kern_time.c revision 1.16 1 /* $NetBSD: kern_time.c,v 1.16 1995/10/07 06:28:28 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/resourcevar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44
45 #include <sys/mount.h>
46 #include <sys/syscallargs.h>
47
48 #include <machine/cpu.h>
49
50 /*
51 * Time of day and interval timer support.
52 *
53 * These routines provide the kernel entry points to get and set
54 * the time-of-day and per-process interval timers. Subroutines
55 * here provide support for adding and subtracting timeval structures
56 * and decrementing interval timers, optionally reloading the interval
57 * timers when they expire.
58 */
59
60 /* ARGSUSED */
61 int
62 sys_gettimeofday(p, v, retval)
63 struct proc *p;
64 void *v;
65 register_t *retval;
66 {
67 register struct sys_gettimeofday_args /* {
68 syscallarg(struct timeval *) tp;
69 syscallarg(struct timezone *) tzp;
70 } */ *uap = v;
71 struct timeval atv;
72 int error = 0;
73
74 if (SCARG(uap, tp)) {
75 microtime(&atv);
76 if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
77 sizeof (atv)))
78 return (error);
79 }
80 if (SCARG(uap, tzp))
81 error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
82 sizeof (tz));
83 return (error);
84 }
85
86 /* ARGSUSED */
87 int
88 sys_settimeofday(p, v, retval)
89 struct proc *p;
90 void *v;
91 register_t *retval;
92 {
93 struct sys_settimeofday_args /* {
94 syscallarg(struct timeval *) tv;
95 syscallarg(struct timezone *) tzp;
96 } */ *uap = v;
97 struct timeval atv, delta;
98 struct timezone atz;
99 int error, s;
100
101 if (error = suser(p->p_ucred, &p->p_acflag))
102 return (error);
103 /* Verify all parameters before changing time. */
104 if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
105 (caddr_t)&atv, sizeof(atv))))
106 return (error);
107 if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
108 (caddr_t)&atz, sizeof(atz))))
109 return (error);
110 if (SCARG(uap, tv)) {
111 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
112 s = splclock();
113 timersub(&atv, &time, &delta);
114 time = atv;
115 (void) splsoftclock();
116 timeradd(&boottime, &delta, &boottime);
117 timeradd(&runtime, &delta, &runtime);
118 # if defined(NFSCLIENT) || defined(NFSSERVER)
119 lease_updatetime(delta.tv_sec);
120 # endif
121 splx(s);
122 resettodr();
123 }
124 if (SCARG(uap, tzp))
125 tz = atz;
126 return (0);
127 }
128
129 int tickdelta; /* current clock skew, us. per tick */
130 long timedelta; /* unapplied time correction, us. */
131 long bigadj = 1000000; /* use 10x skew above bigadj us. */
132
133 /* ARGSUSED */
134 int
135 sys_adjtime(p, v, retval)
136 struct proc *p;
137 void *v;
138 register_t *retval;
139 {
140 register struct sys_adjtime_args /* {
141 syscallarg(struct timeval *) delta;
142 syscallarg(struct timeval *) olddelta;
143 } */ *uap = v;
144 struct timeval atv;
145 register long ndelta, ntickdelta, odelta;
146 int s, error;
147
148 if (error = suser(p->p_ucred, &p->p_acflag))
149 return (error);
150 if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
151 sizeof(struct timeval)))
152 return (error);
153
154 /*
155 * Compute the total correction and the rate at which to apply it.
156 * Round the adjustment down to a whole multiple of the per-tick
157 * delta, so that after some number of incremental changes in
158 * hardclock(), tickdelta will become zero, lest the correction
159 * overshoot and start taking us away from the desired final time.
160 */
161 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
162 if (ndelta > bigadj)
163 ntickdelta = 10 * tickadj;
164 else
165 ntickdelta = tickadj;
166 if (ndelta % ntickdelta)
167 ndelta = ndelta / ntickdelta * ntickdelta;
168
169 /*
170 * To make hardclock()'s job easier, make the per-tick delta negative
171 * if we want time to run slower; then hardclock can simply compute
172 * tick + tickdelta, and subtract tickdelta from timedelta.
173 */
174 if (ndelta < 0)
175 ntickdelta = -ntickdelta;
176 s = splclock();
177 odelta = timedelta;
178 timedelta = ndelta;
179 tickdelta = ntickdelta;
180 splx(s);
181
182 if (SCARG(uap, olddelta)) {
183 atv.tv_sec = odelta / 1000000;
184 atv.tv_usec = odelta % 1000000;
185 (void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
186 sizeof(struct timeval));
187 }
188 return (0);
189 }
190
191 /*
192 * Get value of an interval timer. The process virtual and
193 * profiling virtual time timers are kept in the p_stats area, since
194 * they can be swapped out. These are kept internally in the
195 * way they are specified externally: in time until they expire.
196 *
197 * The real time interval timer is kept in the process table slot
198 * for the process, and its value (it_value) is kept as an
199 * absolute time rather than as a delta, so that it is easy to keep
200 * periodic real-time signals from drifting.
201 *
202 * Virtual time timers are processed in the hardclock() routine of
203 * kern_clock.c. The real time timer is processed by a timeout
204 * routine, called from the softclock() routine. Since a callout
205 * may be delayed in real time due to interrupt processing in the system,
206 * it is possible for the real time timeout routine (realitexpire, given below),
207 * to be delayed in real time past when it is supposed to occur. It
208 * does not suffice, therefore, to reload the real timer .it_value from the
209 * real time timers .it_interval. Rather, we compute the next time in
210 * absolute time the timer should go off.
