Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.160
      1 /*	$NetBSD: kern_time.c,v 1.160 2009/03/29 19:21:19 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Christopher G. Demetriou, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1986, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.160 2009/03/29 19:21:19 christos Exp $");
     65 
     66 #include <sys/param.h>
     67 #include <sys/resourcevar.h>
     68 #include <sys/kernel.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/vnode.h>
     72 #include <sys/signalvar.h>
     73 #include <sys/syslog.h>
     74 #include <sys/timetc.h>
     75 #include <sys/timex.h>
     76 #include <sys/kauth.h>
     77 #include <sys/mount.h>
     78 #include <sys/sa.h>
     79 #include <sys/savar.h>
     80 #include <sys/syscallargs.h>
     81 #include <sys/cpu.h>
     82 
     83 #include <uvm/uvm_extern.h>
     84 
     85 #include "opt_sa.h"
     86 
     87 static void	timer_intr(void *);
     88 static void	itimerfire(struct ptimer *);
     89 static void	itimerfree(struct ptimers *, int);
     90 
     91 kmutex_t	timer_lock;
     92 
     93 static void	*timer_sih;
     94 static TAILQ_HEAD(, ptimer) timer_queue;
     95 
     96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     97     &pool_allocator_nointr, IPL_NONE);
     98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     99     &pool_allocator_nointr, IPL_NONE);
    100 
    101 /*
    102  * Initialize timekeeping.
    103  */
    104 void
    105 time_init(void)
    106 {
    107 
    108 	/* nothing yet */
    109 }
    110 
    111 void
    112 time_init2(void)
    113 {
    114 
    115 	TAILQ_INIT(&timer_queue);
    116 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118 	    timer_intr, NULL);
    119 }
    120 
    121 /* Time of day and interval timer support.
    122  *
    123  * These routines provide the kernel entry points to get and set
    124  * the time-of-day and per-process interval timers.  Subroutines
    125  * here provide support for adding and subtracting timeval structures
    126  * and decrementing interval timers, optionally reloading the interval
    127  * timers when they expire.
    128  */
    129 
    130 /* This function is used by clock_settime and settimeofday */
    131 static int
    132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    133 {
    134 	struct timespec delta, now;
    135 	int s;
    136 
    137 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    138 	s = splclock();
    139 	nanotime(&now);
    140 	timespecsub(ts, &now, &delta);
    141 
    142 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    143 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    144 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    145 		splx(s);
    146 		return (EPERM);
    147 	}
    148 
    149 #ifdef notyet
    150 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    151 		splx(s);
    152 		return (EPERM);
    153 	}
    154 #endif
    155 
    156 	tc_setclock(ts);
    157 
    158 	timespecadd(&boottime, &delta, &boottime);
    159 
    160 	resettodr();
    161 	splx(s);
    162 
    163 	return (0);
    164 }
    165 
    166 int
    167 settime(struct proc *p, struct timespec *ts)
    168 {
    169 	return (settime1(p, ts, true));
    170 }
    171 
    172 /* ARGSUSED */
    173 int
    174 sys___clock_gettime50(struct lwp *l,
    175     const struct sys___clock_gettime50_args *uap, register_t *retval)
    176 {
    177 	/* {
    178 		syscallarg(clockid_t) clock_id;
    179 		syscallarg(struct timespec *) tp;
    180 	} */
    181 	clockid_t clock_id;
    182 	struct timespec ats;
    183 
    184 	clock_id = SCARG(uap, clock_id);
    185 	switch (clock_id) {
    186 	case CLOCK_REALTIME:
    187 		nanotime(&ats);
    188 		break;
    189 	case CLOCK_MONOTONIC:
    190 		nanouptime(&ats);
    191 		break;
    192 	default:
    193 		return (EINVAL);
    194 	}
    195 
    196 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    197 }
    198 
    199 /* ARGSUSED */
    200 int
    201 sys___clock_settime50(struct lwp *l,
    202     const struct sys___clock_settime50_args *uap, register_t *retval)
    203 {
    204 	/* {
    205 		syscallarg(clockid_t) clock_id;
    206 		syscallarg(const struct timespec *) tp;
    207 	} */
    208 	int error;
    209 	struct timespec ats;
    210 
    211 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    212 		return error;
    213 
    214 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    215 }
    216 
    217 
    218 int
    219 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    220     bool check_kauth)
    221 {
    222 	int error;
    223 
    224 	switch (clock_id) {
    225 	case CLOCK_REALTIME:
    226 		if ((error = settime1(p, tp, check_kauth)) != 0)
    227 			return (error);
    228 		break;
    229 	case CLOCK_MONOTONIC:
    230 		return (EINVAL);	/* read-only clock */
    231 	default:
    232 		return (EINVAL);
    233 	}
    234 
    235 	return 0;
    236 }
    237 
    238 int
    239 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    240     register_t *retval)
    241 {
    242 	/* {
    243 		syscallarg(clockid_t) clock_id;
    244 		syscallarg(struct timespec *) tp;
    245 	} */
    246 	clockid_t clock_id;
    247 	struct timespec ts;
    248 	int error = 0;
    249 
    250 	clock_id = SCARG(uap, clock_id);
    251 	switch (clock_id) {
    252 	case CLOCK_REALTIME:
    253 	case CLOCK_MONOTONIC:
    254 		ts.tv_sec = 0;
    255 		if (tc_getfrequency() > 1000000000)
    256 			ts.tv_nsec = 1;
    257 		else
    258 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    259 		break;
    260 	default:
    261 		return (EINVAL);
    262 	}
    263 
    264 	if (SCARG(uap, tp))
    265 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    266 
    267 	return error;
    268 }
    269 
    270 /* ARGSUSED */
    271 int
    272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    273     register_t *retval)
    274 {
    275 	/* {
