kern_time.c revision 1.159 1 /* $NetBSD: kern_time.c,v 1.159 2009/01/31 15:53:36 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.159 2009/01/31 15:53:36 yamt Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 &pool_allocator_nointr, IPL_NONE);
98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 &pool_allocator_nointr, IPL_NONE);
100
101 /*
102 * Initialize timekeeping.
103 */
104 void
105 time_init(void)
106 {
107
108 /* nothing yet */
109 }
110
111 void
112 time_init2(void)
113 {
114
115 TAILQ_INIT(&timer_queue);
116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 timer_intr, NULL);
119 }
120
121 /* Time of day and interval timer support.
122 *
123 * These routines provide the kernel entry points to get and set
124 * the time-of-day and per-process interval timers. Subroutines
125 * here provide support for adding and subtracting timeval structures
126 * and decrementing interval timers, optionally reloading the interval
127 * timers when they expire.
128 */
129
130 /* This function is used by clock_settime and settimeofday */
131 static int
132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 {
134 struct timespec delta, now;
135 int s;
136
137 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
138 s = splclock();
139 nanotime(&now);
140 timespecsub(ts, &now, &delta);
141
142 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
143 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
144 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
145 splx(s);
146 return (EPERM);
147 }
148
149 #ifdef notyet
150 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
151 splx(s);
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 timespecadd(&boottime, &delta, &boottime);
159
160 resettodr();
161 splx(s);
162
163 return (0);
164 }
165
166 int
167 settime(struct proc *p, struct timespec *ts)
168 {
169 return (settime1(p, ts, true));
170 }
171
172 /* ARGSUSED */
173 int
174 sys___clock_gettime50(struct lwp *l,
175 const struct sys___clock_gettime50_args *uap, register_t *retval)
176 {
177 /* {
178 syscallarg(clockid_t) clock_id;
179 syscallarg(struct timespec *) tp;
180 } */
181 clockid_t clock_id;
182 struct timespec ats;
183
184 clock_id = SCARG(uap, clock_id);
185 switch (clock_id) {
186 case CLOCK_REALTIME:
187 nanotime(&ats);
188 break;
189 case CLOCK_MONOTONIC:
190 nanouptime(&ats);
191 break;
192 default:
193 return (EINVAL);
194 }
195
196 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
197 }
198
199 /* ARGSUSED */
200 int
201 sys___clock_settime50(struct lwp *l,
202 const struct sys___clock_settime50_args *uap, register_t *retval)
203 {
204 /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(const struct timespec *) tp;
207 } */
208 int error;
209 struct timespec ats;
210
211 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
212 return error;
213
214 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
215 }
216
217
218 int
219 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
220 bool check_kauth)
221 {
222 int error;
223
224 switch (clock_id) {
225 case CLOCK_REALTIME:
226 if ((error = settime1(p, tp, check_kauth)) != 0)
227 return (error);
228 break;
229 case CLOCK_MONOTONIC:
230 return (EINVAL); /* read-only clock */
231 default:
232 return (EINVAL);
233 }
234
235 return 0;
236 }
237
238 int
239 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
240 register_t *retval)
241 {
242 /* {
243 syscallarg(clockid_t) clock_id;
244 syscallarg(struct timespec *) tp;
245 } */
246 clockid_t clock_id;
247 struct timespec ts;
248 int error = 0;
249
250 clock_id = SCARG(uap, clock_id);
251 switch (clock_id) {
252 case CLOCK_REALTIME:
253 case CLOCK_MONOTONIC:
254 ts.tv_sec = 0;
255 if (tc_getfrequency() > 1000000000)
256 ts.tv_nsec = 1;
257 else
258 ts.tv_nsec = 1000000000 / tc_getfrequency();
259 break;
260 default:
261 return (EINVAL);
262 }
263
264 if (SCARG(uap, tp))
265 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
266
267 return error;
268 }
269
270 /* ARGSUSED */
271 int
272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
273 register_t *retval)
274 {
275 /* {
276 syscallarg(struct timespec *) rqtp;
277 syscallarg(struct timespec *) rmtp;
278 } */
279 struct timespec rmt, rqt;
280 int error, error1;
281
282 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
283 if (error)
284 return (error);
285
286 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
287 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
288 return error;
289
290 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
291 return error1 ? error1 : error;
292 }
293
294 int
295 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
296 {
297 struct timespec rmtstart;
298 int error, timo;
299
300 if (itimespecfix(rqt))
301 return (EINVAL);
302
303 timo = tstohz(rqt);
304 /*
305 * Avoid inadvertantly sleeping forever
306 */
307 if (timo == 0)
308 timo = 1;
309 getnanouptime(&rmtstart);
310 again:
311 error = kpause("nanoslp", true, timo, NULL);
312 if (rmt != NULL || error == 0) {
313 struct timespec rmtend;
314 struct timespec t0;
315 struct timespec *t;
316
317 getnanouptime(&rmtend);
318 t = (rmt != NULL) ? rmt : &t0;
319 timespecsub(&rmtend, &rmtstart, t);
320 timespecsub(rqt, t, t);
321 if (t->tv_sec < 0)
322 timespecclear(t);
323 if (error == 0) {
324 timo = tstohz(t);
325 if (timo > 0)
326 goto again;
327 }
328 }
329
330 if (error == ERESTART)
331 error = EINTR;
332 if (error == EWOULDBLOCK)
333 error = 0;
334
335 return error;
336 }
337
338 /* ARGSUSED */
339 int
340 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
341 register_t *retval)
342 {
343 /* {
344 syscallarg(struct timeval *) tp;
345 syscallarg(void *) tzp; really "struct timezone *";
346 } */
347 struct timeval atv;
348 int error = 0;
349 struct timezone tzfake;
350
351 if (SCARG(uap, tp)) {
352 microtime(&atv);
353 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
354 if (error)
355 return (error);
356 }
357 if (SCARG(uap, tzp)) {
358 /*
359 * NetBSD has no kernel notion of time zone, so we just
360 * fake up a timezone struct and return it if demanded.
