kern_time.c revision 1.160 1 /* $NetBSD: kern_time.c,v 1.160 2009/03/29 19:21:19 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.160 2009/03/29 19:21:19 christos Exp $");
65
66 #include <sys/param.h>
67 #include <sys/resourcevar.h>
68 #include <sys/kernel.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/vnode.h>
72 #include <sys/signalvar.h>
73 #include <sys/syslog.h>
74 #include <sys/timetc.h>
75 #include <sys/timex.h>
76 #include <sys/kauth.h>
77 #include <sys/mount.h>
78 #include <sys/sa.h>
79 #include <sys/savar.h>
80 #include <sys/syscallargs.h>
81 #include <sys/cpu.h>
82
83 #include <uvm/uvm_extern.h>
84
85 #include "opt_sa.h"
86
87 static void timer_intr(void *);
88 static void itimerfire(struct ptimer *);
89 static void itimerfree(struct ptimers *, int);
90
91 kmutex_t timer_lock;
92
93 static void *timer_sih;
94 static TAILQ_HEAD(, ptimer) timer_queue;
95
96 POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 &pool_allocator_nointr, IPL_NONE);
98 POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 &pool_allocator_nointr, IPL_NONE);
100
101 /*
102 * Initialize timekeeping.
103 */
104 void
105 time_init(void)
106 {
107
108 /* nothing yet */
109 }
110
111 void
112 time_init2(void)
113 {
114
115 TAILQ_INIT(&timer_queue);
116 mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
117 timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
118 timer_intr, NULL);
119 }
120
121 /* Time of day and interval timer support.
122 *
123 * These routines provide the kernel entry points to get and set
124 * the time-of-day and per-process interval timers. Subroutines
125 * here provide support for adding and subtracting timeval structures
126 * and decrementing interval timers, optionally reloading the interval
127 * timers when they expire.
128 */
129
130 /* This function is used by clock_settime and settimeofday */
131 static int
132 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
133 {
134 struct timespec delta, now;
135 int s;
136
137 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
138 s = splclock();
139 nanotime(&now);
140 timespecsub(ts, &now, &delta);
141
142 if (check_kauth && kauth_authorize_system(kauth_cred_get(),
143 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
144 &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
145 splx(s);
146 return (EPERM);
147 }
148
149 #ifdef notyet
150 if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
151 splx(s);
152 return (EPERM);
153 }
154 #endif
155
156 tc_setclock(ts);
157
158 timespecadd(&boottime, &delta, &boottime);
159
160 resettodr();
161 splx(s);
162
163 return (0);
164 }
165
166 int
167 settime(struct proc *p, struct timespec *ts)
168 {
169 return (settime1(p, ts, true));
170 }
171
172 /* ARGSUSED */
173 int
174 sys___clock_gettime50(struct lwp *l,
175 const struct sys___clock_gettime50_args *uap, register_t *retval)
176 {
177 /* {
178 syscallarg(clockid_t) clock_id;
179 syscallarg(struct timespec *) tp;
180 } */
181 clockid_t clock_id;
182 struct timespec ats;
183
184 clock_id = SCARG(uap, clock_id);
185 switch (clock_id) {
186 case CLOCK_REALTIME:
187 nanotime(&ats);
188 break;
189 case CLOCK_MONOTONIC:
190 nanouptime(&ats);
191 break;
192 default:
193 return (EINVAL);
194 }
195
196 return copyout(&ats, SCARG(uap, tp), sizeof(ats));
197 }
198
199 /* ARGSUSED */
200 int
201 sys___clock_settime50(struct lwp *l,
202 const struct sys___clock_settime50_args *uap, register_t *retval)
203 {
204 /* {
205 syscallarg(clockid_t) clock_id;
206 syscallarg(const struct timespec *) tp;
207 } */
208 int error;
209 struct timespec ats;
210
211 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
212 return error;
213
214 return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
215 }
216
217
218 int
219 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
220 bool check_kauth)
221 {
222 int error;
223
224 switch (clock_id) {
225 case CLOCK_REALTIME:
