kern_time.c revision 1.156 1 /* $NetBSD: kern_time.c,v 1.156 2009/01/11 02:45:52 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.156 2009/01/11 02:45:52 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 &pool_allocator_nointr, IPL_NONE);
98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 &pool_allocator_nointr, IPL_NONE);
100
101 /*
102 * Initialize timekeeping.
103 */
104 void
105 time_init(void)
106 {
107
108 /* nothing yet */
109 }
110
111 void
112 time_init2(void)
113 {
114
115 TAILQ_INIT(&timer_queue);
116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 timer_intr, NULL);
119 }
120
121 /* Time of day and interval timer support.
122 *
123 * These routines provide the kernel entry points to get and set
124 * the time-of-day and per-process interval timers. Subroutines
125 * here provide support for adding and subtracting timeval structures
126 * and decrementing interval timers, optionally reloading the interval
127 * timers when they expire.
128 */
129
130 /* This function is used by clock_settime and settimeofday */
131 static int
132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 {
134 struct timespec delta, now;
135 struct bintime btdelta;
136 lwp_t *l;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 /*
163 * XXXSMP: There is a short race between setting the time above
164 * and adjusting LWP's run times. Fixing this properly means
165 * pausing all CPUs while we adjust the clock.
166 */
167 timespec2bintime(&delta, &btdelta);
168 mutex_enter(proc_lock);
169 LIST_FOREACH(l, &alllwp, l_list) {
170 lwp_lock(l);
171 bintime_add(&l->l_stime, &btdelta);
172 lwp_unlock(l);
173 }
174 mutex_exit(proc_lock);
175 resettodr();
176 splx(s);
177
178 return (0);
179 }
180
181 int
182 settime(struct proc *p, struct timespec *ts)
183 {
184 return (settime1(p, ts, true));
185 }
186
187 /* ARGSUSED */
188 int
189 sys___clock_gettime50(struct lwp *l,
190 const struct sys___clock_gettime50_args *uap, register_t *retval)
191 {
192 /* {
193 syscallarg(clockid_t) clock_id;
194 syscallarg(struct timespec *) tp;
195 } */
196 clockid_t clock_id;
197 struct timespec ats;
198
199 clock_id = SCARG(uap, clock_id);
200 switch (clock_id) {
201 case CLOCK_REALTIME:
202 nanotime(&ats);
203 break;
204 case CLOCK_MONOTONIC:
205 nanouptime(&ats);
206 break;
207 default:
208 return (EINVAL);
209 }
210
211 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
212 }
213
214 /* ARGSUSED */
215 int
216 sys___clock_settime50(struct lwp *l,
217 const struct sys___clock_settime50_args *uap, register_t *retval)
218 {
219 /* {
220 syscallarg(clockid_t) clock_id;
221 syscallarg(const struct timespec *) tp;
222 } */
223 int error;
224 struct timespec ats;
225
226 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
227 return error;
228
229 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
230 }
231
232
233 int
234 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
235 bool check_kauth)
236 {
237 int error;
238
239 switch (clock_id) {
240 case CLOCK_REALTIME:
241 if ((error = settime1(p, tp, check_kauth)) != 0)
242 return (error);
243 break;
244 case CLOCK_MONOTONIC:
245 return (EINVAL); /* read-only clock */
246 default:
247 return (EINVAL);
248 }
249
250 return 0;
251 }
252
253 int
254 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
255 register_t *retval)
256 {
257 /* {
258 syscallarg(clockid_t) clock_id;
259 syscallarg(struct timespec *) tp;
260 } */
261 clockid_t clock_id;
262 struct timespec ts;
263 int error = 0;
264
265 clock_id = SCARG(uap, clock_id);
266 switch (clock_id) {
267 case CLOCK_REALTIME:
268 case CLOCK_MONOTONIC:
269 ts.tv_sec = 0;
270 if (tc_getfrequency() > 1000000000)
271 ts.tv_nsec = 1;
272 else
273 ts.tv_nsec = 1000000000 / tc_getfrequency();
274 break;
275 default:
276 return (EINVAL);
277 }
278
279 if (SCARG(uap, tp))
280 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281
282 return error;
283 }
284
285 /* ARGSUSED */
286 int
287 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
288 register_t *retval)
289 {
290 /* {
291 syscallarg(struct timespec *) rqtp;
292 syscallarg(struct timespec *) rmtp;
293 } */
294 struct timespec rmt, rqt;
295 int error, error1;
296
297 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
298 if (error)
299 return (error);
300
301 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
302 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
303 return error;
304
305 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
306 return error1 ? error1 : error;
307 }
308
309 int
310 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
311 {
312 struct timespec rmtstart;
313 int error, timo;
314
315 if (itimespecfix(rqt))
316 return (EINVAL);
317
318 timo = tstohz(rqt);
319 /*
320 * Avoid inadvertantly sleeping forever
321 */
322 if (timo == 0)
323 timo = 1;
324 getnanouptime(&rmtstart);
325 again:
326 error = kpause("nanoslp", true, timo, NULL);
327 if (rmt != NULL || error == 0) {
328 struct timespec rmtend;
329 struct timespec t0;
330 struct timespec *t;
331
332 getnanouptime(&rmtend);
333 t = (rmt != NULL) ? rmt : &t0;
334 timespecsub(&rmtend, &rmtstart, t);
335 timespecsub(rqt, t, t);
336 if (t->tv_sec < 0)
337 timespecclear(t);
338 if (error == 0) {
339 timo = tstohz(t);
340 if (timo > 0)
341 goto again;
342 }
343 }
344
345 if (error == ERESTART)
346 error = EINTR;
347 if (error == EWOULDBLOCK)
348 error = 0;
349
350 return error;
351 }
352
353 /* ARGSUSED */
354 int
355 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
356 register_t *retval)
357 {
358 /* {
359 syscallarg(struct timeval *) tp;
360 syscallarg(void *) tzp; really "struct timezone *";
361 } */
362 struct timeval atv;
363 int error = 0;
364 struct timezone tzfake;
365
366 if (SCARG(uap, tp)) {
367 microtime(&atv);
368 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
369 if (error)
370 return (error);
371 }
372 if (SCARG(uap, tzp)) {
373 /*
374 * NetBSD has no kernel notion of time zone, so we just
375 * fake up a timezone struct and return it if demanded.