361 */
362 tzfake.tz_minuteswest = 0;
363 tzfake.tz_dsttime = 0;
364 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
365 }
366 return (error);
367 }
368
369 /* ARGSUSED */
370 int
371 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
372 register_t *retval)
373 {
374 /* {
375 syscallarg(const struct timeval *) tv;
376 syscallarg(const void *) tzp; really "const struct timezone *";
377 } */
378
379 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
380 }
381
382 int
383 settimeofday1(const struct timeval *utv, bool userspace,
384 const void *utzp, struct lwp *l, bool check_kauth)
385 {
386 struct timeval atv;
387 struct timespec ts;
388 int error;
389
390 /* Verify all parameters before changing time. */
391
392 /*
393 * NetBSD has no kernel notion of time zone, and only an
394 * obsolete program would try to set it, so we log a warning.
395 */
396 if (utzp)
397 log(LOG_WARNING, "pid %d attempted to set the "
398 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
399
400 if (utv == NULL)
401 return 0;
402
403 if (userspace) {
404 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
405 return error;
406 utv = &atv;
407 }
408
409 TIMEVAL_TO_TIMESPEC(utv, &ts);
410 return settime1(l->l_proc, &ts, check_kauth);
411 }
412
413 int time_adjusted; /* set if an adjustment is made */
414
415 /* ARGSUSED */
416 int
417 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
418 register_t *retval)
419 {
420 /* {
421 syscallarg(const struct timeval *) delta;
422 syscallarg(struct timeval *) olddelta;
423 } */
424 int error = 0;
425 struct timeval atv, oldatv;
426
427 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
428 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
429 return error;
430
431 if (SCARG(uap, delta)) {
432 error = copyin(SCARG(uap, delta), &atv,
433 sizeof(*SCARG(uap, delta)));
434 if (error)
435 return (error);
436 }
437 adjtime1(SCARG(uap, delta) ? &atv : NULL,
438 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
439 if (SCARG(uap, olddelta))
440 error = copyout(&oldatv, SCARG(uap, olddelta),
441 sizeof(*SCARG(uap, olddelta)));
442 return error;
443 }
444
445 void
446 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
447 {
448 extern int64_t time_adjtime; /* in kern_ntptime.c */
449
450 if (olddelta) {
451 mutex_spin_enter(&timecounter_lock);
452 olddelta->tv_sec = time_adjtime / 1000000;
453 olddelta->tv_usec = time_adjtime % 1000000;
454 if (olddelta->tv_usec < 0) {
455 olddelta->tv_usec += 1000000;
456 olddelta->tv_sec--;
457 }
458 mutex_spin_exit(&timecounter_lock);
459 }
460
461 if (delta) {
462 mutex_spin_enter(&timecounter_lock);
463 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
464
465 if (time_adjtime) {
466 /* We need to save the system time during shutdown */
467 time_adjusted |= 1;
468 }
469 mutex_spin_exit(&timecounter_lock);
470 }
471 }
472
473 /*
474 * Interval timer support. Both the BSD getitimer() family and the POSIX
475 * timer_*() family of routines are supported.
476 *
477 * All timers are kept in an array pointed to by p_timers, which is
478 * allocated on demand - many processes don't use timers at all. The
479 * first three elements in this array are reserved for the BSD timers:
480 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
481 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
482 * syscall.
483 *
484 * Realtime timers are kept in the ptimer structure as an absolute
485 * time; virtual time timers are kept as a linked list of deltas.
