kern_time.c revision 1.157 1 /* $NetBSD: kern_time.c,v 1.157 2009/01/11 15:57:29 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.157 2009/01/11 15:57:29 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 &pool_allocator_nointr, IPL_NONE);
98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 &pool_allocator_nointr, IPL_NONE);
100
101 /*
102 * Initialize timekeeping.
103 */
104 void
105 time_init(void)
106 {
107
108 /* nothing yet */
109 }
110
111 void
112 time_init2(void)
113 {
114
115 TAILQ_INIT(&timer_queue);
116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 timer_intr, NULL);
119 }
120
121 /* Time of day and interval timer support.
122 *
123 * These routines provide the kernel entry points to get and set
124 * the time-of-day and per-process interval timers. Subroutines
125 * here provide support for adding and subtracting timeval structures
126 * and decrementing interval timers, optionally reloading the interval
127 * timers when they expire.
128 */
129
130 /* This function is used by clock_settime and settimeofday */
131 static int
132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 {
134 struct timespec delta, now;
135 struct bintime btdelta;
136 lwp_t *l;
137 int s;
138
139 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140 s = splclock();
141 nanotime(&now);
142 timespecsub(ts, &now, &delta);
143
144 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147 splx(s);
148 return (EPERM);
149 }
150
151 #ifdef notyet
152 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153 splx(s);
154 return (EPERM);
155 }
156 #endif
157
158 tc_setclock(ts);
159
160 timespecadd(&boottime, &delta, &boottime);
161
162 /*
163 * XXXSMP: There is a short race between setting the time above
164 * and adjusting LWP's run times. Fixing this properly means
165 * pausing all CPUs while we adjust the clock.
166 */
167 timespec2bintime(&delta, &btdelta);
168 mutex_enter(proc_lock);
169 LIST_FOREACH(l, &alllwp, l_list) {
170 lwp_lock(l);
171 bintime_add(&l->l_stime, &btdelta);
172 lwp_unlock(l);
173 }
174 mutex_exit(proc_lock);
175 resettodr();
176 splx(s);
177
178 return (0);
179 }
180
181 int
182 settime(struct proc *p, struct timespec *ts)
183 {
184 return (settime1(p, ts, true));
185 }
186
187 /* ARGSUSED */
188 int
189 sys___clock_gettime50(struct lwp *l,
190 const struct sys___clock_gettime50_args *uap, register_t *retval)
191 {
192 /* {
193 syscallarg(clockid_t) clock_id;
194 syscallarg(struct timespec *) tp;
195 } */
196 clockid_t clock_id;
197 struct timespec ats;
198
199 clock_id = SCARG(uap, clock_id);
200 switch (clock_id) {
201 case CLOCK_REALTIME:
202 nanotime(&ats);
203 break;
204 case CLOCK_MONOTONIC:
205 nanouptime(&ats);
206 break;
207 default:
208 return (EINVAL);
209 }
210
211 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
212 }
213
214 /* ARGSUSED */
215 int
216 sys___clock_settime50(struct lwp *l,
217 const struct sys___clock_settime50_args *uap, register_t *retval)
218 {
219 /* {
220 syscallarg(clockid_t) clock_id;
221 syscallarg(const struct timespec *) tp;
222 } */
223 int error;
224 struct timespec ats;
225
226 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
227 return error;
228
229 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
230 }
231
232
233 int
234 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
235 bool check_kauth)
236 {
237 int error;
238
239 switch (clock_id) {
240 case CLOCK_REALTIME:
241 if ((error = settime1(p, tp, check_kauth)) != 0)
242 return (error);
243 break;
244 case CLOCK_MONOTONIC:
245 return (EINVAL); /* read-only clock */
246 default:
247 return (EINVAL);
248 }
249
250 return 0;
251 }
252
253 int
254 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
255 register_t *retval)
256 {
257 /* {
258 syscallarg(clockid_t) clock_id;
259 syscallarg(struct timespec *) tp;
260 } */
261 clockid_t clock_id;
262 struct timespec ts;
263 int error = 0;
264
265 clock_id = SCARG(uap, clock_id);
266 switch (clock_id) {
267 case CLOCK_REALTIME:
268 case CLOCK_MONOTONIC:
269 ts.tv_sec = 0;
270 if (tc_getfrequency() > 1000000000)
271 ts.tv_nsec = 1;
272 else
273 ts.tv_nsec = 1000000000 / tc_getfrequency();
274 break;
275 default:
276 return (EINVAL);
277 }
278
279 if (SCARG(uap, tp))
280 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281
282 return error;
283 }
284
285 /* ARGSUSED */
286 int
287 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
288 register_t *retval)
289 {
290 /* {
291 syscallarg(struct timespec *) rqtp;
292 syscallarg(struct timespec *) rmtp;
293 } */
294 struct timespec rmt, rqt;
295 int error, error1;
296
297 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
298 if (error)
299 return (error);
300
301 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
302 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
303 return error;
304
305 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
306 return error1 ? error1 : error;
307 }
308
309 int