376 */
377 tzfake.tz_minuteswest = 0;
378 tzfake.tz_dsttime = 0;
379 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
380 }
381 return (error);
382 }
383
384 /* ARGSUSED */
385 int
386 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
387 register_t *retval)
388 {
389 /* {
390 syscallarg(const struct timeval *) tv;
391 syscallarg(const void *) tzp; really "const struct timezone *";
392 } */
393
394 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
395 }
396
397 int
398 settimeofday1(const struct timeval *utv, bool userspace,
399 const void *utzp, struct lwp *l, bool check_kauth)
400 {
401 struct timeval atv;
402 struct timespec ts;
403 int error;
404
405 /* Verify all parameters before changing time. */
406
407 /*
408 * NetBSD has no kernel notion of time zone, and only an
409 * obsolete program would try to set it, so we log a warning.
410 */
411 if (utzp)
412 log(LOG_WARNING, "pid %d attempted to set the "
413 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
414
415 if (utv == NULL)
416 return 0;
417
418 if (userspace) {
419 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
420 return error;
421 utv = &atv;
422 }
423
424 TIMEVAL_TO_TIMESPEC(utv, &ts);
425 return settime1(l->l_proc, &ts, check_kauth);
426 }
427
428 int time_adjusted; /* set if an adjustment is made */
429
430 /* ARGSUSED */
431 int
432 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
433 register_t *retval)
434 {
435 /* {
436 syscallarg(const struct timeval *) delta;
437 syscallarg(struct timeval *) olddelta;
438 } */
439 int error = 0;
440 struct timeval atv, oldatv;
441
442 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
443 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
444 return error;
445
446 if (SCARG(uap, delta)) {
447 error = copyin(SCARG(uap, delta), &atv,
448 sizeof(*SCARG(uap, delta)));
449 if (error)
450 return (error);
451 }
452 adjtime1(SCARG(uap, delta) ? &atv : NULL,
453 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
454 if (SCARG(uap, olddelta))
455 error = copyout(&oldatv, SCARG(uap, olddelta),
456 sizeof(*SCARG(uap, olddelta)));
457 return error;
458 }
459
460 void
461 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
462 {
463 extern int64_t time_adjtime; /* in kern_ntptime.c */
464
465 if (olddelta) {
466 mutex_spin_enter(&timecounter_lock);
467 olddelta->tv_sec = time_adjtime / 1000000;
468 olddelta->tv_usec = time_adjtime % 1000000;
469 if (olddelta->tv_usec < 0) {
470 olddelta->tv_usec += 1000000;
471 olddelta->tv_sec--;
472 }
473 }
474
475 if (delta) {
476 mutex_spin_enter(&timecounter_lock);
477 time_adjtime = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
478
479 if (time_adjtime) {
480 /* We need to save the system time during shutdown */
481 time_adjusted |= 1;
482 }
483 mutex_spin_exit(&timecounter_lock);
484 }
485 }
486
487 /*
488 * Interval timer support. Both the BSD getitimer() family and the POSIX
489 * timer_*() family of routines are supported.
490 *
491 * All timers are kept in an array pointed to by p_timers, which is
492 * allocated on demand - many processes don't use timers at all. The
493 * first three elements in this array are reserved for the BSD timers:
494 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
495 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
496 * syscall.
497 *
498 * Realtime timers are kept in the ptimer structure as an absolute
499 * time; virtual time timers are kept as a linked list of deltas.