486 * Virtual time timers are processed in the hardclock() routine of
487 * kern_clock.c. The real time timer is processed by a callout
488 * routine, called from the softclock() routine. Since a callout may
489 * be delayed in real time due to interrupt processing in the system,
490 * it is possible for the real time timeout routine (realtimeexpire,
491 * given below), to be delayed in real time past when it is supposed
492 * to occur. It does not suffice, therefore, to reload the real timer
493 * .it_value from the real time timers .it_interval. Rather, we
494 * compute the next time in absolute time the timer should go off. */
495
496 /* Allocate a POSIX realtime timer. */
497 int
498 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
499 register_t *retval)
500 {
501 /* {
502 syscallarg(clockid_t) clock_id;
503 syscallarg(struct sigevent *) evp;
504 syscallarg(timer_t *) timerid;
505 } */
506
507 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
508 SCARG(uap, evp), copyin, l);
509 }
510
511 int
512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
513 copyin_t fetch_event, struct lwp *l)
514 {
515 int error;
516 timer_t timerid;
517 struct ptimers *pts;
518 struct ptimer *pt;
519 struct proc *p;
520
521 p = l->l_proc;
522
523 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
524 return (EINVAL);
525
526 if ((pts = p->p_timers) == NULL)
527 pts = timers_alloc(p);
528
529 pt = pool_get(&ptimer_pool, PR_WAITOK);
530 if (evp != NULL) {
531 if (((error =
532 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
533 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
534 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
535 pool_put(&ptimer_pool, pt);
536 return (error ? error : EINVAL);
537 }
538 }
539
540 /* Find a free timer slot, skipping those reserved for setitimer(). */
541 mutex_spin_enter(&timer_lock);
542 for (timerid = 3; timerid < TIMER_MAX; timerid++)
543 if (pts->pts_timers[timerid] == NULL)
544 break;
545 if (timerid == TIMER_MAX) {
546 mutex_spin_exit(&timer_lock);
547 pool_put(&ptimer_pool, pt);
548 return EAGAIN;
549 }
550 if (evp == NULL) {
551 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
552 switch (id) {
553 case CLOCK_REALTIME:
554 pt->pt_ev.sigev_signo = SIGALRM;
555 break;
556 case CLOCK_VIRTUAL:
557 pt->pt_ev.sigev_signo = SIGVTALRM;
558 break;
559 case CLOCK_PROF:
560 pt->pt_ev.sigev_signo = SIGPROF;
561 break;
562 }
563 pt->pt_ev.sigev_value.sival_int = timerid;
564 }
565 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
566 pt->pt_info.ksi_errno = 0;
567 pt->pt_info.ksi_code = 0;
568 pt->pt_info.ksi_pid = p->p_pid;
569 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
570 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
571 pt->pt_type = id;
572 pt->pt_proc = p;
573 pt->pt_overruns = 0;
574 pt->pt_poverruns = 0;
575 pt->pt_entry = timerid;
576 pt->pt_queued = false;
577 timespecclear(&pt->pt_time.it_value);
578 if (id == CLOCK_REALTIME)
579 callout_init(&pt->pt_ch, 0);
580 else
581 pt->pt_active = 0;
582
583 pts->pts_timers[timerid] = pt;
584 mutex_spin_exit(&timer_lock);
585
586 return copyout(&timerid, tid, sizeof(timerid));
587 }
588
589 /* Delete a POSIX realtime timer */
590 int
591 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
592 register_t *retval)
593 {
594 /* {
595 syscallarg(timer_t) timerid;
596 } */
597 struct proc *p = l->l_proc;
598 timer_t timerid;
599 struct ptimers *pts;
600 struct ptimer *pt, *ptn;
601
602 timerid = SCARG(uap, timerid);
603 pts = p->p_timers;
604
605 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
606 return (EINVAL);
607
608 mutex_spin_enter(&timer_lock);
609 if ((pt = pts->pts_timers[timerid]) == NULL) {
610 mutex_spin_exit(&timer_lock);
611 return (EINVAL);
612 }
613 if (pt->pt_type != CLOCK_REALTIME) {
614 if (pt->pt_active) {
615 ptn = LIST_NEXT(pt, pt_list);
616 LIST_REMOVE(pt, pt_list);
617 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
618 timespecadd(&pt->pt_time.it_value,
619 &ptn->pt_time.it_value,
620 &ptn->pt_time.it_value);
621 pt->pt_active = 0;
622 }
623 }
624 itimerfree(pts, timerid);
625
626 return (0);
627 }
628
629 /*
630 * Set up the given timer. The value in pt->pt_time.it_value is taken
631 * to be an absolute time for CLOCK_REALTIME timers and a relative
632 * time for virtual timers.
633 * Must be called at splclock().
634 */
635 void
636 timer_settime(struct ptimer *pt)
637 {
638 struct ptimer *ptn, *pptn;
639 struct ptlist *ptl;
640
641 KASSERT(mutex_owned(&timer_lock));
642
643 if (pt->pt_type == CLOCK_REALTIME) {
644 callout_stop(&pt->pt_ch);
645 if (timespecisset(&pt->pt_time.it_value)) {
646 /*
647 * Don't need to check tshzto() return value, here.
648 * callout_reset() does it for us.