226 if ((error = settime1(p, tp, check_kauth)) != 0)
227 return (error);
228 break;
229 case CLOCK_MONOTONIC:
230 return (EINVAL); /* read-only clock */
231 default:
232 return (EINVAL);
233 }
234
235 return 0;
236 }
237
238 int
239 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
240 register_t *retval)
241 {
242 /* {
243 syscallarg(clockid_t) clock_id;
244 syscallarg(struct timespec *) tp;
245 } */
246 clockid_t clock_id;
247 struct timespec ts;
248 int error = 0;
249
250 clock_id = SCARG(uap, clock_id);
251 switch (clock_id) {
252 case CLOCK_REALTIME:
253 case CLOCK_MONOTONIC:
254 ts.tv_sec = 0;
255 if (tc_getfrequency() > 1000000000)
256 ts.tv_nsec = 1;
257 else
258 ts.tv_nsec = 1000000000 / tc_getfrequency();
259 break;
260 default:
261 return (EINVAL);
262 }
263
264 if (SCARG(uap, tp))
265 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
266
267 return error;
268 }
269
270 /* ARGSUSED */
271 int
272 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
273 register_t *retval)
274 {
275 /* {
276 syscallarg(struct timespec *) rqtp;
277 syscallarg(struct timespec *) rmtp;
278 } */
279 struct timespec rmt, rqt;
280 int error, error1;
281
282 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
283 if (error)
284 return (error);
285
286 error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
287 if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
288 return error;
289
290 error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
291 return error1 ? error1 : error;
292 }
293
294 int
295 nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
296 {
297 struct timespec rmtstart;
298 int error, timo;
299
300 if ((error = itimespecfix(rqt)) != 0)
301 return error;
302
303 timo = tstohz(rqt);
304 /*
305 * Avoid inadvertantly sleeping forever
306 */
307 if (timo == 0)
308 timo = 1;
309 getnanouptime(&rmtstart);
310 again:
311 error = kpause("nanoslp", true, timo, NULL);
312 if (rmt != NULL || error == 0) {
313 struct timespec rmtend;
314 struct timespec t0;
315 struct timespec *t;
316
317 getnanouptime(&rmtend);
318 t = (rmt != NULL) ? rmt : &t0;
319 timespecsub(&rmtend, &rmtstart, t);
320 timespecsub(rqt, t, t);
321 if (t->tv_sec < 0)
322 timespecclear(t);
323 if (error == 0) {
324 timo = tstohz(t);
325 if (timo > 0)
326 goto again;
327 }
328 }
329
330 if (error == ERESTART)
331 error = EINTR;
332 if (error == EWOULDBLOCK)
333 error = 0;
334
335 return error;
336 }
337
338 /* ARGSUSED */
339 int
340 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
341 register_t *retval)
342 {
343 /* {
344 syscallarg(struct timeval *) tp;
345 syscallarg(void *) tzp; really "struct timezone *";
346 } */
347 struct timeval atv;
348 int error = 0;
349 struct timezone tzfake;
350
351 if (SCARG(uap, tp)) {
352 microtime(&atv);
353 error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
354 if (error)
355 return (error);
356 }
357 if (SCARG(uap, tzp)) {
358 /*
359 * NetBSD has no kernel notion of time zone, so we just
360 * fake up a timezone struct and return it if demanded.
361 */
362 tzfake.tz_minuteswest = 0;
363 tzfake.tz_dsttime = 0;
364 error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
365 }
366 return (error);
367 }
368
369 /* ARGSUSED */
370 int
371 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
372 register_t *retval)
373 {
374 /* {
375 syscallarg(const struct timeval *) tv;
376 syscallarg(const void *) tzp; really "const struct timezone *";
377 } */
378
379 return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
380 }
381
382 int
383 settimeofday1(const struct timeval *utv, bool userspace,
384 const void *utzp, struct lwp *l, bool check_kauth)
385 {
386 struct timeval atv;
387 struct timespec ts;
388 int error;
389
390 /* Verify all parameters before changing time. */
391
392 /*
393 * NetBSD has no kernel notion of time zone, and only an
394 * obsolete program would try to set it, so we log a warning.