500 * Virtual time timers are processed in the hardclock() routine of
501 * kern_clock.c. The real time timer is processed by a callout
502 * routine, called from the softclock() routine. Since a callout may
503 * be delayed in real time due to interrupt processing in the system,
504 * it is possible for the real time timeout routine (realtimeexpire,
505 * given below), to be delayed in real time past when it is supposed
506 * to occur. It does not suffice, therefore, to reload the real timer
507 * .it_value from the real time timers .it_interval. Rather, we
508 * compute the next time in absolute time the timer should go off. */
509
510 /* Allocate a POSIX realtime timer. */
511 int
512 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
513 register_t *retval)
514 {
515 /* {
516 syscallarg(clockid_t) clock_id;
517 syscallarg(struct sigevent *) evp;
518 syscallarg(timer_t *) timerid;
519 } */
520
521 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
522 SCARG(uap, evp), copyin, l);
523 }
524
525 int
526 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
527 copyin_t fetch_event, struct lwp *l)
528 {
529 int error;
530 timer_t timerid;
531 struct ptimers *pts;
532 struct ptimer *pt;
533 struct proc *p;
534
535 p = l->l_proc;
536
537 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
538 return (EINVAL);
539
540 if ((pts = p->p_timers) == NULL)
541 pts = timers_alloc(p);
542
543 pt = pool_get(&ptimer_pool, PR_WAITOK);
544 if (evp != NULL) {
545 if (((error =
546 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
547 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
548 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
549 pool_put(&ptimer_pool, pt);
550 return (error ? error : EINVAL);
551 }
552 }
553
554 /* Find a free timer slot, skipping those reserved for setitimer(). */
555 mutex_spin_enter(&timer_lock);
556 for (timerid = 3; timerid < TIMER_MAX; timerid++)
557 if (pts->pts_timers[timerid] == NULL)
558 break;
559 if (timerid == TIMER_MAX) {
560 mutex_spin_exit(&timer_lock);
561 pool_put(&ptimer_pool, pt);
562 return EAGAIN;
563 }
564 if (evp == NULL) {
565 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
566 switch (id) {
567 case CLOCK_REALTIME:
568 pt->pt_ev.sigev_signo = SIGALRM;
569 break;
570 case CLOCK_VIRTUAL:
571 pt->pt_ev.sigev_signo = SIGVTALRM;
572 break;
573 case CLOCK_PROF:
574 pt->pt_ev.sigev_signo = SIGPROF;
575 break;
576 }
577 pt->pt_ev.sigev_value.sival_int = timerid;
578 }
579 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
580 pt->pt_info.ksi_errno = 0;
581 pt->pt_info.ksi_code = 0;
582 pt->pt_info.ksi_pid = p->p_pid;
583 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
584 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
585 pt->pt_type = id;
586 pt->pt_proc = p;
587 pt->pt_overruns = 0;
588 pt->pt_poverruns = 0;
589 pt->pt_entry = timerid;
590 pt->pt_queued = false;
591 timespecclear(&pt->pt_time.it_value);
592 if (id == CLOCK_REALTIME)
593 callout_init(&pt->pt_ch, 0);
594 else
595 pt->pt_active = 0;
596
597 pts->pts_timers[timerid] = pt;
598 mutex_spin_exit(&timer_lock);
599
600 return copyout(&timerid, tid, sizeof(timerid));
601 }
602
603 /* Delete a POSIX realtime timer */
604 int
605 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
606 register_t *retval)
607 {
608 /* {
609 syscallarg(timer_t) timerid;
610 } */
611 struct proc *p = l->l_proc;
612 timer_t timerid;
613 struct ptimers *pts;
614 struct ptimer *pt, *ptn;
615
616 timerid = SCARG(uap, timerid);
617 pts = p->p_timers;
618
619 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
620 return (EINVAL);
621
622 mutex_spin_enter(&timer_lock);
623 if ((pt = pts->pts_timers[timerid]) == NULL) {
624 mutex_spin_exit(&timer_lock);
625 return (EINVAL);
626 }
627 if (pt->pt_type != CLOCK_REALTIME) {
628 if (pt->pt_active) {
629 ptn = LIST_NEXT(pt, pt_list);
630 LIST_REMOVE(pt, pt_list);
631 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
632 timespecadd(&pt->pt_time.it_value,
633 &ptn->pt_time.it_value,
634 &ptn->pt_time.it_value);
635 pt->pt_active = 0;
636 }
637 }
638 itimerfree(pts, timerid);
639
640 return (0);
641 }
642
643 /*
644 * Set up the given timer. The value in pt->pt_time.it_value is taken
645 * to be an absolute time for CLOCK_REALTIME timers and a relative
646 * time for virtual timers.
647 * Must be called at splclock().
648 */
649 void
650 timer_settime(struct ptimer *pt)
651 {
652 struct ptimer *ptn, *pptn;
653 struct ptlist *ptl;
654
655 KASSERT(mutex_owned(&timer_lock));
656
657 if (pt->pt_type == CLOCK_REALTIME) {
658 callout_stop(&pt->pt_ch);
659 if (timespecisset(&pt->pt_time.it_value)) {
660 /*
661 * Don't need to check tshzto() return value, here.
662 * callout_reset() does it for us.