649 */
650 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
651 realtimerexpire, pt);
652 }
653 } else {
654 if (pt->pt_active) {
655 ptn = LIST_NEXT(pt, pt_list);
656 LIST_REMOVE(pt, pt_list);
657 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
658 timespecadd(&pt->pt_time.it_value,
659 &ptn->pt_time.it_value,
660 &ptn->pt_time.it_value);
661 }
662 if (timespecisset(&pt->pt_time.it_value)) {
663 if (pt->pt_type == CLOCK_VIRTUAL)
664 ptl = &pt->pt_proc->p_timers->pts_virtual;
665 else
666 ptl = &pt->pt_proc->p_timers->pts_prof;
667
668 for (ptn = LIST_FIRST(ptl), pptn = NULL;
669 ptn && timespeccmp(&pt->pt_time.it_value,
670 &ptn->pt_time.it_value, >);
671 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
672 timespecsub(&pt->pt_time.it_value,
673 &ptn->pt_time.it_value,
674 &pt->pt_time.it_value);
675
676 if (pptn)
677 LIST_INSERT_AFTER(pptn, pt, pt_list);
678 else
679 LIST_INSERT_HEAD(ptl, pt, pt_list);
680
681 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
682 timespecsub(&ptn->pt_time.it_value,
683 &pt->pt_time.it_value,
684 &ptn->pt_time.it_value);
685
686 pt->pt_active = 1;
687 } else
688 pt->pt_active = 0;
689 }
690 }
691
692 void
693 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
694 {
695 struct timespec now;
696 struct ptimer *ptn;
697
698 KASSERT(mutex_owned(&timer_lock));
699
700 *aits = pt->pt_time;
701 if (pt->pt_type == CLOCK_REALTIME) {
702 /*
703 * Convert from absolute to relative time in .it_value
704 * part of real time timer. If time for real time
705 * timer has passed return 0, else return difference
706 * between current time and time for the timer to go
707 * off.
708 */
709 if (timespecisset(&aits->it_value)) {
710 getnanotime(&now);
711 if (timespeccmp(&aits->it_value, &now, <))
712 timespecclear(&aits->it_value);
713 else
714 timespecsub(&aits->it_value, &now,
715 &aits->it_value);
716 }
717 } else if (pt->pt_active) {
718 if (pt->pt_type == CLOCK_VIRTUAL)
719 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
720 else
721 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
722 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
723 timespecadd(&aits->it_value,
724 &ptn->pt_time.it_value, &aits->it_value);
725 KASSERT(ptn != NULL); /* pt should be findable on the list */
726 } else
727 timespecclear(&aits->it_value);
728 }
729
730
731
732 /* Set and arm a POSIX realtime timer */
733 int
734 sys___timer_settime50(struct lwp *l,
735 const struct sys___timer_settime50_args *uap,
736 register_t *retval)
737 {
738 /* {
739 syscallarg(timer_t) timerid;
740 syscallarg(int) flags;
741 syscallarg(const struct itimerspec *) value;
742 syscallarg(struct itimerspec *) ovalue;
743 } */
744 int error;
745 struct itimerspec value, ovalue, *ovp = NULL;
746
747 if ((error = copyin(SCARG(uap, value), &value,
748 sizeof(struct itimerspec))) != 0)
749 return (error);
750
751 if (SCARG(uap, ovalue))
752 ovp = &ovalue;
753
754 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
755 SCARG(uap, flags), l->l_proc)) != 0)
756 return error;
757
758 if (ovp)
759 return copyout(&ovalue, SCARG(uap, ovalue),
760 sizeof(struct itimerspec));
761 return 0;
762 }
763
764 int
765 dotimer_settime(int timerid, struct itimerspec *value,
766 struct itimerspec *ovalue, int flags, struct proc *p)
767 {
768 struct timespec now;
769 struct itimerspec val, oval;
770 struct ptimers *pts;
771 struct ptimer *pt;
772
773 pts = p->p_timers;
774
775 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
776 return EINVAL;
777 val = *value;
778 if (itimespecfix(&val.it_value) || itimespecfix(&val.it_interval))
779 return EINVAL;
780
781 mutex_spin_enter(&timer_lock);
782 if ((pt = pts->pts_timers[timerid]) == NULL) {
783 mutex_spin_exit(&timer_lock);
784 return EINVAL;
785 }
786
787 oval = pt->pt_time;
788 pt->pt_time = val;
789
790 /*
791 * If we've been passed a relative time for a realtime timer,
792 * convert it to absolute; if an absolute time for a virtual
793 * timer, convert it to relative and make sure we don't set it
794 * to zero, which would cancel the timer, or let it go
795 * negative, which would confuse the comparison tests.
