1211 		i = 0;
   1212 	} else {
   1213 		timespecclear(&ts);
   1214 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1215 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1216 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1217 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1218 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1219 		}
   1220 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1221 		if (ptn) {
   1222 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1223 			timespecadd(&ts, &ptn->pt_time.it_value,
   1224 			    &ptn->pt_time.it_value);
   1225 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1226 		}
   1227 		timespecclear(&ts);
   1228 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1229 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1230 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1231 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1232 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1233 		}
   1234 		LIST_FIRST(&pts->pts_prof) = NULL;
   1235 		if (ptn) {
   1236 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1237 			timespecadd(&ts, &ptn->pt_time.it_value,
   1238 			    &ptn->pt_time.it_value);
   1239 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1240 		}
   1241 		i = 3;
   1242 	}
   1243 	for ( ; i < TIMER_MAX; i++) {
   1244 		if (pts->pts_timers[i] != NULL) {
   1245 			itimerfree(pts, i);
   1246 			mutex_spin_enter(&timer_lock);
   1247 		}
   1248 	}
   1249 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1250 	    pts->pts_timers[2] == NULL) {
   1251 		p->p_timers = NULL;
   1252 		mutex_spin_exit(&timer_lock);
   1253 		pool_put(&ptimers_pool, pts);
   1254 	} else
   1255 		mutex_spin_exit(&timer_lock);
   1256 }
   1257 
   1258 static void
   1259 itimerfree(struct ptimers *pts, int index)
   1260 {
   1261 	struct ptimer *pt;
   1262 
   1263 	KASSERT(mutex_owned(&timer_lock));
   1264 
   1265 	pt = pts->pts_timers[index];
   1266 	pts->pts_timers[index] = NULL;
   1267 	if (pt->pt_type == CLOCK_REALTIME)
   1268 		callout_halt(&pt->pt_ch, &timer_lock);
   1269 	else if (pt->pt_queued)
   1270 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1271 	mutex_spin_exit(&timer_lock);
   1272 	if (pt->pt_type == CLOCK_REALTIME)
   1273 		callout_destroy(&pt->pt_ch);
   1274 	pool_put(&ptimer_pool, pt);
   1275 }
   1276 
   1277 /*
   1278  * Decrement an interval timer by a specified number
   1279  * of nanoseconds, which must be less than a second,
   1280  * i.e. < 1000000000.  If the timer expires, then reload
   1281  * it.  In this case, carry over (nsec - old value) to
   1282  * reduce the value reloaded into the timer so that
   1283  * the timer does not drift.  This routine assumes
   1284  * that it is called in a context where the timers
   1285  * on which it is operating cannot change in value.
   1286  */
   1287 static int
   1288 itimerdecr(struct ptimer *pt, int nsec)
   1289 {
   1290 	struct itimerspec *itp;
   1291 
   1292 	KASSERT(mutex_owned(&timer_lock));
   1293 
   1294 	itp = &pt->pt_time;
   1295 	if (itp->it_value.tv_nsec < nsec) {
   1296 		if (itp->it_value.tv_sec == 0) {
   1297 			/* expired, and already in next interval */
   1298 			nsec -= itp->it_value.tv_nsec;
   1299 			goto expire;
   1300 		}
   1301 		itp->it_value.tv_nsec += 1000000000;
   1302 		itp->it_value.tv_sec--;
   1303 	}
   1304 	itp->it_value.tv_nsec -= nsec;
   1305 	nsec = 0;
   1306 	if (timespecisset(&itp->it_value))
   1307 		return (1);
   1308 	/* expired, exactly at end of interval */
   1309 expire:
   1310 	if (timespecisset(&itp->it_interval)) {
   1311 		itp->it_value = itp->it_interval;
   1312 		itp->it_value.tv_nsec -= nsec;
   1313 		if (itp->it_value.tv_nsec < 0) {
   1314 			itp->it_value.tv_nsec += 1000000000;
   1315 			itp->it_value.tv_sec--;
   1316 		}
   1317 		timer_settime(pt);
   1318 	} else
   1319 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1320 	return (0);
   1321 }
   1322 
   1323 static void
   1324 itimerfire(struct ptimer *pt)
   1325 {
   1326 
   1327 	KASSERT(mutex_owned(&timer_lock));
   1328 
   1329 	/*
   1330 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1331 	 * XXX Relying on the clock interrupt is stupid.