    276 		syscallarg(struct timespec *) rqtp;
    277 		syscallarg(struct timespec *) rmtp;
    278 	} */
    279 	struct timespec rmt, rqt;
    280 	int error, error1;
    281 
    282 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    283 	if (error)
    284 		return (error);
    285 
    286 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    287 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    288 		return error;
    289 
    290 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    291 	return error1 ? error1 : error;
    292 }
    293 
    294 int
    295 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    296 {
    297 	struct timespec rmtstart;
    298 	int error, timo;
    299 
    300 	if ((error = itimespecfix(rqt)) != 0)
    301 		return error;
    302 
    303 	timo = tstohz(rqt);
    304 	/*
    305 	 * Avoid inadvertantly sleeping forever
    306 	 */
    307 	if (timo == 0)
    308 		timo = 1;
    309 	getnanouptime(&rmtstart);
    310 again:
    311 	error = kpause("nanoslp", true, timo, NULL);
    312 	if (rmt != NULL || error == 0) {
    313 		struct timespec rmtend;
    314 		struct timespec t0;
    315 		struct timespec *t;
    316 
    317 		getnanouptime(&rmtend);
    318 		t = (rmt != NULL) ? rmt : &t0;
    319 		timespecsub(&rmtend, &rmtstart, t);
    320 		timespecsub(rqt, t, t);
    321 		if (t->tv_sec < 0)
    322 			timespecclear(t);
    323 		if (error == 0) {
    324 			timo = tstohz(t);
    325 			if (timo > 0)
    326 				goto again;
    327 		}
    328 	}
    329 
    330 	if (error == ERESTART)
    331 		error = EINTR;
    332 	if (error == EWOULDBLOCK)
    333 		error = 0;
    334 
    335 	return error;
    336 }
    337 
    338 /* ARGSUSED */
    339 int
    340 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    341     register_t *retval)
    342 {
    343 	/* {
    344 		syscallarg(struct timeval *) tp;
    345 		syscallarg(void *) tzp;		really "struct timezone *";
    346 	} */
    347 	struct timeval atv;
    348 	int error = 0;
    349 	struct timezone tzfake;
    350 
    351 	if (SCARG(uap, tp)) {
    352 		microtime(&atv);
    353 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    354 		if (error)
    355 			return (error);
    356 	}
    357 	if (SCARG(uap, tzp)) {
    358 		/*
    359 		 * NetBSD has no kernel notion of time zone, so we just
    360 		 * fake up a timezone struct and return it if demanded.
    361 		 */
    362 		tzfake.tz_minuteswest = 0;
    363 		tzfake.tz_dsttime = 0;
    364 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    365 	}
    366 	return (error);
    367 }
    368 
    369 /* ARGSUSED */
    370 int
    371 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    372     register_t *retval)
    373 {
    374 	/* {
    375 		syscallarg(const struct timeval *) tv;
    376 		syscallarg(const void *) tzp; really "const struct timezone *";
    377 	} */
    378 
    379 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    380 }
    381 
    382 int
    383 settimeofday1(const struct timeval *utv, bool userspace,
    384     const void *utzp, struct lwp *l, bool check_kauth)
    385 {
    386 	struct timeval atv;
    387 	struct timespec ts;
    388 	int error;
    389 
    390 	/* Verify all parameters before changing time. */
    391 
    392 	/*
    393 	 * NetBSD has no kernel notion of time zone, and only an
    394 	 * obsolete program would try to set it, so we log a warning.
    395 	 */
    396 	if (utzp)
    397 		log(LOG_WARNING, "pid %d attempted to set the "
    398 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    399 
    400 	if (utv == NULL)
    401 		return 0;
    402 
    403 	if (userspace) {
    404 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    405 			return error;
    406 		utv = &atv;
    407 	}
    408 
    409 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    410 	return settime1(l->l_proc, &ts, check_kauth);
    411 }
    412 
    413 int	time_adjusted;			/* set if an adjustment is made */
    414 
    415 /* ARGSUSED */
    416 int
    417 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    418     register_t *retval)
    419 {
    420 	/* {
    421 		syscallarg(const struct timeval *) delta;
    422 		syscallarg(struct timeval *) olddelta;
    423 	} */
    424 	int error = 0;
    425 	struct timeval atv, oldatv;
    426 
    427 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    428 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    429 		return error;
    430 
    431 	if (SCARG(uap, delta)) {
    432 		error = copyin(SCARG(uap, delta), &atv,
    433 		    sizeof(*SCARG(uap, delta)));
    434 		if (error)
    435 			return (error);
    436 	}
    437 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    438 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    439 	if (SCARG(uap, olddelta))
    440 		error = copyout(&oldatv, SCARG(uap, olddelta),
    441 		    sizeof(*SCARG(uap, olddelta)));
    442 	return error;
    443 }
    444 
    445 void
    446 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    447 {
    448 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    449 
    450 	if (olddelta) {
    451 		mutex_spin_enter(&timecounter_lock);
    452 		olddelta->tv_sec = time_adjtime / 1000000;
    453 		olddelta->tv_usec = time_adjtime % 1000000;
    454 		if (olddelta->tv_usec < 0) {
    455 			olddelta->tv_usec += 1000000;
    456 			olddelta->tv_sec--;
    457 		}
    458 		mutex_spin_exit(&timecounter_lock);
    459 	}
    460 
    461 	if (delta) {
    462 		mutex_spin_enter(&timecounter_lock);
    463 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    464 
    465 		if (time_adjtime) {
    466 			/* We need to save the system time during shutdown */
    467 			time_adjusted |= 1;
    468 		}
    469 		mutex_spin_exit(&timecounter_lock);
    470 	}
    471 }
    472 
    473 /*
    474  * Interval timer support. Both the BSD getitimer() family and the POSIX
    475  * timer_*() family of routines are supported.