796 */
797 if (timespecisset(&pt->pt_time.it_value)) {
798 if (pt->pt_type == CLOCK_REALTIME) {
799 if ((flags & TIMER_ABSTIME) == 0) {
800 getnanotime(&now);
801 timespecadd(&pt->pt_time.it_value, &now,
802 &pt->pt_time.it_value);
803 }
804 } else {
805 if ((flags & TIMER_ABSTIME) != 0) {
806 getnanotime(&now);
807 timespecsub(&pt->pt_time.it_value, &now,
808 &pt->pt_time.it_value);
809 if (!timespecisset(&pt->pt_time.it_value) ||
810 pt->pt_time.it_value.tv_sec < 0) {
811 pt->pt_time.it_value.tv_sec = 0;
812 pt->pt_time.it_value.tv_nsec = 1;
813 }
814 }
815 }
816 }
817
818 timer_settime(pt);
819 mutex_spin_exit(&timer_lock);
820
821 if (ovalue)
822 *ovalue = oval;
823
824 return (0);
825 }
826
827 /* Return the time remaining until a POSIX timer fires. */
828 int
829 sys___timer_gettime50(struct lwp *l,
830 const struct sys___timer_gettime50_args *uap, register_t *retval)
831 {
832 /* {
833 syscallarg(timer_t) timerid;
834 syscallarg(struct itimerspec *) value;
835 } */
836 struct itimerspec its;
837 int error;
838
839 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
840 &its)) != 0)
841 return error;
842
843 return copyout(&its, SCARG(uap, value), sizeof(its));
844 }
845
846 int
847 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
848 {
849 struct ptimer *pt;
850 struct ptimers *pts;
851
852 pts = p->p_timers;
853 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
854 return (EINVAL);
855 mutex_spin_enter(&timer_lock);
856 if ((pt = pts->pts_timers[timerid]) == NULL) {
857 mutex_spin_exit(&timer_lock);
858 return (EINVAL);
859 }
860 timer_gettime(pt, its);
861 mutex_spin_exit(&timer_lock);
862
863 return 0;
864 }
865
866 /*
867 * Return the count of the number of times a periodic timer expired
868 * while a notification was already pending. The counter is reset when
869 * a timer expires and a notification can be posted.
870 */
871 int
872 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
873 register_t *retval)
874 {
875 /* {
876 syscallarg(timer_t) timerid;
877 } */
878 struct proc *p = l->l_proc;
879 struct ptimers *pts;
880 int timerid;
881 struct ptimer *pt;
882
883 timerid = SCARG(uap, timerid);
884
885 pts = p->p_timers;
886 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
887 return (EINVAL);
888 mutex_spin_enter(&timer_lock);
889 if ((pt = pts->pts_timers[timerid]) == NULL) {
890 mutex_spin_exit(&timer_lock);
891 return (EINVAL);
892 }
893 *retval = pt->pt_poverruns;
894 mutex_spin_exit(&timer_lock);
895
896 return (0);
897 }
898
899 #ifdef KERN_SA
900 /* Glue function that triggers an upcall; called from userret(). */
901 void
902 timerupcall(struct lwp *l)
903 {
904 struct ptimers *pt = l->l_proc->p_timers;
905 struct proc *p = l->l_proc;
906 unsigned int i, fired, done;
907
908 KDASSERT(l->l_proc->p_sa);
909 /* Bail out if we do not own the virtual processor */
910 if (l->l_savp->savp_lwp != l)
911 return ;
912
913 mutex_enter(p->p_lock);
914
915 fired = pt->pts_fired;
916 done = 0;
917 while ((i = ffs(fired)) != 0) {
918 siginfo_t *si;
919 int mask = 1 << --i;
920 int f;
921
922 f = ~l->l_pflag & LP_SA_NOBLOCK;
923 l->l_pflag |= LP_SA_NOBLOCK;
924 si = siginfo_alloc(PR_WAITOK);
925 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
926 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
927 sizeof(*si), si, siginfo_free) != 0) {
928 siginfo_free(si);
929 /* XXX What do we do here?? */
930 } else
931 done |= mask;
932 fired &= ~mask;
933 l->l_pflag ^= f;
934 }
935 pt->pts_fired &= ~done;
936 if (pt->pts_fired == 0)
937 l->l_proc->p_timerpend = 0;
938
939 mutex_exit(p->p_lock);
940 }
941 #endif /* KERN_SA */
942
943 /*
944 * Real interval timer expired:
945 * send process whose timer expired an alarm signal.
946 * If time is not set up to reload, then just return.
947 * Else compute next time timer should go off which is > current time.
948 * This is where delay in processing this timeout causes multiple
949 * SIGALRM calls to be compressed into one.
950 */
951 void
952 realtimerexpire(void *arg)
953 {
954 uint64_t last_val, next_val, interval, now_ms;
955 struct timespec now, next;
956 struct ptimer *pt;
957 int backwards;
958
959 pt = arg;
960
961 mutex_spin_enter(&timer_lock);
962 itimerfire(pt);
963
964 if (!timespecisset(&pt->pt_time.it_interval)) {
965 timespecclear(&pt->pt_time.it_value);
966 mutex_spin_exit(&timer_lock);
967 return;
968 }
969
970 getnanotime(&now);
971 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
972 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
973 /* Handle the easy case of non-overflown timers first. */
974 if (!backwards && timespeccmp(&next, &now, >)) {
975 pt->pt_time.it_value = next;
976 } else {
977 now_ms = timespec2ns(&now);
978 last_val = timespec2ns(&pt->pt_time.it_value);
979 interval = timespec2ns(&pt->pt_time.it_interval);
980
981 next_val = now_ms +
982 (now_ms - last_val + interval - 1) % interval;
983
984 if (backwards)
985 next_val += interval;
986 else
987 pt->pt_overruns += (now_ms - last_val) / interval;
988
989 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
990 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
991 }
992
993 /*
994 * Don't need to check tshzto() return value, here.