663 */
664 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
665 realtimerexpire, pt);
666 }
667 } else {
668 if (pt->pt_active) {
669 ptn = LIST_NEXT(pt, pt_list);
670 LIST_REMOVE(pt, pt_list);
671 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
672 timespecadd(&pt->pt_time.it_value,
673 &ptn->pt_time.it_value,
674 &ptn->pt_time.it_value);
675 }
676 if (timespecisset(&pt->pt_time.it_value)) {
677 if (pt->pt_type == CLOCK_VIRTUAL)
678 ptl = &pt->pt_proc->p_timers->pts_virtual;
679 else
680 ptl = &pt->pt_proc->p_timers->pts_prof;
681
682 for (ptn = LIST_FIRST(ptl), pptn = NULL;
683 ptn && timespeccmp(&pt->pt_time.it_value,
684 &ptn->pt_time.it_value, >);
685 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
686 timespecsub(&pt->pt_time.it_value,
687 &ptn->pt_time.it_value,
688 &pt->pt_time.it_value);
689
690 if (pptn)
691 LIST_INSERT_AFTER(pptn, pt, pt_list);
692 else
693 LIST_INSERT_HEAD(ptl, pt, pt_list);
694
695 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
696 timespecsub(&ptn->pt_time.it_value,
697 &pt->pt_time.it_value,
698 &ptn->pt_time.it_value);
699
700 pt->pt_active = 1;
701 } else
702 pt->pt_active = 0;
703 }
704 }
705
706 void
707 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
708 {
709 struct timespec now;
710 struct ptimer *ptn;
711
712 KASSERT(mutex_owned(&timer_lock));
713
714 *aits = pt->pt_time;
715 if (pt->pt_type == CLOCK_REALTIME) {
716 /*
717 * Convert from absolute to relative time in .it_value
718 * part of real time timer. If time for real time
719 * timer has passed return 0, else return difference
720 * between current time and time for the timer to go
721 * off.
722 */
723 if (timespecisset(&aits->it_value)) {
724 getnanotime(&now);
725 if (timespeccmp(&aits->it_value, &now, <))
726 timespecclear(&aits->it_value);
727 else
728 timespecsub(&aits->it_value, &now,
729 &aits->it_value);
730 }
731 } else if (pt->pt_active) {
732 if (pt->pt_type == CLOCK_VIRTUAL)
733 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
734 else
735 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
736 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
737 timespecadd(&aits->it_value,
738 &ptn->pt_time.it_value, &aits->it_value);
739 KASSERT(ptn != NULL); /* pt should be findable on the list */
740 } else
741 timespecclear(&aits->it_value);
742 }
743
744
745
746 /* Set and arm a POSIX realtime timer */
747 int
748 sys___timer_settime50(struct lwp *l,
749 const struct sys___timer_settime50_args *uap,
750 register_t *retval)
751 {
752 /* {
753 syscallarg(timer_t) timerid;
754 syscallarg(int) flags;
755 syscallarg(const struct itimerspec *) value;
756 syscallarg(struct itimerspec *) ovalue;
757 } */
758 int error;
759 struct itimerspec value, ovalue, *ovp = NULL;
760
761 if ((error = copyin(SCARG(uap, value), &value,
762 sizeof(struct itimerspec))) != 0)
763 return (error);
764
765 if (SCARG(uap, ovalue))
766 ovp = &ovalue;
767
768 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
769 SCARG(uap, flags), l->l_proc)) != 0)
770 return error;
771
772 if (ovp)
773 return copyout(&ovalue, SCARG(uap, ovalue),
774 sizeof(struct itimerspec));
775 return 0;
776 }
777
778 int
779 dotimer_settime(int timerid, struct itimerspec *value,
780 struct itimerspec *ovalue, int flags, struct proc *p)
781 {
782 struct timespec now;
783 struct itimerspec val, oval;
784 struct ptimers *pts;
785 struct ptimer *pt;
786
787 pts = p->p_timers;
788
789 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
790 return EINVAL;
791 val = *value;
792 if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
793 return EINVAL;
794
795 mutex_spin_enter(&timer_lock);
796 if ((pt = pts->pts_timers[timerid]) == NULL) {
797 mutex_spin_exit(&timer_lock);
798 return EINVAL;
799 }
800
801 oval = pt->pt_time;
802 pt->pt_time = val;
803
804 /*
805 * If we've been passed a relative time for a realtime timer,
806 * convert it to absolute; if an absolute time for a virtual
807 * timer, convert it to relative and make sure we don't set it
808 * to zero, which would cancel the timer, or let it go
809 * negative, which would confuse the comparison tests.