395 */
396 if (utzp)
397 log(LOG_WARNING, "pid %d attempted to set the "
398 "(obsolete) kernel time zone\n", l->l_proc->p_pid);
399
400 if (utv == NULL)
401 return 0;
402
403 if (userspace) {
404 if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
405 return error;
406 utv = &atv;
407 }
408
409 TIMEVAL_TO_TIMESPEC(utv, &ts);
410 return settime1(l->l_proc, &ts, check_kauth);
411 }
412
413 int time_adjusted; /* set if an adjustment is made */
414
415 /* ARGSUSED */
416 int
417 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
418 register_t *retval)
419 {
420 /* {
421 syscallarg(const struct timeval *) delta;
422 syscallarg(struct timeval *) olddelta;
423 } */
424 int error = 0;
425 struct timeval atv, oldatv;
426
427 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
428 KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
429 return error;
430
431 if (SCARG(uap, delta)) {
432 error = copyin(SCARG(uap, delta), &atv,
433 sizeof(*SCARG(uap, delta)));
434 if (error)
435 return (error);
436 }
437 adjtime1(SCARG(uap, delta) ? &atv : NULL,
438 SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
439 if (SCARG(uap, olddelta))
440 error = copyout(&oldatv, SCARG(uap, olddelta),
441 sizeof(*SCARG(uap, olddelta)));
442 return error;
443 }
444
445 void
446 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
447 {
448 extern int64_t time_adjtime; /* in kern_ntptime.c */
449
450 if (olddelta) {
451 mutex_spin_enter(&timecounter_lock);
452 olddelta->tv_sec = time_adjtime / 1000000;
453 olddelta->tv_usec = time_adjtime % 1000000;
454 if (olddelta->tv_usec < 0) {
455 olddelta->tv_usec += 1000000;
456 olddelta->tv_sec--;
457 }
458 mutex_spin_exit(&timecounter_lock);
459 }
460
461 if (delta) {
462 mutex_spin_enter(&timecounter_lock);
463 time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
464
465 if (time_adjtime) {
466 /* We need to save the system time during shutdown */
467 time_adjusted |= 1;
468 }
469 mutex_spin_exit(&timecounter_lock);
470 }
471 }
472
473 /*
474 * Interval timer support. Both the BSD getitimer() family and the POSIX
475 * timer_*() family of routines are supported.
476 *
477 * All timers are kept in an array pointed to by p_timers, which is
478 * allocated on demand - many processes don't use timers at all. The
479 * first three elements in this array are reserved for the BSD timers:
480 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
481 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
482 * syscall.
483 *
484 * Realtime timers are kept in the ptimer structure as an absolute
485 * time; virtual time timers are kept as a linked list of deltas.