995 * callout_reset() does it for us.
996 */
997 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
998 realtimerexpire, pt);
999 mutex_spin_exit(&timer_lock);
1000 }
1001
1002 /* BSD routine to get the value of an interval timer. */
1003 /* ARGSUSED */
1004 int
1005 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1006 register_t *retval)
1007 {
1008 /* {
1009 syscallarg(int) which;
1010 syscallarg(struct itimerval *) itv;
1011 } */
1012 struct proc *p = l->l_proc;
1013 struct itimerval aitv;
1014 int error;
1015
1016 error = dogetitimer(p, SCARG(uap, which), &aitv);
1017 if (error)
1018 return error;
1019 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1020 }
1021
1022 int
1023 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1024 {
1025 struct ptimers *pts;
1026 struct ptimer *pt;
1027 struct itimerspec its;
1028
1029 if ((u_int)which > ITIMER_PROF)
1030 return (EINVAL);
1031
1032 mutex_spin_enter(&timer_lock);
1033 pts = p->p_timers;
1034 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1035 timerclear(&itvp->it_value);
1036 timerclear(&itvp->it_interval);
1037 } else {
1038 timer_gettime(pt, &its);
1039 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1040 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1041 }
1042 mutex_spin_exit(&timer_lock);
1043
1044 return 0;
1045 }
1046
1047 /* BSD routine to set/arm an interval timer. */
1048 /* ARGSUSED */
1049 int
1050 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1051 register_t *retval)
1052 {
1053 /* {
1054 syscallarg(int) which;
1055 syscallarg(const struct itimerval *) itv;
1056 syscallarg(struct itimerval *) oitv;
1057 } */
1058 struct proc *p = l->l_proc;
1059 int which = SCARG(uap, which);
1060 struct sys___getitimer50_args getargs;
1061 const struct itimerval *itvp;
1062 struct itimerval aitv;
1063 int error;
1064
1065 if ((u_int)which > ITIMER_PROF)
1066 return (EINVAL);
1067 itvp = SCARG(uap, itv);
1068 if (itvp &&
1069 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1070 return (error);
1071 if (SCARG(uap, oitv) != NULL) {
1072 SCARG(&getargs, which) = which;
1073 SCARG(&getargs, itv) = SCARG(uap, oitv);
1074 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1075 return (error);
1076 }
1077 if (itvp == 0)
1078 return (0);
1079
1080 return dosetitimer(p, which, &aitv);
1081 }
1082
1083 int
1084 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1085 {
1086 struct timespec now;
1087 struct ptimers *pts;
1088 struct ptimer *pt, *spare;
1089
1090 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1091 return (EINVAL);
1092
1093 /*
1094 * Don't bother allocating data structures if the process just
1095 * wants to clear the timer.
1096 */
1097 spare = NULL;
1098 pts = p->p_timers;
1099 retry:
1100 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1101 pts->pts_timers[which] == NULL))
1102 return (0);
1103 if (pts == NULL)
1104 pts = timers_alloc(p);
1105 mutex_spin_enter(&timer_lock);
1106 pt = pts->pts_timers[which];
1107 if (pt == NULL) {
1108 if (spare == NULL) {
1109 mutex_spin_exit(&timer_lock);
1110 spare = pool_get(&ptimer_pool, PR_WAITOK);
1111 goto retry;
1112 }
1113 pt = spare;
1114 spare = NULL;
1115 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1116 pt->pt_ev.sigev_value.sival_int = which;
1117 pt->pt_overruns = 0;
1118 pt->pt_proc = p;
1119 pt->pt_type = which;
1120 pt->pt_entry = which;
1121 pt->pt_queued = false;
1122 if (pt->pt_type == CLOCK_REALTIME)
1123 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1124 else
1125 pt->pt_active = 0;
1126
1127 switch (which) {
1128 case ITIMER_REAL:
1129 pt->pt_ev.sigev_signo = SIGALRM;
1130 break;
1131 case ITIMER_VIRTUAL:
1132 pt->pt_ev.sigev_signo = SIGVTALRM;
1133 break;
1134 case ITIMER_PROF:
1135 pt->pt_ev.sigev_signo = SIGPROF;
1136 break;
1137 }
1138 pts->pts_timers[which] = pt;
1139 }
1140
1141 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1142 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1143
1144 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1145 /* Convert to absolute time */
1146 /* XXX need to wrap in splclock for timecounters case? */
1147 getnanotime(&now);
1148 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1149 }
1150 timer_settime(pt);
1151 mutex_spin_exit(&timer_lock);
1152 if (spare != NULL)
1153 pool_put(&ptimer_pool, spare);
1154
1155 return (0);
1156 }
1157
1158 /* Utility routines to manage the array of pointers to timers. */
1159 struct ptimers *
1160 timers_alloc(struct proc *p)
1161 {
1162 struct ptimers *pts;
1163 int i;
1164
1165 pts = pool_get(&ptimers_pool, PR_WAITOK);
1166 LIST_INIT(&pts->pts_virtual);
1167 LIST_INIT(&pts->pts_prof);
1168 for (i = 0; i < TIMER_MAX; i++)
1169 pts->pts_timers[i] = NULL;
1170 pts->pts_fired = 0;
1171 mutex_spin_enter(&timer_lock);
1172 if (p->p_timers == NULL) {
1173 p->p_timers = pts;
1174 mutex_spin_exit(&timer_lock);
1175 return pts;
1176 }
1177 mutex_spin_exit(&timer_lock);
1178 pool_put(&ptimers_pool, pts);
1179 return p->p_timers;
1180 }
1181
1182 /*
1183 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1184 * then clean up all timers and free all the data structures. If
1185 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1186 * by timer_create(), not the BSD setitimer() timers, and only free the
1187 * structure if none of those remain.