810 */
811 if (timespecisset(&pt->pt_time.it_value)) {
812 if (pt->pt_type == CLOCK_REALTIME) {
813 if ((flags & TIMER_ABSTIME) == 0) {
814 getnanotime(&now);
815 timespecadd(&pt->pt_time.it_value, &now,
816 &pt->pt_time.it_value);
817 }
818 } else {
819 if ((flags & TIMER_ABSTIME) != 0) {
820 getnanotime(&now);
821 timespecsub(&pt->pt_time.it_value, &now,
822 &pt->pt_time.it_value);
823 if (!timespecisset(&pt->pt_time.it_value) ||
824 pt->pt_time.it_value.tv_sec < 0) {
825 pt->pt_time.it_value.tv_sec = 0;
826 pt->pt_time.it_value.tv_nsec = 1;
827 }
828 }
829 }
830 }
831
832 timer_settime(pt);
833 mutex_spin_exit(&timer_lock);
834
835 if (ovalue)
836 *ovalue = oval;
837
838 return (0);
839 }
840
841 /* Return the time remaining until a POSIX timer fires. */
842 int
843 sys___timer_gettime50(struct lwp *l,
844 const struct sys___timer_gettime50_args *uap, register_t *retval)
845 {
846 /* {
847 syscallarg(timer_t) timerid;
848 syscallarg(struct itimerspec *) value;
849 } */
850 struct itimerspec its;
851 int error;
852
853 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
854 &its)) != 0)
855 return error;
856
857 return copyout(&its, SCARG(uap, value), sizeof(its));
858 }
859
860 int
861 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
862 {
863 struct ptimer *pt;
864 struct ptimers *pts;
865
866 pts = p->p_timers;
867 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
868 return (EINVAL);
869 mutex_spin_enter(&timer_lock);
870 if ((pt = pts->pts_timers[timerid]) == NULL) {
871 mutex_spin_exit(&timer_lock);
872 return (EINVAL);
873 }
874 timer_gettime(pt, its);
875 mutex_spin_exit(&timer_lock);
876
877 return 0;
878 }
879
880 /*
881 * Return the count of the number of times a periodic timer expired
882 * while a notification was already pending. The counter is reset when
883 * a timer expires and a notification can be posted.
884 */
885 int
886 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
887 register_t *retval)
888 {
889 /* {
890 syscallarg(timer_t) timerid;
891 } */
892 struct proc *p = l->l_proc;
893 struct ptimers *pts;
894 int timerid;
895 struct ptimer *pt;
896
897 timerid = SCARG(uap, timerid);
898
899 pts = p->p_timers;
900 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
901 return (EINVAL);
902 mutex_spin_enter(&timer_lock);
903 if ((pt = pts->pts_timers[timerid]) == NULL) {
904 mutex_spin_exit(&timer_lock);
905 return (EINVAL);
906 }
907 *retval = pt->pt_poverruns;
908 mutex_spin_exit(&timer_lock);
909
910 return (0);
911 }
912
913 #ifdef KERN_SA
914 /* Glue function that triggers an upcall; called from userret(). */
915 void
916 timerupcall(struct lwp *l)
917 {
918 struct ptimers *pt = l->l_proc->p_timers;
919 struct proc *p = l->l_proc;
920 unsigned int i, fired, done;
921
922 KDASSERT(l->l_proc->p_sa);
923 /* Bail out if we do not own the virtual processor */
924 if (l->l_savp->savp_lwp != l)
925 return ;
926
927 mutex_enter(p->p_lock);
928
929 fired = pt->pts_fired;
930 done = 0;
931 while ((i = ffs(fired)) != 0) {
932 siginfo_t *si;
933 int mask = 1 << --i;
934 int f;
935
936 f = ~l->l_pflag & LP_SA_NOBLOCK;
937 l->l_pflag |= LP_SA_NOBLOCK;
938 si = siginfo_alloc(PR_WAITOK);
939 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
940 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
941 sizeof(*si), si, siginfo_free) != 0) {
942 siginfo_free(si);
943 /* XXX What do we do here?? */
944 } else
945 done |= mask;
946 fired &= ~mask;
947 l->l_pflag ^= f;
948 }
949 pt->pts_fired &= ~done;
950 if (pt->pts_fired == 0)
951 l->l_proc->p_timerpend = 0;
952
953 mutex_exit(p->p_lock);
954 }
955 #endif /* KERN_SA */
956
957 /*
958 * Real interval timer expired:
959 * send process whose timer expired an alarm signal.
960 * If time is not set up to reload, then just return.
961 * Else compute next time timer should go off which is > current time.
962 * This is where delay in processing this timeout causes multiple
963 * SIGALRM calls to be compressed into one.
964 */
965 void
966 realtimerexpire(void *arg)
967 {
968 uint64_t last_val, next_val, interval, now_ms;
969 struct timespec now, next;
970 struct ptimer *pt;
971 int backwards;
972
973 pt = arg;
974
975 mutex_spin_enter(&timer_lock);
976 itimerfire(pt);
977
978 if (!timespecisset(&pt->pt_time.it_interval)) {
979 timespecclear(&pt->pt_time.it_value);
980 mutex_spin_exit(&timer_lock);
981 return;
982 }
983
984 getnanotime(&now);
985 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
986 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
987 /* Handle the easy case of non-overflown timers first. */
988 if (!backwards && timespeccmp(&next, &now, >)) {
989 pt->pt_time.it_value = next;
990 } else {
991 now_ms = timespec2ns(&now);
992 last_val = timespec2ns(&pt->pt_time.it_value);
993 interval = timespec2ns(&pt->pt_time.it_interval);
994
995 next_val = now_ms +
996 (now_ms - last_val + interval - 1) % interval;
997
998 if (backwards)
999 next_val += interval;
1000 else
1001 pt->pt_overruns += (now_ms - last_val) / interval;
1002
1003 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1004 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1005 }
1006
1007 /*
1008 * Don't need to check tshzto() return value, here.