486 * Virtual time timers are processed in the hardclock() routine of
487 * kern_clock.c. The real time timer is processed by a callout
488 * routine, called from the softclock() routine. Since a callout may
489 * be delayed in real time due to interrupt processing in the system,
490 * it is possible for the real time timeout routine (realtimeexpire,
491 * given below), to be delayed in real time past when it is supposed
492 * to occur. It does not suffice, therefore, to reload the real timer
493 * .it_value from the real time timers .it_interval. Rather, we
494 * compute the next time in absolute time the timer should go off. */
495
496 /* Allocate a POSIX realtime timer. */
497 int
498 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
499 register_t *retval)
500 {
501 /* {
502 syscallarg(clockid_t) clock_id;
503 syscallarg(struct sigevent *) evp;
504 syscallarg(timer_t *) timerid;
505 } */
506
507 return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
508 SCARG(uap, evp), copyin, l);
509 }
510
511 int
512 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
513 copyin_t fetch_event, struct lwp *l)
514 {
515 int error;
516 timer_t timerid;
517 struct ptimers *pts;
518 struct ptimer *pt;
519 struct proc *p;
520
521 p = l->l_proc;
522
523 if (id < CLOCK_REALTIME || id > CLOCK_PROF)
524 return (EINVAL);
525
526 if ((pts = p->p_timers) == NULL)
527 pts = timers_alloc(p);
528
529 pt = pool_get(&ptimer_pool, PR_WAITOK);
530 if (evp != NULL) {
531 if (((error =
532 (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
533 ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
534 (pt->pt_ev.sigev_notify > SIGEV_SA))) {
535 pool_put(&ptimer_pool, pt);
536 return (error ? error : EINVAL);
537 }
538 }
539
540 /* Find a free timer slot, skipping those reserved for setitimer(). */
541 mutex_spin_enter(&timer_lock);
542 for (timerid = 3; timerid < TIMER_MAX; timerid++)
543 if (pts->pts_timers[timerid] == NULL)
544 break;
545 if (timerid == TIMER_MAX) {
546 mutex_spin_exit(&timer_lock);
547 pool_put(&ptimer_pool, pt);
548 return EAGAIN;
549 }
550 if (evp == NULL) {
551 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
552 switch (id) {
553 case CLOCK_REALTIME:
554 pt->pt_ev.sigev_signo = SIGALRM;
555 break;
556 case CLOCK_VIRTUAL:
557 pt->pt_ev.sigev_signo = SIGVTALRM;
558 break;
559 case CLOCK_PROF:
560 pt->pt_ev.sigev_signo = SIGPROF;
561 break;
562 }
563 pt->pt_ev.sigev_value.sival_int = timerid;
564 }
565 pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
566 pt->pt_info.ksi_errno = 0;
567 pt->pt_info.ksi_code = 0;
568 pt->pt_info.ksi_pid = p->p_pid;
569 pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
570 pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
571 pt->pt_type = id;
572 pt->pt_proc = p;
573 pt->pt_overruns = 0;
574 pt->pt_poverruns = 0;
575 pt->pt_entry = timerid;
576 pt->pt_queued = false;
577 timespecclear(&pt->pt_time.it_value);
578 if (id == CLOCK_REALTIME)
579 callout_init(&pt->pt_ch, 0);
580 else
581 pt->pt_active = 0;
582
583 pts->pts_timers[timerid] = pt;
584 mutex_spin_exit(&timer_lock);
585
586 return copyout(&timerid, tid, sizeof(timerid));
587 }
588
589 /* Delete a POSIX realtime timer */
590 int
591 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
592 register_t *retval)
593 {
594 /* {
595 syscallarg(timer_t) timerid;
596 } */
597 struct proc *p = l->l_proc;
598 timer_t timerid;
599 struct ptimers *pts;
600 struct ptimer *pt, *ptn;
601
602 timerid = SCARG(uap, timerid);
603 pts = p->p_timers;
604
605 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
606 return (EINVAL);
607
608 mutex_spin_enter(&timer_lock);
609 if ((pt = pts->pts_timers[timerid]) == NULL) {
610 mutex_spin_exit(&timer_lock);
611 return (EINVAL);
612 }
613 if (pt->pt_type != CLOCK_REALTIME) {
614 if (pt->pt_active) {
615 ptn = LIST_NEXT(pt, pt_list);
616 LIST_REMOVE(pt, pt_list);
617 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
618 timespecadd(&pt->pt_time.it_value,
619 &ptn->pt_time.it_value,
620 &ptn->pt_time.it_value);
621 pt->pt_active = 0;
622 }
623 }
624 itimerfree(pts, timerid);
625
626 return (0);
627 }
628
629 /*
630 * Set up the given timer. The value in pt->pt_time.it_value is taken
631 * to be an absolute time for CLOCK_REALTIME timers and a relative
632 * time for virtual timers.