1188 */
1189 void
1190 timers_free(struct proc *p, int which)
1191 {
1192 struct ptimers *pts;
1193 struct ptimer *ptn;
1194 struct timespec ts;
1195 int i;
1196
1197 if (p->p_timers == NULL)
1198 return;
1199
1200 pts = p->p_timers;
1201 mutex_spin_enter(&timer_lock);
1202 if (which == TIMERS_ALL) {
1203 p->p_timers = NULL;
1204 i = 0;
1205 } else {
1206 timespecclear(&ts);
1207 for (ptn = LIST_FIRST(&pts->pts_virtual);
1208 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1209 ptn = LIST_NEXT(ptn, pt_list)) {
1210 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1211 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1212 }
1213 LIST_FIRST(&pts->pts_virtual) = NULL;
1214 if (ptn) {
1215 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1216 timespecadd(&ts, &ptn->pt_time.it_value,
1217 &ptn->pt_time.it_value);
1218 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1219 }
1220 timespecclear(&ts);
1221 for (ptn = LIST_FIRST(&pts->pts_prof);
1222 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1223 ptn = LIST_NEXT(ptn, pt_list)) {
1224 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1225 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1226 }
1227 LIST_FIRST(&pts->pts_prof) = NULL;
1228 if (ptn) {
1229 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1230 timespecadd(&ts, &ptn->pt_time.it_value,
1231 &ptn->pt_time.it_value);
1232 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1233 }
1234 i = 3;
1235 }
1236 for ( ; i < TIMER_MAX; i++) {
1237 if (pts->pts_timers[i] != NULL) {
1238 itimerfree(pts, i);
1239 mutex_spin_enter(&timer_lock);
1240 }
1241 }
1242 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1243 pts->pts_timers[2] == NULL) {
1244 p->p_timers = NULL;
1245 mutex_spin_exit(&timer_lock);
1246 pool_put(&ptimers_pool, pts);
1247 } else
1248 mutex_spin_exit(&timer_lock);
1249 }
1250
1251 static void
1252 itimerfree(struct ptimers *pts, int index)
1253 {
1254 struct ptimer *pt;
1255
1256 KASSERT(mutex_owned(&timer_lock));
1257
1258 pt = pts->pts_timers[index];
1259 pts->pts_timers[index] = NULL;
1260 if (pt->pt_type == CLOCK_REALTIME)
1261 callout_halt(&pt->pt_ch, &timer_lock);
1262 else if (pt->pt_queued)
1263 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1264 mutex_spin_exit(&timer_lock);
1265 if (pt->pt_type == CLOCK_REALTIME)
1266 callout_destroy(&pt->pt_ch);
1267 pool_put(&ptimer_pool, pt);
1268 }
1269
1270 /*
1271 * Decrement an interval timer by a specified number
1272 * of nanoseconds, which must be less than a second,
1273 * i.e. < 1000000000. If the timer expires, then reload
1274 * it. In this case, carry over (nsec - old value) to
1275 * reduce the value reloaded into the timer so that
1276 * the timer does not drift. This routine assumes
1277 * that it is called in a context where the timers
1278 * on which it is operating cannot change in value.
1279 */
1280 static int
1281 itimerdecr(struct ptimer *pt, int nsec)
1282 {
1283 struct itimerspec *itp;
1284
1285 KASSERT(mutex_owned(&timer_lock));
1286
1287 itp = &pt->pt_time;
1288 if (itp->it_value.tv_nsec < nsec) {
1289 if (itp->it_value.tv_sec == 0) {
1290 /* expired, and already in next interval */
1291 nsec -= itp->it_value.tv_nsec;
1292 goto expire;
1293 }
1294 itp->it_value.tv_nsec += 1000000000;
1295 itp->it_value.tv_sec--;
1296 }
1297 itp->it_value.tv_nsec -= nsec;
1298 nsec = 0;
1299 if (timespecisset(&itp->it_value))
1300 return (1);
1301 /* expired, exactly at end of interval */
1302 expire:
1303 if (timespecisset(&itp->it_interval)) {
1304 itp->it_value = itp->it_interval;
1305 itp->it_value.tv_nsec -= nsec;
1306 if (itp->it_value.tv_nsec < 0) {
1307 itp->it_value.tv_nsec += 1000000000;
1308 itp->it_value.tv_sec--;
1309 }
1310 timer_settime(pt);
1311 } else
1312 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1313 return (0);
1314 }
1315
1316 static void
1317 itimerfire(struct ptimer *pt)
1318 {
1319
1320 KASSERT(mutex_owned(&timer_lock));
1321
1322 /*
1323 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1324 * XXX Relying on the clock interrupt is stupid.