211 */
212 /* ARGSUSED */
213 int
214 sys_getitimer(p, v, retval)
215 struct proc *p;
216 void *v;
217 register_t *retval;
218 {
219 register struct sys_getitimer_args /* {
220 syscallarg(u_int) which;
221 syscallarg(struct itimerval *) itv;
222 } */ *uap = v;
223 struct itimerval aitv;
224 int s;
225
226 if (SCARG(uap, which) > ITIMER_PROF)
227 return (EINVAL);
228 s = splclock();
229 if (SCARG(uap, which) == ITIMER_REAL) {
230 /*
231 * Convert from absolute to relative time in .it_value
232 * part of real time timer. If time for real time timer
233 * has passed return 0, else return difference between
234 * current time and time for the timer to go off.
235 */
236 aitv = p->p_realtimer;
237 if (timerisset(&aitv.it_value))
238 if (timercmp(&aitv.it_value, &time, <))
239 timerclear(&aitv.it_value);
240 else
241 timersub(&aitv.it_value, &time, &aitv.it_value);
242 } else
243 aitv = p->p_stats->p_timer[SCARG(uap, which)];
244 splx(s);
245 return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
246 sizeof (struct itimerval)));
247 }
248
249 /* ARGSUSED */
250 int
251 sys_setitimer(p, v, retval)
252 struct proc *p;
253 void *v;
254 register_t *retval;
255 {
256 register struct sys_setitimer_args /* {
257 syscallarg(u_int) which;
258 syscallarg(struct itimerval *) itv;
259 syscallarg(struct itimerval *) oitv;
260 } */ *uap = v;
261 struct itimerval aitv;
262 register struct itimerval *itvp;
263 int s, error;
264
265 if (SCARG(uap, which) > ITIMER_PROF)
266 return (EINVAL);
267 itvp = SCARG(uap, itv);
268 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
269 sizeof(struct itimerval))))
270 return (error);
271 if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
272 (error = sys_getitimer(p, uap, retval)))
273 return (error);
274 if (itvp == 0)
275 return (0);
276 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
277 return (EINVAL);
278 s = splclock();
279 if (SCARG(uap, which) == ITIMER_REAL) {
280 untimeout(realitexpire, p);
281 if (timerisset(&aitv.it_value)) {
282 timeradd(&aitv.it_value, &time, &aitv.it_value);
283 timeout(realitexpire, p, hzto(&aitv.it_value));
284 }
285 p->p_realtimer = aitv;
286 } else
287 p->p_stats->p_timer[SCARG(uap, which)] = aitv;
288 splx(s);
289 return (0);
290 }
291
292 /*
293 * Real interval timer expired:
294 * send process whose timer expired an alarm signal.
295 * If time is not set up to reload, then just return.
296 * Else compute next time timer should go off which is > current time.
297 * This is where delay in processing this timeout causes multiple
298 * SIGALRM calls to be compressed into one.
299 */
300 void
301 realitexpire(arg)
302 void *arg;
303 {
304 register struct proc *p;
305 int s;
306
307 p = (struct proc *)arg;
308 psignal(p, SIGALRM);
309 if (!timerisset(&p->p_realtimer.it_interval)) {
310 timerclear(&p->p_realtimer.it_value);
311 return;
312 }
313 for (;;) {
314 s = splclock();
315 timeradd(&p->p_realtimer.it_value,
316 &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
317 if (timercmp(&p->p_realtimer.it_value, &time, >)) {
318 timeout(realitexpire, p,
319 hzto(&p->p_realtimer.it_value));
320 splx(s);
321 return;
322 }
323 splx(s);
324 }
325 }
326
327 /*
328 * Check that a proposed value to load into the .it_value or
329 * .it_interval part of an interval timer is acceptable, and
330 * fix it to have at least minimal value (i.e. if it is less
331 * than the resolution of the clock, round it up.)
332 */
333 int
334 itimerfix(tv)
335 struct timeval *tv;
336 {
337
338 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
339 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
340 return (EINVAL);
341 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
342 tv->tv_usec = tick;
343 return (0);
344 }
345
346 /*
347 * Decrement an interval timer by a specified number
348 * of microseconds, which must be less than a second,
349 * i.e. < 1000000. If the timer expires, then reload
350 * it. In this case, carry over (usec - old value) to
351 * reduce the value reloaded into the timer so that
352 * the timer does not drift. This routine assumes
353 * that it is called in a context where the timers
354 * on which it is operating cannot change in value.
355 */
356 int
357 itimerdecr(itp, usec)
358 register struct itimerval *itp;
359 int usec;
360 {
361
362 if (itp->it_value.tv_usec < usec) {
363 if (itp->it_value.tv_sec == 0) {
364 /* expired, and already in next interval */
365 usec -= itp->it_value.tv_usec;
366 goto expire;
367 }
368 itp->it_value.tv_usec += 1000000;
369 itp->it_value.tv_sec--;
370 }
371 itp->it_value.tv_usec -= usec;
372 usec = 0;
373 if (timerisset(&itp->it_value))
374 return (1);
375 /* expired, exactly at end of interval */
376 expire:
377 if (timerisset(&itp->it_interval)) {
378 itp->it_value = itp->it_interval;
379 itp->it_value.tv_usec -= usec;
380 if (itp->it_value.tv_usec < 0) {
381 itp->it_value.tv_usec += 1000000;
382 itp->it_value.tv_sec--;
383 }
384 } else
385 itp->it_value.tv_usec = 0; /* sec is already 0 */
386 return (0);
387 }
388