    476  *
    477  * All timers are kept in an array pointed to by p_timers, which is
    478  * allocated on demand - many processes don't use timers at all. The
    479  * first three elements in this array are reserved for the BSD timers:
    480  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    481  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    482  * syscall.
    483  *
    484  * Realtime timers are kept in the ptimer structure as an absolute
    485  * time; virtual time timers are kept as a linked list of deltas.
    486  * Virtual time timers are processed in the hardclock() routine of
    487  * kern_clock.c.  The real time timer is processed by a callout
    488  * routine, called from the softclock() routine.  Since a callout may
    489  * be delayed in real time due to interrupt processing in the system,
    490  * it is possible for the real time timeout routine (realtimeexpire,
    491  * given below), to be delayed in real time past when it is supposed
    492  * to occur.  It does not suffice, therefore, to reload the real timer
    493  * .it_value from the real time timers .it_interval.  Rather, we
    494  * compute the next time in absolute time the timer should go off.  */
    495 
    496 /* Allocate a POSIX realtime timer. */
    497 int
    498 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    499     register_t *retval)
    500 {
    501 	/* {
    502 		syscallarg(clockid_t) clock_id;
    503 		syscallarg(struct sigevent *) evp;
    504 		syscallarg(timer_t *) timerid;
    505 	} */
    506 
    507 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    508 	    SCARG(uap, evp), copyin, l);
    509 }
    510 
    511 int
    512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    513     copyin_t fetch_event, struct lwp *l)
    514 {
    515 	int error;
    516 	timer_t timerid;
    517 	struct ptimers *pts;
    518 	struct ptimer *pt;
    519 	struct proc *p;
    520 
    521 	p = l->l_proc;
    522 
    523 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    524 		return (EINVAL);
    525 
    526 	if ((pts = p->p_timers) == NULL)
    527 		pts = timers_alloc(p);
    528 
    529 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    530 	if (evp != NULL) {
    531 		if (((error =
    532 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    533 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    534 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    535 			pool_put(&ptimer_pool, pt);
    536 			return (error ? error : EINVAL);
    537 		}
    538 	}
    539 
    540 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    541 	mutex_spin_enter(&timer_lock);
    542 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    543 		if (pts->pts_timers[timerid] == NULL)
    544 			break;
    545 	if (timerid == TIMER_MAX) {
    546 		mutex_spin_exit(&timer_lock);
    547 		pool_put(&ptimer_pool, pt);
    548 		return EAGAIN;
    549 	}
    550 	if (evp == NULL) {
    551 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    552 		switch (id) {
    553 		case CLOCK_REALTIME:
    554 			pt->pt_ev.sigev_signo = SIGALRM;
    555 			break;
    556 		case CLOCK_VIRTUAL:
    557 			pt->pt_ev.sigev_signo = SIGVTALRM;
    558 			break;
    559 		case CLOCK_PROF:
    560 			pt->pt_ev.sigev_signo = SIGPROF;
    561 			break;
    562 		}
    563 		pt->pt_ev.sigev_value.sival_int = timerid;
    564 	}
    565 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    566 	pt->pt_info.ksi_errno = 0;
    567 	pt->pt_info.ksi_code = 0;
    568 	pt->pt_info.ksi_pid = p->p_pid;
    569 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    570 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    571 	pt->pt_type = id;
    572 	pt->pt_proc = p;
    573 	pt->pt_overruns = 0;
    574 	pt->pt_poverruns = 0;
    575 	pt->pt_entry = timerid;
    576 	pt->pt_queued = false;
    577 	timespecclear(&pt->pt_time.it_value);
    578 	if (id == CLOCK_REALTIME)
    579 		callout_init(&pt->pt_ch, 0);
    580 	else
    581 		pt->pt_active = 0;
    582 
    583 	pts->pts_timers[timerid] = pt;
    584 	mutex_spin_exit(&timer_lock);
    585 
    586 	return copyout(&timerid, tid, sizeof(timerid));
    587 }
    588 
    589 /* Delete a POSIX realtime timer */
    590 int
    591 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    592     register_t *retval)
    593 {
    594 	/* {
    595 		syscallarg(timer_t) timerid;
    596 	} */
    597 	struct proc *p = l->l_proc;
    598 	timer_t timerid;
    599 	struct ptimers *pts;
    600 	struct ptimer *pt, *ptn;
    601 
    602 	timerid = SCARG(uap, timerid);
    603 	pts = p->p_timers;
    604 
    605 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    606 		return (EINVAL);
    607 
    608 	mutex_spin_enter(&timer_lock);
    609 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    610 		mutex_spin_exit(&timer_lock);
    611 		return (EINVAL);
    612 	}
    613 	if (pt->pt_type != CLOCK_REALTIME) {
    614 		if (pt->pt_active) {
    615 			ptn = LIST_NEXT(pt, pt_list);
    616 			LIST_REMOVE(pt, pt_list);
    617 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    618 				timespecadd(&pt->pt_time.it_value,
    619 				    &ptn->pt_time.it_value,
    620 				    &ptn->pt_time.it_value);
    621 			pt->pt_active = 0;
    622 		}
    623 	}
    624 	itimerfree(pts, timerid);
    625 
    626 	return (0);
    627 }
    628 
    629 /*
    630  * Set up the given timer. The value in pt->pt_time.it_value is taken
    631  * to be an absolute time for CLOCK_REALTIME timers and a relative
    632  * time for virtual timers.