1325 */
1326 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1327 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1328 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1329 return;
1330 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1331 pt->pt_queued = true;
1332 softint_schedule(timer_sih);
1333 }
1334
1335 void
1336 timer_tick(lwp_t *l, bool user)
1337 {
1338 struct ptimers *pts;
1339 struct ptimer *pt;
1340 proc_t *p;
1341
1342 p = l->l_proc;
1343 if (p->p_timers == NULL)
1344 return;
1345
1346 mutex_spin_enter(&timer_lock);
1347 if ((pts = l->l_proc->p_timers) != NULL) {
1348 /*
1349 * Run current process's virtual and profile time, as needed.
1350 */
1351 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1352 if (itimerdecr(pt, tick * 1000) == 0)
1353 itimerfire(pt);
1354 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1355 if (itimerdecr(pt, tick * 1000) == 0)
1356 itimerfire(pt);
1357 }
1358 mutex_spin_exit(&timer_lock);
1359 }
1360
1361 #ifdef KERN_SA
1362 /*
1363 * timer_sa_intr:
1364 *
1365 * SIGEV_SA handling for timer_intr(). We are called (and return)
1366 * with the timer lock held. We know that the process had SA enabled
1367 * when this timer was enqueued. As timer_intr() is a soft interrupt
1368 * handler, SA should still be enabled by the time we get here.
1369 */
1370 static void
1371 timer_sa_intr(struct ptimer *pt, proc_t *p)
1372 {
1373 unsigned int i;
1374 struct sadata *sa;
1375 struct sadata_vp *vp;
1376
1377 /* Cause the process to generate an upcall when it returns. */
1378 if (!p->p_timerpend) {
1379 /*
1380 * XXX stop signals can be processed inside tsleep,
1381 * which can be inside sa_yield's inner loop, which
1382 * makes testing for sa_idle alone insuffucent to
1383 * determine if we really should call setrunnable.
1384 */
1385 pt->pt_poverruns = pt->pt_overruns;
1386 pt->pt_overruns = 0;
1387 i = 1 << pt->pt_entry;
1388 p->p_timers->pts_fired = i;
1389 p->p_timerpend = 1;
1390
1391 sa = p->p_sa;
1392 mutex_enter(&sa->sa_mutex);
1393 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1394 struct lwp *vp_lwp = vp->savp_lwp;
1395 lwp_lock(vp_lwp);
1396 lwp_need_userret(vp_lwp);
1397 if (vp_lwp->l_flag & LW_SA_IDLE) {
1398 vp_lwp->l_flag &= ~LW_SA_IDLE;
1399 lwp_unsleep(vp_lwp, true);
1400 break;
1401 }
1402 lwp_unlock(vp_lwp);
1403 }
1404 mutex_exit(&sa->sa_mutex);
1405 } else {
1406 i = 1 << pt->pt_entry;
1407 if ((p->p_timers->pts_fired & i) == 0) {
1408 pt->pt_poverruns = pt->pt_overruns;
1409 pt->pt_overruns = 0;
1410 p->p_timers->pts_fired |= i;
1411 } else
1412 pt->pt_overruns++;
1413 }
1414 }
1415 #endif /* KERN_SA */
1416
1417 static void
1418 timer_intr(void *cookie)
1419 {
1420 ksiginfo_t ksi;
1421 struct ptimer *pt;
1422 proc_t *p;
1423
1424 mutex_enter(proc_lock);
1425 mutex_spin_enter(&timer_lock);
1426 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1427 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1428 KASSERT(pt->pt_queued);
1429 pt->pt_queued = false;
1430
1431 if (pt->pt_proc->p_timers == NULL) {
1432 /* Process is dying. */
1433 continue;
1434 }
1435 p = pt->pt_proc;
1436 #ifdef KERN_SA
1437 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1438 timer_sa_intr(pt, p);
1439 continue;
1440 }
1441 #endif /* KERN_SA */
1442 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1443 continue;
1444 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1445 pt->pt_overruns++;
1446 continue;
1447 }
1448
1449 KSI_INIT(&ksi);
1450 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1451 ksi.ksi_code = SI_TIMER;
1452 ksi.ksi_value = pt->pt_ev.sigev_value;
1453 pt->pt_poverruns = pt->pt_overruns;
1454 pt->pt_overruns = 0;
1455 mutex_spin_exit(&timer_lock);
1456 kpsignal(p, &ksi, NULL);
1457 mutex_spin_enter(&timer_lock);
1458 }
1459 mutex_spin_exit(&timer_lock);
1460 mutex_exit(proc_lock);
1461 }
1462