310 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
311 {
312 struct timespec rmtstart;
313 int error, timo;
314
315 if (itimespecfix(rqt))
316 return (EINVAL);
317
318 timo = tstohz(rqt);
319 /*
320 * Avoid inadvertantly sleeping forever
321 */
322 if (timo == 0)
323 timo = 1;
324 getnanouptime(&rmtstart);
325 again:
326 error = kpause("nanoslp", true, timo, NULL);
327 if (rmt != NULL || error == 0) {
328 struct timespec rmtend;
329 struct timespec t0;
330 struct timespec *t;
331
332 getnanouptime(&rmtend);
333 t = (rmt != NULL) ? rmt : &t0;
334 timespecsub(&rmtend, &rmtstart, t);
335 timespecsub(rqt, t, t);
336 if (t->tv_sec < 0)
337 timespecclear(t);
338 if (error == 0) {
339 timo = tstohz(t);
340 if (timo > 0)
341 goto again;
342 }
343 }
344
345 if (error == ERESTART)
346 error = EINTR;
347 if (error == EWOULDBLOCK)
348 error = 0;
349
350 return error;
351 }
352
353 /* ARGSUSED */
354 int
355 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
356 register_t *retval)
357 {
358 /* {
359 syscallarg(struct timeval *) tp;
360 syscallarg(void *) tzp; really "struct timezone *";
361 } */
362 struct timeval atv;
363 int error = 0;
364 struct timezone tzfake;
365
366 if (SCARG(uap, tp)) {
367 microtime(&atv);
368 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
369 if (error)
370 return (error);
371 }
372 if (SCARG(uap, tzp)) {
373 /*
374 * NetBSD has no kernel notion of time zone, so we just
375 * fake up a timezone struct and return it if demanded.
376 */
377 tzfake.tz_minuteswest = 0;
378 tzfake.tz_dsttime = 0;
379 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
380 }
381 return (error);
382 }
383
384 /* ARGSUSED */
385 int
386 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
387 register_t *retval)
388 {
389 /* {
390 syscallarg(const struct timeval *) tv;
391 syscallarg(const void *) tzp; really "const struct timezone *";
392 } */
393
394 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
395 }
396
397 int
398 settimeofday1(const struct timeval *utv, bool userspace,
399 const void *utzp, struct lwp *l, bool check_kauth)
400 {
401 struct timeval atv;
402 struct timespec ts;
403 int error;
404
405 /* Verify all parameters before changing time. */
406
407 /*
408 * NetBSD has no kernel notion of time zone, and only an
409 * obsolete program would try to set it, so we log a warning.
410 */
411 if (utzp)
412 log(LOG_WARNING, "pid %d attempted to set the "
413 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
414
415 if (utv == NULL)
416 return 0;
417
418 if (userspace) {
419 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
420 return error;
421 utv = &atv;
422 }
423
424 TIMEVAL_TO_TIMESPEC(utv, &ts);
425 return settime1(l->l_proc, &ts, check_kauth);
426 }
427
428 int time_adjusted; /* set if an adjustment is made */
429
430 /* ARGSUSED */
431 int
432 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
433 register_t *retval)
434 {
435 /* {
436 syscallarg(const struct timeval *) delta;
437 syscallarg(struct timeval *) olddelta;
438 } */
439 int error = 0;
440 struct timeval atv, oldatv;
441
442 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
443 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
444 return error;
445
446 if (SCARG(uap, delta)) {
447 error = copyin(SCARG(uap, delta), &atv,
448 sizeof(*SCARG(uap, delta)));
449 if (error)
450 return (error);
451 }
452 adjtime1(SCARG(uap, delta) ? &atv : NULL,
453 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
454 if (SCARG(uap, olddelta))
455 error = copyout(&oldatv, SCARG(uap, olddelta),
456 sizeof(*SCARG(uap, olddelta)));
457 return error;
458 }
459
460 void
461 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
462 {
463 extern int64_t time_adjtime; /* in kern_ntptime.c */
464
465 if (olddelta) {
466 mutex_spin_enter(&timecounter_lock);
467 olddelta->tv_sec = time_adjtime / 1000000;
468 olddelta->tv_usec = time_adjtime % 1000000;
469 if (olddelta->tv_usec < 0) {
470 olddelta->tv_usec += 1000000;
471 olddelta->tv_sec--;
472 }
473 mutex_spin_exit(&timecounter_lock);
474 }
475
476 if (delta) {
477 mutex_spin_enter(&timecounter_lock);
478 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
479
480 if (time_adjtime) {
481 /* We need to save the system time during shutdown */
482 time_adjusted |= 1;
483 }
484 mutex_spin_exit(&timecounter_lock);
485 }
486 }
487
488 /*
489 * Interval timer support. Both the BSD getitimer() family and the POSIX
490 * timer_*() family of routines are supported.
491 *
492 * All timers are kept in an array pointed to by p_timers, which is
493 * allocated on demand - many processes don't use timers at all. The
494 * first three elements in this array are reserved for the BSD timers:
495 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
496 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
497 * syscall.
498 *
499 * Realtime timers are kept in the ptimer structure as an absolute
500 * time; virtual time timers are kept as a linked list of deltas.