633 * Must be called at splclock().
634 */
635 void
636 timer_settime(struct ptimer *pt)
637 {
638 struct ptimer *ptn, *pptn;
639 struct ptlist *ptl;
640
641 KASSERT(mutex_owned(&timer_lock));
642
643 if (pt->pt_type == CLOCK_REALTIME) {
644 callout_stop(&pt->pt_ch);
645 if (timespecisset(&pt->pt_time.it_value)) {
646 /*
647 * Don't need to check tshzto() return value, here.
648 * callout_reset() does it for us.
649 */
650 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
651 realtimerexpire, pt);
652 }
653 } else {
654 if (pt->pt_active) {
655 ptn = LIST_NEXT(pt, pt_list);
656 LIST_REMOVE(pt, pt_list);
657 for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
658 timespecadd(&pt->pt_time.it_value,
659 &ptn->pt_time.it_value,
660 &ptn->pt_time.it_value);
661 }
662 if (timespecisset(&pt->pt_time.it_value)) {
663 if (pt->pt_type == CLOCK_VIRTUAL)
664 ptl = &pt->pt_proc->p_timers->pts_virtual;
665 else
666 ptl = &pt->pt_proc->p_timers->pts_prof;
667
668 for (ptn = LIST_FIRST(ptl), pptn = NULL;
669 ptn && timespeccmp(&pt->pt_time.it_value,
670 &ptn->pt_time.it_value, >);
671 pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
672 timespecsub(&pt->pt_time.it_value,
673 &ptn->pt_time.it_value,
674 &pt->pt_time.it_value);
675
676 if (pptn)
677 LIST_INSERT_AFTER(pptn, pt, pt_list);
678 else
679 LIST_INSERT_HEAD(ptl, pt, pt_list);
680
681 for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
682 timespecsub(&ptn->pt_time.it_value,
683 &pt->pt_time.it_value,
684 &ptn->pt_time.it_value);
685
686 pt->pt_active = 1;
687 } else
688 pt->pt_active = 0;
689 }
690 }
691
692 void
693 timer_gettime(struct ptimer *pt, struct itimerspec *aits)
694 {
695 struct timespec now;
696 struct ptimer *ptn;
697
698 KASSERT(mutex_owned(&timer_lock));
699
700 *aits = pt->pt_time;
701 if (pt->pt_type == CLOCK_REALTIME) {
702 /*
703 * Convert from absolute to relative time in .it_value
704 * part of real time timer. If time for real time
705 * timer has passed return 0, else return difference
706 * between current time and time for the timer to go
707 * off.
708 */
709 if (timespecisset(&aits->it_value)) {
710 getnanotime(&now);
711 if (timespeccmp(&aits->it_value, &now, <))
712 timespecclear(&aits->it_value);
713 else
714 timespecsub(&aits->it_value, &now,
715 &aits->it_value);
716 }
717 } else if (pt->pt_active) {
718 if (pt->pt_type == CLOCK_VIRTUAL)
719 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
720 else
721 ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
722 for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
723 timespecadd(&aits->it_value,
724 &ptn->pt_time.it_value, &aits->it_value);
725 KASSERT(ptn != NULL); /* pt should be findable on the list */
726 } else
727 timespecclear(&aits->it_value);
728 }
729
730
731
732 /* Set and arm a POSIX realtime timer */
733 int
734 sys___timer_settime50(struct lwp *l,
735 const struct sys___timer_settime50_args *uap,
736 register_t *retval)
737 {
738 /* {
739 syscallarg(timer_t) timerid;
740 syscallarg(int) flags;
741 syscallarg(const struct itimerspec *) value;
742 syscallarg(struct itimerspec *) ovalue;
743 } */
744 int error;
745 struct itimerspec value, ovalue, *ovp = NULL;
746
747 if ((error = copyin(SCARG(uap, value), &value,