1009 * callout_reset() does it for us.
1010 */
1011 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1012 realtimerexpire, pt);
1013 mutex_spin_exit(&timer_lock);
1014 }
1015
1016 /* BSD routine to get the value of an interval timer. */
1017 /* ARGSUSED */
1018 int
1019 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1020 register_t *retval)
1021 {
1022 /* {
1023 syscallarg(int) which;
1024 syscallarg(struct itimerval *) itv;
1025 } */
1026 struct proc *p = l->l_proc;
1027 struct itimerval aitv;
1028 int error;
1029
1030 error = dogetitimer(p, SCARG(uap, which), &aitv);
1031 if (error)
1032 return error;
1033 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1034 }
1035
1036 int
1037 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1038 {
1039 struct ptimers *pts;
1040 struct ptimer *pt;
1041 struct itimerspec its;
1042
1043 if ((u_int)which > ITIMER_PROF)
1044 return (EINVAL);
1045
1046 mutex_spin_enter(&timer_lock);
1047 pts = p->p_timers;
1048 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1049 timerclear(&itvp->it_value);
1050 timerclear(&itvp->it_interval);
1051 } else {
1052 timer_gettime(pt, &its);
1053 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1054 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1055 }
1056 mutex_spin_exit(&timer_lock);
1057
1058 return 0;
1059 }
1060
1061 /* BSD routine to set/arm an interval timer. */
1062 /* ARGSUSED */
1063 int
1064 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1065 register_t *retval)
1066 {
1067 /* {
1068 syscallarg(int) which;
1069 syscallarg(const struct itimerval *) itv;
1070 syscallarg(struct itimerval *) oitv;
1071 } */
1072 struct proc *p = l->l_proc;
1073 int which = SCARG(uap, which);
1074 struct sys___getitimer50_args getargs;
1075 const struct itimerval *itvp;
1076 struct itimerval aitv;
1077 int error;
1078
1079 if ((u_int)which > ITIMER_PROF)
1080 return (EINVAL);
1081 itvp = SCARG(uap, itv);
1082 if (itvp &&
1083 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1084 return (error);
1085 if (SCARG(uap, oitv) != NULL) {
1086 SCARG(&getargs, which) = which;
1087 SCARG(&getargs, itv) = SCARG(uap, oitv);
1088 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1089 return (error);
1090 }
1091 if (itvp == 0)
1092 return (0);
1093
1094 return dosetitimer(p, which, &aitv);
1095 }
1096
1097 int
1098 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1099 {
1100 struct timespec now;
1101 struct ptimers *pts;
1102 struct ptimer *pt, *spare;
1103
1104 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1105 return (EINVAL);
1106
1107 /*
1108 * Don't bother allocating data structures if the process just
1109 * wants to clear the timer.
1110 */
1111 spare = NULL;
1112 pts = p->p_timers;
1113 retry:
1114 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1115 pts->pts_timers[which] == NULL))
1116 return (0);
1117 if (pts == NULL)
1118 pts = timers_alloc(p);
1119 mutex_spin_enter(&timer_lock);
1120 pt = pts->pts_timers[which];
1121 if (pt == NULL) {
1122 if (spare == NULL) {
1123 mutex_spin_exit(&timer_lock);
1124 spare = pool_get(&ptimer_pool, PR_WAITOK);
1125 goto retry;
1126 }
1127 pt = spare;
1128 spare = NULL;
1129 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1130 pt->pt_ev.sigev_value.sival_int = which;
1131 pt->pt_overruns = 0;
1132 pt->pt_proc = p;
1133 pt->pt_type = which;
1134 pt->pt_entry = which;
1135 pt->pt_queued = false;
1136 if (pt->pt_type == CLOCK_REALTIME)
1137 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1138 else
1139 pt->pt_active = 0;
1140
1141 switch (which) {
1142 case ITIMER_REAL:
1143 pt->pt_ev.sigev_signo = SIGALRM;
1144 break;
1145 case ITIMER_VIRTUAL:
1146 pt->pt_ev.sigev_signo = SIGVTALRM;
1147 break;
1148 case ITIMER_PROF:
1149 pt->pt_ev.sigev_signo = SIGPROF;
1150 break;
1151 }
1152 pts->pts_timers[which] = pt;
1153 }
1154
1155 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1156 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1157
1158 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1159 /* Convert to absolute time */
1160 /* XXX need to wrap in splclock for timecounters case? */
1161 getnanotime(&now);
1162 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1163 }
1164 timer_settime(pt);
1165 mutex_spin_exit(&timer_lock);
1166 if (spare != NULL)
1167 pool_put(&ptimer_pool, spare);
1168
1169 return (0);
1170 }
1171
1172 /* Utility routines to manage the array of pointers to timers. */
1173 struct ptimers *
1174 timers_alloc(struct proc *p)
1175 {
1176 struct ptimers *pts;
1177 int i;
1178
1179 pts = pool_get(&ptimers_pool, PR_WAITOK);
1180 LIST_INIT(&pts->pts_virtual);
1181 LIST_INIT(&pts->pts_prof);
1182 for (i = 0; i < TIMER_MAX; i++)
1183 pts->pts_timers[i] = NULL;
1184 pts->pts_fired = 0;
1185 mutex_spin_enter(&timer_lock);
1186 if (p->p_timers == NULL) {
1187 p->p_timers = pts;
1188 mutex_spin_exit(&timer_lock);
1189 return pts;
1190 }
1191 mutex_spin_exit(&timer_lock);
1192 pool_put(&ptimers_pool, pts);
1193 return p->p_timers;
1194 }
1195
1196 /*
1197 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1198 * then clean up all timers and free all the data structures. If
1199 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1200 * by timer_create(), not the BSD setitimer() timers, and only free the
1201 * structure if none of those remain.