501 * Virtual time timers are processed in the hardclock() routine of
502 * kern_clock.c. The real time timer is processed by a callout
503 * routine, called from the softclock() routine. Since a callout may
504 * be delayed in real time due to interrupt processing in the system,
505 * it is possible for the real time timeout routine (realtimeexpire,
506 * given below), to be delayed in real time past when it is supposed
507 * to occur. It does not suffice, therefore, to reload the real timer
508 * .it_value from the real time timers .it_interval. Rather, we
509 * compute the next time in absolute time the timer should go off. */
510
511 /* Allocate a POSIX realtime timer. */
512 int
513 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
514 register_t *retval)
515 {
516 /* {
517 syscallarg(clockid_t) clock_id;
518 syscallarg(struct sigevent *) evp;
519 syscallarg(timer_t *) timerid;
520 } */
521
522 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
523 SCARG(uap, evp), copyin, l);
524 }
525
526 int
527 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
528 copyin_t fetch_event, struct lwp *l)
529 {
530 int error;
531 timer_t timerid;
532 struct ptimers *pts;
533 struct ptimer *pt;
534 struct proc *p;
535
536 p = l->l_proc;
537
538 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
539 return (EINVAL);
540
541 if ((pts = p->p_timers) == NULL)
542 pts = timers_alloc(p);
543
544 pt = pool_get(&ptimer_pool, PR_WAITOK);
545 if (evp != NULL) {
546 if (((error =
547 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
548 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
549 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
550 pool_put(&ptimer_pool, pt);
551 return (error ? error : EINVAL);
552 }
553 }
554
555 /* Find a free timer slot, skipping those reserved for setitimer(). */
556 mutex_spin_enter(&timer_lock);
557 for (timerid = 3; timerid < TIMER_MAX; timerid++)
558 if (pts->pts_timers[timerid] == NULL)
559 break;
560 if (timerid == TIMER_MAX) {
561 mutex_spin_exit(&timer_lock);
562 pool_put(&ptimer_pool, pt);
563 return EAGAIN;
564 }
565 if (evp == NULL) {
566 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
567 switch (id) {
568 case CLOCK_REALTIME:
569 pt->pt_ev.sigev_signo = SIGALRM;
570 break;
571 case CLOCK_VIRTUAL:
572 pt->pt_ev.sigev_signo = SIGVTALRM;
573 break;
574 case CLOCK_PROF:
575 pt->pt_ev.sigev_signo = SIGPROF;
576 break;
577 }
578 pt->pt_ev.sigev_value.sival_int = timerid;
579 }
580 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
581 pt->pt_info.ksi_errno = 0;
582 pt->pt_info.ksi_code = 0;
583 pt->pt_info.ksi_pid = p->p_pid;
584 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
585 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
586 pt->pt_type = id;
587 pt->pt_proc = p;
588 pt->pt_overruns = 0;
589 pt->pt_poverruns = 0;
590 pt->pt_entry = timerid;
591 pt->pt_queued = false;
592 timespecclear(&pt->pt_time.it_value);
593 if (id == CLOCK_REALTIME)
594 callout_init(&pt->pt_ch, 0);
595 else
596 pt->pt_active = 0;
597
598 pts->pts_timers[timerid] = pt;
599 mutex_spin_exit(&timer_lock);
600
601 return copyout(&timerid, tid, sizeof(timerid));
602 }
603
604 /* Delete a POSIX realtime timer */
605 int
606 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
607 register_t *retval)
608 {
609 /* {
610 syscallarg(timer_t) timerid;
611 } */
612 struct proc *p = l->l_proc;
613 timer_t timerid;
614 struct ptimers *pts;
615 struct ptimer *pt, *ptn;
616
617 timerid = SCARG(uap, timerid);
618 pts = p->p_timers;
619
620 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
621 return (EINVAL);
622
623 mutex_spin_enter(&timer_lock);
624 if ((pt = pts->pts_timers[timerid]) == NULL) {
625 mutex_spin_exit(&timer_lock);
626 return (EINVAL);
627 }
628 if (pt->pt_type != CLOCK_REALTIME) {
629 if (pt->pt_active) {
630 ptn = LIST_NEXT(pt, pt_list);
631 LIST_REMOVE(pt, pt_list);
632 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
633 timespecadd(&pt->pt_time.it_value,
634 &ptn->pt_time.it_value,
635 &ptn->pt_time.it_value);
636 pt->pt_active = 0;
637 }
638 }
639 itimerfree(pts, timerid);
640
641 return (0);
642 }
643
644 /*
645 * Set up the given timer. The value in pt->pt_time.it_value is taken
646 * to be an absolute time for CLOCK_REALTIME timers and a relative
647 * time for virtual timers.
648 * Must be called at splclock().
649 */
650 void
651 timer_settime(struct ptimer *pt)
652 {
653 struct ptimer *ptn, *pptn;
654 struct ptlist *ptl;
655
656 KASSERT(mutex_owned(&timer_lock));
657
658 if (pt->pt_type == CLOCK_REALTIME) {
659 callout_stop(&pt->pt_ch);
660 if (timespecisset(&pt->pt_time.it_value)) {
661 /*
662 * Don't need to check tshzto() return value, here.