748 sizeof(struct itimerspec))) != 0)
749 return (error);
750
751 if (SCARG(uap, ovalue))
752 ovp = &ovalue;
753
754 if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
755 SCARG(uap, flags), l->l_proc)) != 0)
756 return error;
757
758 if (ovp)
759 return copyout(&ovalue, SCARG(uap, ovalue),
760 sizeof(struct itimerspec));
761 return 0;
762 }
763
764 int
765 dotimer_settime(int timerid, struct itimerspec *value,
766 struct itimerspec *ovalue, int flags, struct proc *p)
767 {
768 struct timespec now;
769 struct itimerspec val, oval;
770 struct ptimers *pts;
771 struct ptimer *pt;
772 int error;
773
774 pts = p->p_timers;
775
776 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
777 return EINVAL;
778 val = *value;
779 if ((error = itimespecfix(&val.it_value)) != 0 ||
780 (error = itimespecfix(&val.it_interval)) != 0)
781 return error;
782
783 mutex_spin_enter(&timer_lock);
784 if ((pt = pts->pts_timers[timerid]) == NULL) {
785 mutex_spin_exit(&timer_lock);
786 return EINVAL;
787 }
788
789 oval = pt->pt_time;
790 pt->pt_time = val;
791
792 /*
793 * If we've been passed a relative time for a realtime timer,
794 * convert it to absolute; if an absolute time for a virtual
795 * timer, convert it to relative and make sure we don't set it
796 * to zero, which would cancel the timer, or let it go
797 * negative, which would confuse the comparison tests.
798 */
799 if (timespecisset(&pt->pt_time.it_value)) {
800 if (pt->pt_type == CLOCK_REALTIME) {
801 if ((flags & TIMER_ABSTIME) == 0) {
802 getnanotime(&now);
803 timespecadd(&pt->pt_time.it_value, &now,
804 &pt->pt_time.it_value);
805 }
806 } else {
807 if ((flags & TIMER_ABSTIME) != 0) {
808 getnanotime(&now);
809 timespecsub(&pt->pt_time.it_value, &now,
810 &pt->pt_time.it_value);
811 if (!timespecisset(&pt->pt_time.it_value) ||
812 pt->pt_time.it_value.tv_sec < 0) {
813 pt->pt_time.it_value.tv_sec = 0;
814 pt->pt_time.it_value.tv_nsec = 1;
815 }
816 }
817 }
818 }
819
820 timer_settime(pt);
821 mutex_spin_exit(&timer_lock);
822
823 if (ovalue)
824 *ovalue = oval;
825
826 return (0);
827 }
828
829 /* Return the time remaining until a POSIX timer fires. */
830 int
831 sys___timer_gettime50(struct lwp *l,
832 const struct sys___timer_gettime50_args *uap, register_t *retval)
833 {
834 /* {
835 syscallarg(timer_t) timerid;
836 syscallarg(struct itimerspec *) value;
837 } */
838 struct itimerspec its;
839 int error;
840
841 if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
842 &its)) != 0)
843 return error;
844
845 return copyout(&its, SCARG(uap, value), sizeof(its));
846 }
847
848 int
849 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
850 {
851 struct ptimer *pt;
852 struct ptimers *pts;
853
854 pts = p->p_timers;
855 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
856 return (EINVAL);
857 mutex_spin_enter(&timer_lock);
858 if ((pt = pts->pts_timers[timerid]) == NULL) {
859 mutex_spin_exit(&timer_lock);
860 return (EINVAL);
861 }
862 timer_gettime(pt, its);
863 mutex_spin_exit(&timer_lock);
864
865 return 0;
866 }
867
868 /*
869 * Return the count of the number of times a periodic timer expired
870 * while a notification was already pending. The counter is reset when
871 * a timer expires and a notification can be posted.