    633  * Must be called at splclock().
    634  */
    635 void
    636 timer_settime(struct ptimer *pt)
    637 {
    638 	struct ptimer *ptn, *pptn;
    639 	struct ptlist *ptl;
    640 
    641 	KASSERT(mutex_owned(&timer_lock));
    642 
    643 	if (pt->pt_type == CLOCK_REALTIME) {
    644 		callout_stop(&pt->pt_ch);
    645 		if (timespecisset(&pt->pt_time.it_value)) {
    646 			/*
    647 			 * Don't need to check tshzto() return value, here.
    648 			 * callout_reset() does it for us.
    649 			 */
    650 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    651 			    realtimerexpire, pt);
    652 		}
    653 	} else {
    654 		if (pt->pt_active) {
    655 			ptn = LIST_NEXT(pt, pt_list);
    656 			LIST_REMOVE(pt, pt_list);
    657 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    658 				timespecadd(&pt->pt_time.it_value,
    659 				    &ptn->pt_time.it_value,
    660 				    &ptn->pt_time.it_value);
    661 		}
    662 		if (timespecisset(&pt->pt_time.it_value)) {
    663 			if (pt->pt_type == CLOCK_VIRTUAL)
    664 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    665 			else
    666 				ptl = &pt->pt_proc->p_timers->pts_prof;
    667 
    668 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    669 			     ptn && timespeccmp(&pt->pt_time.it_value,
    670 				 &ptn->pt_time.it_value, >);
    671 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    672 				timespecsub(&pt->pt_time.it_value,
    673 				    &ptn->pt_time.it_value,
    674 				    &pt->pt_time.it_value);
    675 
    676 			if (pptn)
    677 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    678 			else
    679 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    680 
    681 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    682 				timespecsub(&ptn->pt_time.it_value,
    683 				    &pt->pt_time.it_value,
    684 				    &ptn->pt_time.it_value);
    685 
    686 			pt->pt_active = 1;
    687 		} else
    688 			pt->pt_active = 0;
    689 	}
    690 }
    691 
    692 void
    693 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    694 {
    695 	struct timespec now;
    696 	struct ptimer *ptn;
    697 
    698 	KASSERT(mutex_owned(&timer_lock));
    699 
    700 	*aits = pt->pt_time;
    701 	if (pt->pt_type == CLOCK_REALTIME) {
    702 		/*
    703 		 * Convert from absolute to relative time in .it_value
    704 		 * part of real time timer.  If time for real time
    705 		 * timer has passed return 0, else return difference
    706 		 * between current time and time for the timer to go
    707 		 * off.
    708 		 */
    709 		if (timespecisset(&aits->it_value)) {
    710 			getnanotime(&now);
    711 			if (timespeccmp(&aits->it_value, &now, <))
    712 				timespecclear(&aits->it_value);
    713 			else
    714 				timespecsub(&aits->it_value, &now,
    715 				    &aits->it_value);
    716 		}
    717 	} else if (pt->pt_active) {
    718 		if (pt->pt_type == CLOCK_VIRTUAL)
    719 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    720 		else
    721 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    722 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    723 			timespecadd(&aits->it_value,
    724 			    &ptn->pt_time.it_value, &aits->it_value);
    725 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    726 	} else
    727 		timespecclear(&aits->it_value);
    728 }
    729 
    730 
    731 
    732 /* Set and arm a POSIX realtime timer */
    733 int
    734 sys___timer_settime50(struct lwp *l,
    735     const struct sys___timer_settime50_args *uap,
    736     register_t *retval)
    737 {
    738 	/* {
    739 		syscallarg(timer_t) timerid;
    740 		syscallarg(int) flags;
    741 		syscallarg(const struct itimerspec *) value;
    742 		syscallarg(struct itimerspec *) ovalue;
    743 	} */
    744 	int error;
    745 	struct itimerspec value, ovalue, *ovp = NULL;
    746 
    747 	if ((error = copyin(SCARG(uap, value), &value,
    748 	    sizeof(struct itimerspec))) != 0)
    749 		return (error);
    750 
    751 	if (SCARG(uap, ovalue))
    752 		ovp = &ovalue;
    753 
    754 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    755 	    SCARG(uap, flags), l->l_proc)) != 0)
    756 		return error;
    757 
    758 	if (ovp)
    759 		return copyout(&ovalue, SCARG(uap, ovalue),
    760 		    sizeof(struct itimerspec));
    761 	return 0;
    762 }
    763 
    764 int
    765 dotimer_settime(int timerid, struct itimerspec *value,
    766     struct itimerspec *ovalue, int flags, struct proc *p)
    767 {
    768 	struct timespec now;
    769 	struct itimerspec val, oval;
    770 	struct ptimers *pts;
    771 	struct ptimer *pt;
    772 	int error;
    773 
    774 	pts = p->p_timers;
    775 
    776 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    777 		return EINVAL;
    778 	val = *value;
    779 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    780 	    (error = itimespecfix(&val.it_interval)) != 0)
    781 		return error;
    782 
    783 	mutex_spin_enter(&timer_lock);
    784 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    785 		mutex_spin_exit(&timer_lock);
    786 		return EINVAL;
    787 	}
    788 
    789 	oval = pt->pt_time;
    790 	pt->pt_time = val;
    791 
    792 	/*
    793 	 * If we've been passed a relative time for a realtime timer,
    794 	 * convert it to absolute; if an absolute time for a virtual
    795 	 * timer, convert it to relative and make sure we don't set it
    796 	 * to zero, which would cancel the timer, or let it go
    797 	 * negative, which would confuse the comparison tests.