663 * callout_reset() does it for us.
664 */
665 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
666 realtimerexpire, pt);
667 }
668 } else {
669 if (pt->pt_active) {
670 ptn = LIST_NEXT(pt, pt_list);
671 LIST_REMOVE(pt, pt_list);
672 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
673 timespecadd(&pt->pt_time.it_value,
674 &ptn->pt_time.it_value,
675 &ptn->pt_time.it_value);
676 }
677 if (timespecisset(&pt->pt_time.it_value)) {
678 if (pt->pt_type == CLOCK_VIRTUAL)
679 ptl = &pt->pt_proc->p_timers->pts_virtual;
680 else
681 ptl = &pt->pt_proc->p_timers->pts_prof;
682
683 for (ptn = LIST_FIRST(ptl), pptn = NULL;
684 ptn && timespeccmp(&pt->pt_time.it_value,
685 &ptn->pt_time.it_value, >);
686 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
687 timespecsub(&pt->pt_time.it_value,
688 &ptn->pt_time.it_value,
689 &pt->pt_time.it_value);
690
691 if (pptn)
692 LIST_INSERT_AFTER(pptn, pt, pt_list);
693 else
694 LIST_INSERT_HEAD(ptl, pt, pt_list);
695
696 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
697 timespecsub(&ptn->pt_time.it_value,
698 &pt->pt_time.it_value,
699 &ptn->pt_time.it_value);
700
701 pt->pt_active = 1;
702 } else
703 pt->pt_active = 0;
704 }
705 }
706
707 void
708 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
709 {
710 struct timespec now;
711 struct ptimer *ptn;
712
713 KASSERT(mutex_owned(&timer_lock));
714
715 *aits = pt->pt_time;
716 if (pt->pt_type == CLOCK_REALTIME) {
717 /*
718 * Convert from absolute to relative time in .it_value
719 * part of real time timer. If time for real time
720 * timer has passed return 0, else return difference
721 * between current time and time for the timer to go
722 * off.
723 */
724 if (timespecisset(&aits->it_value)) {
725 getnanotime(&now);
726 if (timespeccmp(&aits->it_value, &now, <))
727 timespecclear(&aits->it_value);
728 else
729 timespecsub(&aits->it_value, &now,
730 &aits->it_value);
731 }
732 } else if (pt->pt_active) {
733 if (pt->pt_type == CLOCK_VIRTUAL)
734 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
735 else
736 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
737 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
738 timespecadd(&aits->it_value,
739 &ptn->pt_time.it_value, &aits->it_value);
740 KASSERT(ptn != NULL); /* pt should be findable on the list */
741 } else
742 timespecclear(&aits->it_value);
743 }
744
745
746
747 /* Set and arm a POSIX realtime timer */
748 int
749 sys___timer_settime50(struct lwp *l,
750 const struct sys___timer_settime50_args *uap,
751 register_t *retval)
752 {
753 /* {
754 syscallarg(timer_t) timerid;
755 syscallarg(int) flags;
756 syscallarg(const struct itimerspec *) value;
757 syscallarg(struct itimerspec *) ovalue;
758 } */
759 int error;
760 struct itimerspec value, ovalue, *ovp = NULL;
761
762 if ((error = copyin(SCARG(uap, value), &value,
763 sizeof(struct itimerspec))) != 0)
764 return (error);
765
766 if (SCARG(uap, ovalue))
767 ovp = &ovalue;
768
769 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
770 SCARG(uap, flags), l->l_proc)) != 0)
771 return error;
772
773 if (ovp)
774 return copyout(&ovalue, SCARG(uap, ovalue),
775 sizeof(struct itimerspec));
776 return 0;
777 }
778
779 int
780 dotimer_settime(int timerid, struct itimerspec *value,
781 struct itimerspec *ovalue, int flags, struct proc *p)
782 {
783 struct timespec now;
784 struct itimerspec val, oval;
785 struct ptimers *pts;
786 struct ptimer *pt;
787
788 pts = p->p_timers;
789
790 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
791 return EINVAL;
792 val = *value;
793 if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
794 return EINVAL;
795
796 mutex_spin_enter(&timer_lock);
797 if ((pt = pts->pts_timers[timerid]) == NULL) {
798 mutex_spin_exit(&timer_lock);
799 return EINVAL;
800 }
801
802 oval = pt->pt_time;
803 pt->pt_time = val;
804
805 /*
806 * If we've been passed a relative time for a realtime timer,
807 * convert it to absolute; if an absolute time for a virtual
808 * timer, convert it to relative and make sure we don't set it
809 * to zero, which would cancel the timer, or let it go
810 * negative, which would confuse the comparison tests.