872 */
873 int
874 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
875 register_t *retval)
876 {
877 /* {
878 syscallarg(timer_t) timerid;
879 } */
880 struct proc *p = l->l_proc;
881 struct ptimers *pts;
882 int timerid;
883 struct ptimer *pt;
884
885 timerid = SCARG(uap, timerid);
886
887 pts = p->p_timers;
888 if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
889 return (EINVAL);
890 mutex_spin_enter(&timer_lock);
891 if ((pt = pts->pts_timers[timerid]) == NULL) {
892 mutex_spin_exit(&timer_lock);
893 return (EINVAL);
894 }
895 *retval = pt->pt_poverruns;
896 mutex_spin_exit(&timer_lock);
897
898 return (0);
899 }
900
901 #ifdef KERN_SA
902 /* Glue function that triggers an upcall; called from userret(). */
903 void
904 timerupcall(struct lwp *l)
905 {
906 struct ptimers *pt = l->l_proc->p_timers;
907 struct proc *p = l->l_proc;
908 unsigned int i, fired, done;
909
910 KDASSERT(l->l_proc->p_sa);
911 /* Bail out if we do not own the virtual processor */
912 if (l->l_savp->savp_lwp != l)
913 return ;
914
915 mutex_enter(p->p_lock);
916
917 fired = pt->pts_fired;
918 done = 0;
919 while ((i = ffs(fired)) != 0) {
920 siginfo_t *si;
921 int mask = 1 << --i;
922 int f;
923
924 f = ~l->l_pflag & LP_SA_NOBLOCK;
925 l->l_pflag |= LP_SA_NOBLOCK;
926 si = siginfo_alloc(PR_WAITOK);
927 si->_info = pt->pts_timers[i]->pt_info.ksi_info;
928 if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
929 sizeof(*si), si, siginfo_free) != 0) {
930 siginfo_free(si);
931 /* XXX What do we do here?? */
932 } else
933 done |= mask;
934 fired &= ~mask;
935 l->l_pflag ^= f;
936 }
937 pt->pts_fired &= ~done;
938 if (pt->pts_fired == 0)
939 l->l_proc->p_timerpend = 0;
940
941 mutex_exit(p->p_lock);
942 }
943 #endif /* KERN_SA */
944
945 /*
946 * Real interval timer expired:
947 * send process whose timer expired an alarm signal.
948 * If time is not set up to reload, then just return.
949 * Else compute next time timer should go off which is > current time.
950 * This is where delay in processing this timeout causes multiple
951 * SIGALRM calls to be compressed into one.
952 */
953 void
954 realtimerexpire(void *arg)
955 {
956 uint64_t last_val, next_val, interval, now_ms;
957 struct timespec now, next;
958 struct ptimer *pt;
959 int backwards;
960
961 pt = arg;
962
963 mutex_spin_enter(&timer_lock);
964 itimerfire(pt);
965
966 if (!timespecisset(&pt->pt_time.it_interval)) {
967 timespecclear(&pt->pt_time.it_value);
968 mutex_spin_exit(&timer_lock);
969 return;
970 }
971
972 getnanotime(&now);
973 backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
974 timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
975 /* Handle the easy case of non-overflown timers first. */
976 if (!backwards && timespeccmp(&next, &now, >)) {
977 pt->pt_time.it_value = next;
978 } else {
979 now_ms = timespec2ns(&now);
980 last_val = timespec2ns(&pt->pt_time.it_value);
981 interval = timespec2ns(&pt->pt_time.it_interval);
982
983 next_val = now_ms +
984 (now_ms - last_val + interval - 1) % interval;
985
986 if (backwards)
987 next_val += interval;
988 else
989 pt->pt_overruns += (now_ms - last_val) / interval;
990
991 pt->pt_time.it_value.tv_sec = next_val / 1000000000;
992 pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
993 }
994
995 /*
996 * Don't need to check tshzto() return value, here.
997 * callout_reset() does it for us.