    798 	 */
    799 	if (timespecisset(&pt->pt_time.it_value)) {
    800 		if (pt->pt_type == CLOCK_REALTIME) {
    801 			if ((flags & TIMER_ABSTIME) == 0) {
    802 				getnanotime(&now);
    803 				timespecadd(&pt->pt_time.it_value, &now,
    804 				    &pt->pt_time.it_value);
    805 			}
    806 		} else {
    807 			if ((flags & TIMER_ABSTIME) != 0) {
    808 				getnanotime(&now);
    809 				timespecsub(&pt->pt_time.it_value, &now,
    810 				    &pt->pt_time.it_value);
    811 				if (!timespecisset(&pt->pt_time.it_value) ||
    812 				    pt->pt_time.it_value.tv_sec < 0) {
    813 					pt->pt_time.it_value.tv_sec = 0;
    814 					pt->pt_time.it_value.tv_nsec = 1;
    815 				}
    816 			}
    817 		}
    818 	}
    819 
    820 	timer_settime(pt);
    821 	mutex_spin_exit(&timer_lock);
    822 
    823 	if (ovalue)
    824 		*ovalue = oval;
    825 
    826 	return (0);
    827 }
    828 
    829 /* Return the time remaining until a POSIX timer fires. */
    830 int
    831 sys___timer_gettime50(struct lwp *l,
    832     const struct sys___timer_gettime50_args *uap, register_t *retval)
    833 {
    834 	/* {
    835 		syscallarg(timer_t) timerid;
    836 		syscallarg(struct itimerspec *) value;
    837 	} */
    838 	struct itimerspec its;
    839 	int error;
    840 
    841 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    842 	    &its)) != 0)
    843 		return error;
    844 
    845 	return copyout(&its, SCARG(uap, value), sizeof(its));
    846 }
    847 
    848 int
    849 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    850 {
    851 	struct ptimer *pt;
    852 	struct ptimers *pts;
    853 
    854 	pts = p->p_timers;
    855 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    856 		return (EINVAL);
    857 	mutex_spin_enter(&timer_lock);
    858 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    859 		mutex_spin_exit(&timer_lock);
    860 		return (EINVAL);
    861 	}
    862 	timer_gettime(pt, its);
    863 	mutex_spin_exit(&timer_lock);
    864 
    865 	return 0;
    866 }
    867 
    868 /*
    869  * Return the count of the number of times a periodic timer expired
    870  * while a notification was already pending. The counter is reset when
    871  * a timer expires and a notification can be posted.
    872  */
    873 int
    874 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    875     register_t *retval)
    876 {
    877 	/* {
    878 		syscallarg(timer_t) timerid;
    879 	} */
    880 	struct proc *p = l->l_proc;
    881 	struct ptimers *pts;
    882 	int timerid;
    883 	struct ptimer *pt;
    884 
    885 	timerid = SCARG(uap, timerid);
    886 
    887 	pts = p->p_timers;
    888 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    889 		return (EINVAL);
    890 	mutex_spin_enter(&timer_lock);
    891 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    892 		mutex_spin_exit(&timer_lock);
    893 		return (EINVAL);
    894 	}
    895 	*retval = pt->pt_poverruns;
    896 	mutex_spin_exit(&timer_lock);
    897 
    898 	return (0);
    899 }
    900 
    901 #ifdef KERN_SA
    902 /* Glue function that triggers an upcall; called from userret(). */
    903 void
    904 timerupcall(struct lwp *l)
    905 {
    906 	struct ptimers *pt = l->l_proc->p_timers;
    907 	struct proc *p = l->l_proc;
    908 	unsigned int i, fired, done;
    909 
    910 	KDASSERT(l->l_proc->p_sa);
    911 	/* Bail out if we do not own the virtual processor */
    912 	if (l->l_savp->savp_lwp != l)
    913 		return ;
    914 
    915 	mutex_enter(p->p_lock);
    916 
    917 	fired = pt->pts_fired;
    918 	done = 0;
    919 	while ((i = ffs(fired)) != 0) {
    920 		siginfo_t *si;
    921 		int mask = 1 << --i;
    922 		int f;
    923 
    924 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    925 		l->l_pflag |= LP_SA_NOBLOCK;
    926 		si = siginfo_alloc(PR_WAITOK);
    927 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    928 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    929 		    sizeof(*si), si, siginfo_free) != 0) {
    930 			siginfo_free(si);
    931 			/* XXX What do we do here?? */
    932 		} else
    933 			done |= mask;
    934 		fired &= ~mask;
    935 		l->l_pflag ^= f;
    936 	}
    937 	pt->pts_fired &= ~done;
    938 	if (pt->pts_fired == 0)
    939 		l->l_proc->p_timerpend = 0;
    940 
    941 	mutex_exit(p->p_lock);
    942 }
    943 #endif /* KERN_SA */
    944 
    945 /*
    946  * Real interval timer expired:
    947  * send process whose timer expired an alarm signal.
    948  * If time is not set up to reload, then just return.
    949  * Else compute next time timer should go off which is > current time.
    950  * This is where delay in processing this timeout causes multiple
    951  * SIGALRM calls to be compressed into one.