   1332 	 */
   1333 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1334 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1335 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1336 		return;
   1337 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1338 	pt->pt_queued = true;
   1339 	softint_schedule(timer_sih);
   1340 }
   1341 
   1342 void
   1343 timer_tick(lwp_t *l, bool user)
   1344 {
   1345 	struct ptimers *pts;
   1346 	struct ptimer *pt;
   1347 	proc_t *p;
   1348 
   1349 	p = l->l_proc;
   1350 	if (p->p_timers == NULL)
   1351 		return;
   1352 
   1353 	mutex_spin_enter(&timer_lock);
   1354 	if ((pts = l->l_proc->p_timers) != NULL) {
   1355 		/*
   1356 		 * Run current process's virtual and profile time, as needed.
   1357 		 */
   1358 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1359 			if (itimerdecr(pt, tick * 1000) == 0)
   1360 				itimerfire(pt);
   1361 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1362 			if (itimerdecr(pt, tick * 1000) == 0)
   1363 				itimerfire(pt);
   1364 	}
   1365 	mutex_spin_exit(&timer_lock);
   1366 }
   1367 
   1368 #ifdef KERN_SA
   1369 /*
   1370  * timer_sa_intr:
   1371  *
   1372  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1373  * with the timer lock held. We know that the process had SA enabled
   1374  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1375  * handler, SA should still be enabled by the time we get here.
   1376  */
   1377 static void
   1378 timer_sa_intr(struct ptimer *pt, proc_t *p)
   1379 {
   1380 	unsigned int		i;
   1381 	struct sadata		*sa;
   1382 	struct sadata_vp	*vp;
   1383 
   1384 	/* Cause the process to generate an upcall when it returns. */
   1385 	if (!p->p_timerpend) {
   1386 		/*
   1387 		 * XXX stop signals can be processed inside tsleep,
   1388 		 * which can be inside sa_yield's inner loop, which
   1389 		 * makes testing for sa_idle alone insuffucent to
   1390 		 * determine if we really should call setrunnable.
   1391 		 */
   1392 		pt->pt_poverruns = pt->pt_overruns;
   1393 		pt->pt_overruns = 0;
   1394 		i = 1 << pt->pt_entry;
   1395 		p->p_timers->pts_fired = i;
   1396 		p->p_timerpend = 1;
   1397 
   1398 		sa = p->p_sa;
   1399 		mutex_enter(&sa->sa_mutex);
   1400 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1401 			struct lwp *vp_lwp = vp->savp_lwp;
   1402 			lwp_lock(vp_lwp);
   1403 			lwp_need_userret(vp_lwp);
   1404 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1405 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1406 				lwp_unsleep(vp_lwp, true);
   1407 				break;
   1408 			}
   1409 			lwp_unlock(vp_lwp);
   1410 		}
   1411 		mutex_exit(&sa->sa_mutex);
   1412 	} else {
   1413 		i = 1 << pt->pt_entry;
   1414 		if ((p->p_timers->pts_fired & i) == 0) {
   1415 			pt->pt_poverruns = pt->pt_overruns;
   1416 			pt->pt_overruns = 0;
   1417 			p->p_timers->pts_fired |= i;
   1418 		} else
   1419 			pt->pt_overruns++;
   1420 	}
   1421 }
   1422 #endif /* KERN_SA */
   1423 
   1424 static void
   1425 timer_intr(void *cookie)
   1426 {
   1427 	ksiginfo_t ksi;
   1428 	struct ptimer *pt;
   1429 	proc_t *p;
   1430 
   1431 	mutex_enter(proc_lock);
   1432 	mutex_spin_enter(&timer_lock);
   1433 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1434 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1435 		KASSERT(pt->pt_queued);
   1436 		pt->pt_queued = false;
   1437 
   1438 		if (pt->pt_proc->p_timers == NULL) {
   1439 			/* Process is dying. */
   1440 			continue;
   1441 		}
   1442 		p = pt->pt_proc;
   1443 #ifdef KERN_SA
   1444 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1445 			timer_sa_intr(pt, p);
   1446 			continue;
   1447 		}
   1448 #endif /* KERN_SA */
   1449 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1450 			continue;
   1451 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1452 			pt->pt_overruns++;
   1453 			continue;
   1454 		}
   1455 
   1456 		KSI_INIT(&ksi);
   1457 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1458 		ksi.ksi_code = SI_TIMER;
   1459 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1460 		pt->pt_poverruns = pt->pt_overruns;
   1461 		pt->pt_overruns = 0;
   1462 		mutex_spin_exit(&timer_lock);
   1463 		kpsignal(p, &ksi, NULL);
   1464 		mutex_spin_enter(&timer_lock);
   1465 	}
   1466 	mutex_spin_exit(&timer_lock);
   1467 	mutex_exit(proc_lock);
   1468 }
   1469