811 */
812 if (timespecisset(&pt->pt_time.it_value)) {
813 if (pt->pt_type == CLOCK_REALTIME) {
814 if ((flags & TIMER_ABSTIME) == 0) {
815 getnanotime(&now);
816 timespecadd(&pt->pt_time.it_value, &now,
817 &pt->pt_time.it_value);
818 }
819 } else {
820 if ((flags & TIMER_ABSTIME) != 0) {
821 getnanotime(&now);
822 timespecsub(&pt->pt_time.it_value, &now,
823 &pt->pt_time.it_value);
824 if (!timespecisset(&pt->pt_time.it_value) ||
825 pt->pt_time.it_value.tv_sec < 0) {
826 pt->pt_time.it_value.tv_sec = 0;
827 pt->pt_time.it_value.tv_nsec = 1;
828 }
829 }
830 }
831 }
832
833 timer_settime(pt);
834 mutex_spin_exit(&timer_lock);
835
836 if (ovalue)
837 *ovalue = oval;
838
839 return (0);
840 }
841
842 /* Return the time remaining until a POSIX timer fires. */
843 int
844 sys___timer_gettime50(struct lwp *l,
845 const struct sys___timer_gettime50_args *uap, register_t *retval)
846 {
847 /* {
848 syscallarg(timer_t) timerid;
849 syscallarg(struct itimerspec *) value;
850 } */
851 struct itimerspec its;
852 int error;
853
854 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
855 &its)) != 0)
856 return error;
857
858 return copyout(&its, SCARG(uap, value), sizeof(its));
859 }
860
861 int
862 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
863 {
864 struct ptimer *pt;
865 struct ptimers *pts;
866
867 pts = p->p_timers;
868 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
869 return (EINVAL);
870 mutex_spin_enter(&timer_lock);
871 if ((pt = pts->pts_timers[timerid]) == NULL) {
872 mutex_spin_exit(&timer_lock);
873 return (EINVAL);
874 }
875 timer_gettime(pt, its);
876 mutex_spin_exit(&timer_lock);
877
878 return 0;
879 }
880
881 /*
882 * Return the count of the number of times a periodic timer expired
883 * while a notification was already pending. The counter is reset when
884 * a timer expires and a notification can be posted.
885 */
886 int
887 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
888 register_t *retval)
889 {
890 /* {
891 syscallarg(timer_t) timerid;
892 } */
893 struct proc *p = l->l_proc;
894 struct ptimers *pts;
895 int timerid;
896 struct ptimer *pt;
897
898 timerid = SCARG(uap, timerid);
899
900 pts = p->p_timers;
901 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
902 return (EINVAL);
903 mutex_spin_enter(&timer_lock);
904 if ((pt = pts->pts_timers[timerid]) == NULL) {
905 mutex_spin_exit(&timer_lock);
906 return (EINVAL);
907 }
908 *retval = pt->pt_poverruns;
909 mutex_spin_exit(&timer_lock);
910
911 return (0);
912 }
913
914 #ifdef KERN_SA
915 /* Glue function that triggers an upcall; called from userret(). */
916 void
917 timerupcall(struct lwp *l)
918 {
919 struct ptimers *pt = l->l_proc->p_timers;
920 struct proc *p = l->l_proc;
921 unsigned int i, fired, done;
922
923 KDASSERT(l->l_proc->p_sa);
924 /* Bail out if we do not own the virtual processor */
925 if (l->l_savp->savp_lwp != l)
926 return ;
927
928 mutex_enter(p->p_lock);
929
930 fired = pt->pts_fired;
931 done = 0;
932 while ((i = ffs(fired)) != 0) {
933 siginfo_t *si;
934 int mask = 1 << --i;
935 int f;
936
937 f = ~l->l_pflag & LP_SA_NOBLOCK;
938 l->l_pflag |= LP_SA_NOBLOCK;
939 si = siginfo_alloc(PR_WAITOK);
940 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
941 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
942 sizeof(*si), si, siginfo_free) != 0) {
943 siginfo_free(si);
944 /* XXX What do we do here?? */
945 } else
946 done |= mask;
947 fired &= ~mask;
948 l->l_pflag ^= f;
949 }
950 pt->pts_fired &= ~done;
951 if (pt->pts_fired == 0)
952 l->l_proc->p_timerpend = 0;
953
954 mutex_exit(p->p_lock);
955 }
956 #endif /* KERN_SA */
957
958 /*
959 * Real interval timer expired:
960 * send process whose timer expired an alarm signal.
961 * If time is not set up to reload, then just return.
962 * Else compute next time timer should go off which is > current time.
963 * This is where delay in processing this timeout causes multiple
964 * SIGALRM calls to be compressed into one.
965 */
966 void
967 realtimerexpire(void *arg)
968 {
969 uint64_t last_val, next_val, interval, now_ms;
970 struct timespec now, next;
971 struct ptimer *pt;
972 int backwards;
973
974 pt = arg;
975
976 mutex_spin_enter(&timer_lock);
977 itimerfire(pt);
978
979 if (!timespecisset(&pt->pt_time.it_interval)) {
980 timespecclear(&pt->pt_time.it_value);
981 mutex_spin_exit(&timer_lock);
982 return;
983 }
984
985 getnanotime(&now);
986 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
987 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
988 /* Handle the easy case of non-overflown timers first. */
989 if (!backwards && timespeccmp(&next, &now, >)) {
990 pt->pt_time.it_value = next;
991 } else {
992 now_ms = timespec2ns(&now);
993 last_val = timespec2ns(&pt->pt_time.it_value);
994 interval = timespec2ns(&pt->pt_time.it_interval);
995
996 next_val = now_ms +
997 (now_ms - last_val + interval - 1) % interval;
998
999 if (backwards)
1000 next_val += interval;
1001 else
1002 pt->pt_overruns += (now_ms - last_val) / interval;
1003
1004 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1005 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1006 }
1007
1008 /*
1009 * Don't need to check tshzto() return value, here.