    952  */
    953 void
    954 realtimerexpire(void *arg)
    955 {
    956 	uint64_t last_val, next_val, interval, now_ms;
    957 	struct timespec now, next;
    958 	struct ptimer *pt;
    959 	int backwards;
    960 
    961 	pt = arg;
    962 
    963 	mutex_spin_enter(&timer_lock);
    964 	itimerfire(pt);
    965 
    966 	if (!timespecisset(&pt->pt_time.it_interval)) {
    967 		timespecclear(&pt->pt_time.it_value);
    968 		mutex_spin_exit(&timer_lock);
    969 		return;
    970 	}
    971 
    972 	getnanotime(&now);
    973 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    974 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    975 	/* Handle the easy case of non-overflown timers first. */
    976 	if (!backwards && timespeccmp(&next, &now, >)) {
    977 		pt->pt_time.it_value = next;
    978 	} else {
    979 		now_ms = timespec2ns(&now);
    980 		last_val = timespec2ns(&pt->pt_time.it_value);
    981 		interval = timespec2ns(&pt->pt_time.it_interval);
    982 
    983 		next_val = now_ms +
    984 		    (now_ms - last_val + interval - 1) % interval;
    985 
    986 		if (backwards)
    987 			next_val += interval;
    988 		else
    989 			pt->pt_overruns += (now_ms - last_val) / interval;
    990 
    991 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    992 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
    993 	}
    994 
    995 	/*
    996 	 * Don't need to check tshzto() return value, here.
    997 	 * callout_reset() does it for us.
    998 	 */
    999 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1000 	    realtimerexpire, pt);
   1001 	mutex_spin_exit(&timer_lock);
   1002 }
   1003 
   1004 /* BSD routine to get the value of an interval timer. */
   1005 /* ARGSUSED */
   1006 int
   1007 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1008     register_t *retval)
   1009 {
   1010 	/* {
   1011 		syscallarg(int) which;
   1012 		syscallarg(struct itimerval *) itv;
   1013 	} */
   1014 	struct proc *p = l->l_proc;
   1015 	struct itimerval aitv;
   1016 	int error;
   1017 
   1018 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1019 	if (error)
   1020 		return error;
   1021 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1022 }
   1023 
   1024 int
   1025 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1026 {
   1027 	struct ptimers *pts;
   1028 	struct ptimer *pt;
   1029 	struct itimerspec its;
   1030 
   1031 	if ((u_int)which > ITIMER_PROF)
   1032 		return (EINVAL);
   1033 
   1034 	mutex_spin_enter(&timer_lock);
   1035 	pts = p->p_timers;
   1036 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1037 		timerclear(&itvp->it_value);
   1038 		timerclear(&itvp->it_interval);
   1039 	} else {
   1040 		timer_gettime(pt, &its);
   1041 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1042 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1043 	}
   1044 	mutex_spin_exit(&timer_lock);
   1045 
   1046 	return 0;
   1047 }
   1048 
   1049 /* BSD routine to set/arm an interval timer. */
   1050 /* ARGSUSED */
   1051 int
   1052 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1053     register_t *retval)
   1054 {
   1055 	/* {
   1056 		syscallarg(int) which;
   1057 		syscallarg(const struct itimerval *) itv;
   1058 		syscallarg(struct itimerval *) oitv;
   1059 	} */
   1060 	struct proc *p = l->l_proc;
   1061 	int which = SCARG(uap, which);
   1062 	struct sys___getitimer50_args getargs;
   1063 	const struct itimerval *itvp;
   1064 	struct itimerval aitv;
   1065 	int error;
   1066 
   1067 	if ((u_int)which > ITIMER_PROF)
   1068 		return (EINVAL);
   1069 	itvp = SCARG(uap, itv);
   1070 	if (itvp &&
   1071 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1072 		return (error);
   1073 	if (SCARG(uap, oitv) != NULL) {
   1074 		SCARG(&getargs, which) = which;
   1075 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1076 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1077 			return (error);
   1078 	}
   1079 	if (itvp == 0)
   1080 		return (0);
   1081 
   1082 	return dosetitimer(p, which, &aitv);
   1083 }
   1084 
   1085 int
   1086 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1087 {
   1088 	struct timespec now;
   1089 	struct ptimers *pts;
   1090 	struct ptimer *pt, *spare;
   1091 
   1092 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1093 		return (EINVAL);
   1094 
   1095 	/*
   1096 	 * Don't bother allocating data structures if the process just
   1097 	 * wants to clear the timer.
   1098 	 */
   1099 	spare = NULL;
   1100 	pts = p->p_timers;
   1101  retry:
   1102 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1103 	    pts->pts_timers[which] == NULL))
   1104 		return (0);
   1105 	if (pts == NULL)
   1106 		pts = timers_alloc(p);
   1107 	mutex_spin_enter(&timer_lock);
   1108 	pt = pts->pts_timers[which];
   1109 	if (pt == NULL) {
   1110 		if (spare == NULL) {
   1111 			mutex_spin_exit(&timer_lock);
   1112 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1113 			goto retry;
   1114 		}
   1115 		pt = spare;
   1116 		spare = NULL;
   1117 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1118 		pt->pt_ev.sigev_value.sival_int = which;
   1119 		pt->pt_overruns = 0;
   1120 		pt->pt_proc = p;
   1121 		pt->pt_type = which;
   1122 		pt->pt_entry = which;
   1123 		pt->pt_queued = false;
   1124 		if (pt->pt_type == CLOCK_REALTIME)
   1125 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1126 		else
   1127 			pt->pt_active = 0;
   1128 
   1129 		switch (which) {
   1130 		case ITIMER_REAL:
   1131 			pt->pt_ev.sigev_signo = SIGALRM;
   1132 			break;
   1133 		case ITIMER_VIRTUAL:
   1134 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1135 			break;
   1136 		case ITIMER_PROF:
   1137 			pt->pt_ev.sigev_signo = SIGPROF;
   1138 			break;
   1139 		}
   1140 		pts->pts_timers[which] = pt;
   1141 	}
   1142 
   1143 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1144 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1145 
   1146 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1147 		/* Convert to absolute time */
   1148 		/* XXX need to wrap in splclock for timecounters case? */
   1149 		getnanotime(&now);
   1150 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1151 	}
   1152 	timer_settime(pt);
   1153 	mutex_spin_exit(&timer_lock);
   1154 	if (spare != NULL)
   1155 		pool_put(&ptimer_pool, spare);
   1156 
   1157 	return (0);
   1158 }
   1159 
   1160 /* Utility routines to manage the array of pointers to timers. */
   1161 struct ptimers *
   1162 timers_alloc(struct proc *p)
   1163 {
   1164 	struct ptimers *pts;
   1165 	int i;
   1166 
   1167 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1168 	LIST_INIT(&pts->pts_virtual);
   1169 	LIST_INIT(&pts->pts_prof);
   1170 	for (i = 0; i < TIMER_MAX; i++)
   1171 		pts->pts_timers[i] = NULL;
   1172 	pts->pts_fired = 0;
   1173 	mutex_spin_enter(&timer_lock);
   1174 	if (p->p_timers == NULL) {
   1175 		p->p_timers = pts;
   1176 		mutex_spin_exit(&timer_lock);
   1177 		return pts;
   1178 	}
   1179 	mutex_spin_exit(&timer_lock);
   1180 	pool_put(&ptimers_pool, pts);
   1181 	return p->p_timers;
   1182 }
   1183 
   1184 /*
   1185  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1186  * then clean up all timers and free all the data structures. If
   1187  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1188  * by timer_create(), not the BSD setitimer() timers, and only free the
   1189  * structure if none of those remain.