1202 */
1203 void
1204 timers_free(struct proc *p, int which)
1205 {
1206 struct ptimers *pts;
1207 struct ptimer *ptn;
1208 struct timespec ts;
1209 int i;
1210
1211 if (p->p_timers == NULL)
1212 return;
1213
1214 pts = p->p_timers;
1215 mutex_spin_enter(&timer_lock);
1216 if (which == TIMERS_ALL) {
1217 p->p_timers = NULL;
1218 i = 0;
1219 } else {
1220 timespecclear(&ts);
1221 for (ptn = LIST_FIRST(&pts->pts_virtual);
1222 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1223 ptn = LIST_NEXT(ptn, pt_list)) {
1224 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1225 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1226 }
1227 LIST_FIRST(&pts->pts_virtual) = NULL;
1228 if (ptn) {
1229 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1230 timespecadd(&ts, &ptn->pt_time.it_value,
1231 &ptn->pt_time.it_value);
1232 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1233 }
1234 timespecclear(&ts);
1235 for (ptn = LIST_FIRST(&pts->pts_prof);
1236 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1237 ptn = LIST_NEXT(ptn, pt_list)) {
1238 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1239 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1240 }
1241 LIST_FIRST(&pts->pts_prof) = NULL;
1242 if (ptn) {
1243 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1244 timespecadd(&ts, &ptn->pt_time.it_value,
1245 &ptn->pt_time.it_value);
1246 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1247 }
1248 i = 3;
1249 }
1250 for ( ; i < TIMER_MAX; i++) {
1251 if (pts->pts_timers[i] != NULL) {
1252 itimerfree(pts, i);
1253 mutex_spin_enter(&timer_lock);
1254 }
1255 }
1256 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1257 pts->pts_timers[2] == NULL) {
1258 p->p_timers = NULL;
1259 mutex_spin_exit(&timer_lock);
1260 pool_put(&ptimers_pool, pts);
1261 } else
1262 mutex_spin_exit(&timer_lock);
1263 }
1264
1265 static void
1266 itimerfree(struct ptimers *pts, int index)
1267 {
1268 struct ptimer *pt;
1269
1270 KASSERT(mutex_owned(&timer_lock));
1271
1272 pt = pts->pts_timers[index];
1273 pts->pts_timers[index] = NULL;
1274 if (pt->pt_type == CLOCK_REALTIME)
1275 callout_halt(&pt->pt_ch, &timer_lock);
1276 else if (pt->pt_queued)
1277 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1278 mutex_spin_exit(&timer_lock);
1279 if (pt->pt_type == CLOCK_REALTIME)
1280 callout_destroy(&pt->pt_ch);
1281 pool_put(&ptimer_pool, pt);
1282 }
1283
1284 /*
1285 * Decrement an interval timer by a specified number
1286 * of nanoseconds, which must be less than a second,
1287 * i.e. < 1000000000. If the timer expires, then reload
1288 * it. In this case, carry over (nsec - old value) to
1289 * reduce the value reloaded into the timer so that
1290 * the timer does not drift. This routine assumes
1291 * that it is called in a context where the timers
1292 * on which it is operating cannot change in value.
1293 */
1294 static int
1295 itimerdecr(struct ptimer *pt, int nsec)
1296 {
1297 struct itimerspec *itp;
1298
1299 KASSERT(mutex_owned(&timer_lock));
1300
1301 itp = &pt->pt_time;
1302 if (itp->it_value.tv_nsec < nsec) {
1303 if (itp->it_value.tv_sec == 0) {
1304 /* expired, and already in next interval */
1305 nsec -= itp->it_value.tv_nsec;
1306 goto expire;
1307 }
1308 itp->it_value.tv_nsec += 1000000000;
1309 itp->it_value.tv_sec--;
1310 }
1311 itp->it_value.tv_nsec -= nsec;
1312 nsec = 0;
1313 if (timespecisset(&itp->it_value))
1314 return (1);
1315 /* expired, exactly at end of interval */
1316 expire:
1317 if (timespecisset(&itp->it_interval)) {
1318 itp->it_value = itp->it_interval;
1319 itp->it_value.tv_nsec -= nsec;
1320 if (itp->it_value.tv_nsec < 0) {
1321 itp->it_value.tv_nsec += 1000000000;
1322 itp->it_value.tv_sec--;
1323 }
1324 timer_settime(pt);
1325 } else
1326 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1327 return (0);
1328 }
1329
1330 static void
1331 itimerfire(struct ptimer *pt)
1332 {
1333
1334 KASSERT(mutex_owned(&timer_lock));
1335
1336 /*
1337 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1338 * XXX Relying on the clock interrupt is stupid.