1010 * callout_reset() does it for us.
1011 */
1012 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1013 realtimerexpire, pt);
1014 mutex_spin_exit(&timer_lock);
1015 }
1016
1017 /* BSD routine to get the value of an interval timer. */
1018 /* ARGSUSED */
1019 int
1020 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1021 register_t *retval)
1022 {
1023 /* {
1024 syscallarg(int) which;
1025 syscallarg(struct itimerval *) itv;
1026 } */
1027 struct proc *p = l->l_proc;
1028 struct itimerval aitv;
1029 int error;
1030
1031 error = dogetitimer(p, SCARG(uap, which), &aitv);
1032 if (error)
1033 return error;
1034 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1035 }
1036
1037 int
1038 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1039 {
1040 struct ptimers *pts;
1041 struct ptimer *pt;
1042 struct itimerspec its;
1043
1044 if ((u_int)which > ITIMER_PROF)
1045 return (EINVAL);
1046
1047 mutex_spin_enter(&timer_lock);
1048 pts = p->p_timers;
1049 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1050 timerclear(&itvp->it_value);
1051 timerclear(&itvp->it_interval);
1052 } else {
1053 timer_gettime(pt, &its);
1054 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1055 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1056 }
1057 mutex_spin_exit(&timer_lock);
1058
1059 return 0;
1060 }
1061
1062 /* BSD routine to set/arm an interval timer. */
1063 /* ARGSUSED */
1064 int
1065 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1066 register_t *retval)
1067 {
1068 /* {
1069 syscallarg(int) which;
1070 syscallarg(const struct itimerval *) itv;
1071 syscallarg(struct itimerval *) oitv;
1072 } */
1073 struct proc *p = l->l_proc;
1074 int which = SCARG(uap, which);
1075 struct sys___getitimer50_args getargs;
1076 const struct itimerval *itvp;
1077 struct itimerval aitv;
1078 int error;
1079
1080 if ((u_int)which > ITIMER_PROF)
1081 return (EINVAL);
1082 itvp = SCARG(uap, itv);
1083 if (itvp &&
1084 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1085 return (error);
1086 if (SCARG(uap, oitv) != NULL) {
1087 SCARG(&getargs, which) = which;
1088 SCARG(&getargs, itv) = SCARG(uap, oitv);
1089 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1090 return (error);
1091 }
1092 if (itvp == 0)
1093 return (0);
1094
1095 return dosetitimer(p, which, &aitv);
1096 }
1097
1098 int
1099 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1100 {
1101 struct timespec now;
1102 struct ptimers *pts;
1103 struct ptimer *pt, *spare;
1104
1105 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1106 return (EINVAL);
1107
1108 /*
1109 * Don't bother allocating data structures if the process just
1110 * wants to clear the timer.
1111 */
1112 spare = NULL;
1113 pts = p->p_timers;
1114 retry:
1115 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1116 pts->pts_timers[which] == NULL))
1117 return (0);
1118 if (pts == NULL)
1119 pts = timers_alloc(p);
1120 mutex_spin_enter(&timer_lock);
1121 pt = pts->pts_timers[which];
1122 if (pt == NULL) {
1123 if (spare == NULL) {
1124 mutex_spin_exit(&timer_lock);
1125 spare = pool_get(&ptimer_pool, PR_WAITOK);
1126 goto retry;
1127 }
1128 pt = spare;
1129 spare = NULL;
1130 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1131 pt->pt_ev.sigev_value.sival_int = which;
1132 pt->pt_overruns = 0;
1133 pt->pt_proc = p;
1134 pt->pt_type = which;
1135 pt->pt_entry = which;
1136 pt->pt_queued = false;
1137 if (pt->pt_type == CLOCK_REALTIME)
1138 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1139 else
1140 pt->pt_active = 0;
1141
1142 switch (which) {
1143 case ITIMER_REAL:
1144 pt->pt_ev.sigev_signo = SIGALRM;
1145 break;
1146 case ITIMER_VIRTUAL:
1147 pt->pt_ev.sigev_signo = SIGVTALRM;
1148 break;
1149 case ITIMER_PROF:
1150 pt->pt_ev.sigev_signo = SIGPROF;
1151 break;
1152 }
1153 pts->pts_timers[which] = pt;
1154 }
1155
1156 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1157 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1158
1159 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1160 /* Convert to absolute time */
1161 /* XXX need to wrap in splclock for timecounters case? */
1162 getnanotime(&now);
1163 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1164 }
1165 timer_settime(pt);
1166 mutex_spin_exit(&timer_lock);
1167 if (spare != NULL)
1168 pool_put(&ptimer_pool, spare);
1169
1170 return (0);
1171 }
1172
1173 /* Utility routines to manage the array of pointers to timers. */
1174 struct ptimers *
1175 timers_alloc(struct proc *p)
1176 {
1177 struct ptimers *pts;
1178 int i;
1179
1180 pts = pool_get(&ptimers_pool, PR_WAITOK);
1181 LIST_INIT(&pts->pts_virtual);
1182 LIST_INIT(&pts->pts_prof);
1183 for (i = 0; i < TIMER_MAX; i++)
1184 pts->pts_timers[i] = NULL;
1185 pts->pts_fired = 0;
1186 mutex_spin_enter(&timer_lock);
1187 if (p->p_timers == NULL) {
1188 p->p_timers = pts;
1189 mutex_spin_exit(&timer_lock);
1190 return pts;
1191 }
1192 mutex_spin_exit(&timer_lock);
1193 pool_put(&ptimers_pool, pts);
1194 return p->p_timers;
1195 }
1196
1197 /*
1198 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1199 * then clean up all timers and free all the data structures. If
1200 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1201 * by timer_create(), not the BSD setitimer() timers, and only free the
1202 * structure if none of those remain.