   1190  */
   1191 void
   1192 timers_free(struct proc *p, int which)
   1193 {
   1194 	struct ptimers *pts;
   1195 	struct ptimer *ptn;
   1196 	struct timespec ts;
   1197 	int i;
   1198 
   1199 	if (p->p_timers == NULL)
   1200 		return;
   1201 
   1202 	pts = p->p_timers;
   1203 	mutex_spin_enter(&timer_lock);
   1204 	if (which == TIMERS_ALL) {
   1205 		p->p_timers = NULL;
   1206 		i = 0;
   1207 	} else {
   1208 		timespecclear(&ts);
   1209 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1210 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1211 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1212 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1213 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1214 		}
   1215 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1216 		if (ptn) {
   1217 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1218 			timespecadd(&ts, &ptn->pt_time.it_value,
   1219 			    &ptn->pt_time.it_value);
   1220 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1221 		}
   1222 		timespecclear(&ts);
   1223 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1224 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1225 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1226 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1227 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1228 		}
   1229 		LIST_FIRST(&pts->pts_prof) = NULL;
   1230 		if (ptn) {
   1231 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1232 			timespecadd(&ts, &ptn->pt_time.it_value,
   1233 			    &ptn->pt_time.it_value);
   1234 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1235 		}
   1236 		i = 3;
   1237 	}
   1238 	for ( ; i < TIMER_MAX; i++) {
   1239 		if (pts->pts_timers[i] != NULL) {
   1240 			itimerfree(pts, i);
   1241 			mutex_spin_enter(&timer_lock);
   1242 		}
   1243 	}
   1244 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1245 	    pts->pts_timers[2] == NULL) {
   1246 		p->p_timers = NULL;
   1247 		mutex_spin_exit(&timer_lock);
   1248 		pool_put(&ptimers_pool, pts);
   1249 	} else
   1250 		mutex_spin_exit(&timer_lock);
   1251 }
   1252 
   1253 static void
   1254 itimerfree(struct ptimers *pts, int index)
   1255 {
   1256 	struct ptimer *pt;
   1257 
   1258 	KASSERT(mutex_owned(&timer_lock));
   1259 
   1260 	pt = pts->pts_timers[index];
   1261 	pts->pts_timers[index] = NULL;
   1262 	if (pt->pt_type == CLOCK_REALTIME)
   1263 		callout_halt(&pt->pt_ch, &timer_lock);
   1264 	else if (pt->pt_queued)
   1265 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1266 	mutex_spin_exit(&timer_lock);
   1267 	if (pt->pt_type == CLOCK_REALTIME)
   1268 		callout_destroy(&pt->pt_ch);
   1269 	pool_put(&ptimer_pool, pt);
   1270 }
   1271 
   1272 /*
   1273  * Decrement an interval timer by a specified number
   1274  * of nanoseconds, which must be less than a second,
   1275  * i.e. < 1000000000.  If the timer expires, then reload
   1276  * it.  In this case, carry over (nsec - old value) to
   1277  * reduce the value reloaded into the timer so that
   1278  * the timer does not drift.  This routine assumes
   1279  * that it is called in a context where the timers
   1280  * on which it is operating cannot change in value.
   1281  */
   1282 static int
   1283 itimerdecr(struct ptimer *pt, int nsec)
   1284 {
   1285 	struct itimerspec *itp;
   1286 
   1287 	KASSERT(mutex_owned(&timer_lock));
   1288 
   1289 	itp = &pt->pt_time;
   1290 	if (itp->it_value.tv_nsec < nsec) {
   1291 		if (itp->it_value.tv_sec == 0) {
   1292 			/* expired, and already in next interval */
   1293 			nsec -= itp->it_value.tv_nsec;
   1294 			goto expire;
   1295 		}
   1296 		itp->it_value.tv_nsec += 1000000000;
   1297 		itp->it_value.tv_sec--;
   1298 	}
   1299 	itp->it_value.tv_nsec -= nsec;
   1300 	nsec = 0;
   1301 	if (timespecisset(&itp->it_value))
   1302 		return (1);
   1303 	/* expired, exactly at end of interval */
   1304 expire:
   1305 	if (timespecisset(&itp->it_interval)) {
   1306 		itp->it_value = itp->it_interval;
   1307 		itp->it_value.tv_nsec -= nsec;
   1308 		if (itp->it_value.tv_nsec < 0) {
   1309 			itp->it_value.tv_nsec += 1000000000;
   1310 			itp->it_value.tv_sec--;
   1311 		}
   1312 		timer_settime(pt);
   1313 	} else
   1314 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1315 	return (0);
   1316 }
   1317 
   1318 static void
   1319 itimerfire(struct ptimer *pt)
   1320 {
   1321 
   1322 	KASSERT(mutex_owned(&timer_lock));
   1323 
   1324 	/*
   1325 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1326 	 * XXX Relying on the clock interrupt is stupid.