1339 */
1340 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1341 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1342 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1343 return;
1344 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1345 pt->pt_queued = true;
1346 softint_schedule(timer_sih);
1347 }
1348
1349 void
1350 timer_tick(lwp_t *l, bool user)
1351 {
1352 struct ptimers *pts;
1353 struct ptimer *pt;
1354 proc_t *p;
1355
1356 p = l->l_proc;
1357 if (p->p_timers == NULL)
1358 return;
1359
1360 mutex_spin_enter(&timer_lock);
1361 if ((pts = l->l_proc->p_timers) != NULL) {
1362 /*
1363 * Run current process's virtual and profile time, as needed.
1364 */
1365 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1366 if (itimerdecr(pt, tick * 1000) == 0)
1367 itimerfire(pt);
1368 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1369 if (itimerdecr(pt, tick * 1000) == 0)
1370 itimerfire(pt);
1371 }
1372 mutex_spin_exit(&timer_lock);
1373 }
1374
1375 #ifdef KERN_SA
1376 /*
1377 * timer_sa_intr:
1378 *
1379 * SIGEV_SA handling for timer_intr(). We are called (and return)
1380 * with the timer lock held. We know that the process had SA enabled
1381 * when this timer was enqueued. As timer_intr() is a soft interrupt
1382 * handler, SA should still be enabled by the time we get here.
1383 */
1384 static void
1385 timer_sa_intr(struct ptimer *pt, proc_t *p)
1386 {
1387 unsigned int i;
1388 struct sadata *sa;
1389 struct sadata_vp *vp;
1390
1391 /* Cause the process to generate an upcall when it returns. */
1392 if (!p->p_timerpend) {
1393 /*
1394 * XXX stop signals can be processed inside tsleep,
1395 * which can be inside sa_yield's inner loop, which
1396 * makes testing for sa_idle alone insuffucent to
1397 * determine if we really should call setrunnable.
1398 */
1399 pt->pt_poverruns = pt->pt_overruns;
1400 pt->pt_overruns = 0;
1401 i = 1 << pt->pt_entry;
1402 p->p_timers->pts_fired = i;
1403 p->p_timerpend = 1;
1404
1405 sa = p->p_sa;
1406 mutex_enter(&sa->sa_mutex);
1407 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1408 struct lwp *vp_lwp = vp->savp_lwp;
1409 lwp_lock(vp_lwp);
1410 lwp_need_userret(vp_lwp);
1411 if (vp_lwp->l_flag & LW_SA_IDLE) {
1412 vp_lwp->l_flag &= ~LW_SA_IDLE;
1413 lwp_unsleep(vp_lwp, true);
1414 break;
1415 }
1416 lwp_unlock(vp_lwp);
1417 }
1418 mutex_exit(&sa->sa_mutex);
1419 } else {
1420 i = 1 << pt->pt_entry;
1421 if ((p->p_timers->pts_fired & i) == 0) {
1422 pt->pt_poverruns = pt->pt_overruns;
1423 pt->pt_overruns = 0;
1424 p->p_timers->pts_fired |= i;
1425 } else
1426 pt->pt_overruns++;
1427 }
1428 }
1429 #endif /* KERN_SA */
1430
1431 static void
1432 timer_intr(void *cookie)
1433 {
1434 ksiginfo_t ksi;
1435 struct ptimer *pt;
1436 proc_t *p;
1437
1438 mutex_spin_enter(&timer_lock);
1439 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1440 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1441 KASSERT(pt->pt_queued);
1442 pt->pt_queued = false;
1443
1444 if (pt->pt_proc->p_timers == NULL) {
1445 /* Process is dying. */
1446 continue;
1447 }
1448 p = pt->pt_proc;
1449 #ifdef KERN_SA
1450 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1451 timer_sa_intr(pt, p);
1452 continue;
1453 }
1454 #endif /* KERN_SA */
1455 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1456 continue;
1457 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1458 pt->pt_overruns++;
1459 continue;
1460 }
1461
1462 KSI_INIT(&ksi);
1463 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1464 ksi.ksi_code = SI_TIMER;
1465 ksi.ksi_value = pt->pt_ev.sigev_value;
1466 pt->pt_poverruns = pt->pt_overruns;
1467 pt->pt_overruns = 0;
1468 mutex_spin_exit(&timer_lock);
1469
1470 mutex_enter(proc_lock);
1471 kpsignal(p, &ksi, NULL);
1472 mutex_exit(proc_lock);
1473
1474 mutex_spin_enter(&timer_lock);
1475 }
1476 mutex_spin_exit(&timer_lock);
1477 }
1478