1203 */
1204 void
1205 timers_free(struct proc *p, int which)
1206 {
1207 struct ptimers *pts;
1208 struct ptimer *ptn;
1209 struct timespec ts;
1210 int i;
1211
1212 if (p->p_timers == NULL)
1213 return;
1214
1215 pts = p->p_timers;
1216 mutex_spin_enter(&timer_lock);
1217 if (which == TIMERS_ALL) {
1218 p->p_timers = NULL;
1219 i = 0;
1220 } else {
1221 timespecclear(&ts);
1222 for (ptn = LIST_FIRST(&pts->pts_virtual);
1223 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1224 ptn = LIST_NEXT(ptn, pt_list)) {
1225 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1226 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1227 }
1228 LIST_FIRST(&pts->pts_virtual) = NULL;
1229 if (ptn) {
1230 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1231 timespecadd(&ts, &ptn->pt_time.it_value,
1232 &ptn->pt_time.it_value);
1233 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1234 }
1235 timespecclear(&ts);
1236 for (ptn = LIST_FIRST(&pts->pts_prof);
1237 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1238 ptn = LIST_NEXT(ptn, pt_list)) {
1239 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1240 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1241 }
1242 LIST_FIRST(&pts->pts_prof) = NULL;
1243 if (ptn) {
1244 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1245 timespecadd(&ts, &ptn->pt_time.it_value,
1246 &ptn->pt_time.it_value);
1247 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1248 }
1249 i = 3;
1250 }
1251 for ( ; i < TIMER_MAX; i++) {
1252 if (pts->pts_timers[i] != NULL) {
1253 itimerfree(pts, i);
1254 mutex_spin_enter(&timer_lock);
1255 }
1256 }
1257 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1258 pts->pts_timers[2] == NULL) {
1259 p->p_timers = NULL;
1260 mutex_spin_exit(&timer_lock);
1261 pool_put(&ptimers_pool, pts);
1262 } else
1263 mutex_spin_exit(&timer_lock);
1264 }
1265
1266 static void
1267 itimerfree(struct ptimers *pts, int index)
1268 {
1269 struct ptimer *pt;
1270
1271 KASSERT(mutex_owned(&timer_lock));
1272
1273 pt = pts->pts_timers[index];
1274 pts->pts_timers[index] = NULL;
1275 if (pt->pt_type == CLOCK_REALTIME)
1276 callout_halt(&pt->pt_ch, &timer_lock);
1277 else if (pt->pt_queued)
1278 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1279 mutex_spin_exit(&timer_lock);
1280 if (pt->pt_type == CLOCK_REALTIME)
1281 callout_destroy(&pt->pt_ch);
1282 pool_put(&ptimer_pool, pt);
1283 }
1284
1285 /*
1286 * Decrement an interval timer by a specified number
1287 * of nanoseconds, which must be less than a second,
1288 * i.e. < 1000000000. If the timer expires, then reload
1289 * it. In this case, carry over (nsec - old value) to
1290 * reduce the value reloaded into the timer so that
1291 * the timer does not drift. This routine assumes
1292 * that it is called in a context where the timers
1293 * on which it is operating cannot change in value.
1294 */
1295 static int
1296 itimerdecr(struct ptimer *pt, int nsec)
1297 {
1298 struct itimerspec *itp;
1299
1300 KASSERT(mutex_owned(&timer_lock));
1301
1302 itp = &pt->pt_time;
1303 if (itp->it_value.tv_nsec < nsec) {
1304 if (itp->it_value.tv_sec == 0) {
1305 /* expired, and already in next interval */
1306 nsec -= itp->it_value.tv_nsec;
1307 goto expire;
1308 }
1309 itp->it_value.tv_nsec += 1000000000;
1310 itp->it_value.tv_sec--;
1311 }
1312 itp->it_value.tv_nsec -= nsec;
1313 nsec = 0;
1314 if (timespecisset(&itp->it_value))
1315 return (1);
1316 /* expired, exactly at end of interval */
1317 expire:
1318 if (timespecisset(&itp->it_interval)) {
1319 itp->it_value = itp->it_interval;
1320 itp->it_value.tv_nsec -= nsec;
1321 if (itp->it_value.tv_nsec < 0) {
1322 itp->it_value.tv_nsec += 1000000000;
1323 itp->it_value.tv_sec--;
1324 }
1325 timer_settime(pt);
1326 } else
1327 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1328 return (0);
1329 }
1330
1331 static void
1332 itimerfire(struct ptimer *pt)
1333 {
1334
1335 KASSERT(mutex_owned(&timer_lock));
1336
1337 /*
1338 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1339 * XXX Relying on the clock interrupt is stupid.