   1327 	 */
   1328 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1329 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1330 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1331 		return;
   1332 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1333 	pt->pt_queued = true;
   1334 	softint_schedule(timer_sih);
   1335 }
   1336 
   1337 void
   1338 timer_tick(lwp_t *l, bool user)
   1339 {
   1340 	struct ptimers *pts;
   1341 	struct ptimer *pt;
   1342 	proc_t *p;
   1343 
   1344 	p = l->l_proc;
   1345 	if (p->p_timers == NULL)
   1346 		return;
   1347 
   1348 	mutex_spin_enter(&timer_lock);
   1349 	if ((pts = l->l_proc->p_timers) != NULL) {
   1350 		/*
   1351 		 * Run current process's virtual and profile time, as needed.
   1352 		 */
   1353 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1354 			if (itimerdecr(pt, tick * 1000) == 0)
   1355 				itimerfire(pt);
   1356 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1357 			if (itimerdecr(pt, tick * 1000) == 0)
   1358 				itimerfire(pt);
   1359 	}
   1360 	mutex_spin_exit(&timer_lock);
   1361 }
   1362 
   1363 #ifdef KERN_SA
   1364 /*
   1365  * timer_sa_intr:
   1366  *
   1367  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1368  * with the timer lock held. We know that the process had SA enabled
   1369  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1370  * handler, SA should still be enabled by the time we get here.
   1371  */
   1372 static void
   1373 timer_sa_intr(struct ptimer *pt, proc_t *p)
   1374 {
   1375 	unsigned int		i;
   1376 	struct sadata		*sa;
   1377 	struct sadata_vp	*vp;
   1378 
   1379 	/* Cause the process to generate an upcall when it returns. */
   1380 	if (!p->p_timerpend) {
   1381 		/*
   1382 		 * XXX stop signals can be processed inside tsleep,
   1383 		 * which can be inside sa_yield's inner loop, which
   1384 		 * makes testing for sa_idle alone insuffucent to
   1385 		 * determine if we really should call setrunnable.
   1386 		 */
   1387 		pt->pt_poverruns = pt->pt_overruns;
   1388 		pt->pt_overruns = 0;
   1389 		i = 1 << pt->pt_entry;
   1390 		p->p_timers->pts_fired = i;
   1391 		p->p_timerpend = 1;
   1392 
   1393 		sa = p->p_sa;
   1394 		mutex_enter(&sa->sa_mutex);
   1395 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1396 			struct lwp *vp_lwp = vp->savp_lwp;
   1397 			lwp_lock(vp_lwp);
   1398 			lwp_need_userret(vp_lwp);
   1399 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1400 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1401 				lwp_unsleep(vp_lwp, true);
   1402 				break;
   1403 			}
   1404 			lwp_unlock(vp_lwp);
   1405 		}
   1406 		mutex_exit(&sa->sa_mutex);
   1407 	} else {
   1408 		i = 1 << pt->pt_entry;
   1409 		if ((p->p_timers->pts_fired & i) == 0) {
   1410 			pt->pt_poverruns = pt->pt_overruns;
   1411 			pt->pt_overruns = 0;
   1412 			p->p_timers->pts_fired |= i;
   1413 		} else
   1414 			pt->pt_overruns++;
   1415 	}
   1416 }
   1417 #endif /* KERN_SA */
   1418 
   1419 static void
   1420 timer_intr(void *cookie)
   1421 {
   1422 	ksiginfo_t ksi;
   1423 	struct ptimer *pt;
   1424 	proc_t *p;
   1425 
   1426 	mutex_enter(proc_lock);
   1427 	mutex_spin_enter(&timer_lock);
   1428 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1429 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1430 		KASSERT(pt->pt_queued);
   1431 		pt->pt_queued = false;
   1432 
   1433 		if (pt->pt_proc->p_timers == NULL) {
   1434 			/* Process is dying. */
   1435 			continue;
   1436 		}
   1437 		p = pt->pt_proc;
   1438 #ifdef KERN_SA
   1439 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1440 			timer_sa_intr(pt, p);
   1441 			continue;
   1442 		}
   1443 #endif /* KERN_SA */
   1444 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1445 			continue;
   1446 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1447 			pt->pt_overruns++;
   1448 			continue;
   1449 		}
   1450 
   1451 		KSI_INIT(&ksi);
   1452 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1453 		ksi.ksi_code = SI_TIMER;
   1454 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1455 		pt->pt_poverruns = pt->pt_overruns;
   1456 		pt->pt_overruns = 0;
   1457 		mutex_spin_exit(&timer_lock);
   1458 		kpsignal(p, &ksi, NULL);
   1459 		mutex_spin_enter(&timer_lock);
   1460 	}
   1461 	mutex_spin_exit(&timer_lock);
   1462 	mutex_exit(proc_lock);
   1463 }
   1464