1340 */
1341 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1342 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1343 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1344 return;
1345 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1346 pt->pt_queued = true;
1347 softint_schedule(timer_sih);
1348 }
1349
1350 void
1351 timer_tick(lwp_t *l, bool user)
1352 {
1353 struct ptimers *pts;
1354 struct ptimer *pt;
1355 proc_t *p;
1356
1357 p = l->l_proc;
1358 if (p->p_timers == NULL)
1359 return;
1360
1361 mutex_spin_enter(&timer_lock);
1362 if ((pts = l->l_proc->p_timers) != NULL) {
1363 /*
1364 * Run current process's virtual and profile time, as needed.
1365 */
1366 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1367 if (itimerdecr(pt, tick * 1000) == 0)
1368 itimerfire(pt);
1369 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1370 if (itimerdecr(pt, tick * 1000) == 0)
1371 itimerfire(pt);
1372 }
1373 mutex_spin_exit(&timer_lock);
1374 }
1375
1376 #ifdef KERN_SA
1377 /*
1378 * timer_sa_intr:
1379 *
1380 * SIGEV_SA handling for timer_intr(). We are called (and return)
1381 * with the timer lock held. We know that the process had SA enabled
1382 * when this timer was enqueued. As timer_intr() is a soft interrupt
1383 * handler, SA should still be enabled by the time we get here.
1384 */
1385 static void
1386 timer_sa_intr(struct ptimer *pt, proc_t *p)
1387 {
1388 unsigned int i;
1389 struct sadata *sa;
1390 struct sadata_vp *vp;
1391
1392 /* Cause the process to generate an upcall when it returns. */
1393 if (!p->p_timerpend) {
1394 /*
1395 * XXX stop signals can be processed inside tsleep,
1396 * which can be inside sa_yield's inner loop, which
1397 * makes testing for sa_idle alone insuffucent to
1398 * determine if we really should call setrunnable.
1399 */
1400 pt->pt_poverruns = pt->pt_overruns;
1401 pt->pt_overruns = 0;
1402 i = 1 << pt->pt_entry;
1403 p->p_timers->pts_fired = i;
1404 p->p_timerpend = 1;
1405
1406 sa = p->p_sa;
1407 mutex_enter(&sa->sa_mutex);
1408 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1409 struct lwp *vp_lwp = vp->savp_lwp;
1410 lwp_lock(vp_lwp);
1411 lwp_need_userret(vp_lwp);
1412 if (vp_lwp->l_flag & LW_SA_IDLE) {
1413 vp_lwp->l_flag &= ~LW_SA_IDLE;
1414 lwp_unsleep(vp_lwp, true);
1415 break;
1416 }
1417 lwp_unlock(vp_lwp);
1418 }
1419 mutex_exit(&sa->sa_mutex);
1420 } else {
1421 i = 1 << pt->pt_entry;
1422 if ((p->p_timers->pts_fired & i) == 0) {
1423 pt->pt_poverruns = pt->pt_overruns;
1424 pt->pt_overruns = 0;
1425 p->p_timers->pts_fired |= i;
1426 } else
1427 pt->pt_overruns++;
1428 }
1429 }
1430 #endif /* KERN_SA */
1431
1432 static void
1433 timer_intr(void *cookie)
1434 {
1435 ksiginfo_t ksi;
1436 struct ptimer *pt;
1437 proc_t *p;
1438
1439 mutex_spin_enter(&timer_lock);
1440 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1441 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1442 KASSERT(pt->pt_queued);
1443 pt->pt_queued = false;
1444
1445 if (pt->pt_proc->p_timers == NULL) {
1446 /* Process is dying. */
1447 continue;
1448 }
1449 p = pt->pt_proc;
1450 #ifdef KERN_SA
1451 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1452 timer_sa_intr(pt, p);
1453 continue;
1454 }
1455 #endif /* KERN_SA */
1456 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1457 continue;
1458 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1459 pt->pt_overruns++;
1460 continue;
1461 }
1462
1463 KSI_INIT(&ksi);
1464 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1465 ksi.ksi_code = SI_TIMER;
1466 ksi.ksi_value = pt->pt_ev.sigev_value;
1467 pt->pt_poverruns = pt->pt_overruns;
1468 pt->pt_overruns = 0;
1469 mutex_spin_exit(&timer_lock);
1470
1471 mutex_enter(proc_lock);
1472 kpsignal(p, &ksi, NULL);
1473 mutex_exit(proc_lock);
1474
1475 mutex_spin_enter(&timer_lock);
1476 }
1477 mutex_spin_exit(&timer_lock);
1478 }
1479