998 */
999 callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
1000 realtimerexpire, pt);
1001 mutex_spin_exit(&timer_lock);
1002 }
1003
1004 /* BSD routine to get the value of an interval timer. */
1005 /* ARGSUSED */
1006 int
1007 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1008 register_t *retval)
1009 {
1010 /* {
1011 syscallarg(int) which;
1012 syscallarg(struct itimerval *) itv;
1013 } */
1014 struct proc *p = l->l_proc;
1015 struct itimerval aitv;
1016 int error;
1017
1018 error = dogetitimer(p, SCARG(uap, which), &aitv);
1019 if (error)
1020 return error;
1021 return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1022 }
1023
1024 int
1025 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1026 {
1027 struct ptimers *pts;
1028 struct ptimer *pt;
1029 struct itimerspec its;
1030
1031 if ((u_int)which > ITIMER_PROF)
1032 return (EINVAL);
1033
1034 mutex_spin_enter(&timer_lock);
1035 pts = p->p_timers;
1036 if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1037 timerclear(&itvp->it_value);
1038 timerclear(&itvp->it_interval);
1039 } else {
1040 timer_gettime(pt, &its);
1041 TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1042 TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1043 }
1044 mutex_spin_exit(&timer_lock);
1045
1046 return 0;
1047 }
1048
1049 /* BSD routine to set/arm an interval timer. */
1050 /* ARGSUSED */
1051 int
1052 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1053 register_t *retval)
1054 {
1055 /* {
1056 syscallarg(int) which;
1057 syscallarg(const struct itimerval *) itv;
1058 syscallarg(struct itimerval *) oitv;
1059 } */
1060 struct proc *p = l->l_proc;
1061 int which = SCARG(uap, which);
1062 struct sys___getitimer50_args getargs;
1063 const struct itimerval *itvp;
1064 struct itimerval aitv;
1065 int error;
1066
1067 if ((u_int)which > ITIMER_PROF)
1068 return (EINVAL);
1069 itvp = SCARG(uap, itv);
1070 if (itvp &&
1071 (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1072 return (error);
1073 if (SCARG(uap, oitv) != NULL) {
1074 SCARG(&getargs, which) = which;
1075 SCARG(&getargs, itv) = SCARG(uap, oitv);
1076 if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1077 return (error);
1078 }
1079 if (itvp == 0)
1080 return (0);
1081
1082 return dosetitimer(p, which, &aitv);
1083 }
1084
1085 int
1086 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1087 {
1088 struct timespec now;
1089 struct ptimers *pts;
1090 struct ptimer *pt, *spare;
1091
1092 if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1093 return (EINVAL);
1094
1095 /*
1096 * Don't bother allocating data structures if the process just
1097 * wants to clear the timer.
1098 */
1099 spare = NULL;
1100 pts = p->p_timers;
1101 retry:
1102 if (!timerisset(&itvp->it_value) && (pts == NULL ||
1103 pts->pts_timers[which] == NULL))
1104 return (0);
1105 if (pts == NULL)
1106 pts = timers_alloc(p);
1107 mutex_spin_enter(&timer_lock);
1108 pt = pts->pts_timers[which];
1109 if (pt == NULL) {
1110 if (spare == NULL) {
1111 mutex_spin_exit(&timer_lock);
1112 spare = pool_get(&ptimer_pool, PR_WAITOK);
1113 goto retry;
1114 }
1115 pt = spare;
1116 spare = NULL;
1117 pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1118 pt->pt_ev.sigev_value.sival_int = which;
1119 pt->pt_overruns = 0;
1120 pt->pt_proc = p;
1121 pt->pt_type = which;
1122 pt->pt_entry = which;
1123 pt->pt_queued = false;
1124 if (pt->pt_type == CLOCK_REALTIME)
1125 callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1126 else
1127 pt->pt_active = 0;
1128
1129 switch (which) {
1130 case ITIMER_REAL:
1131 pt->pt_ev.sigev_signo = SIGALRM;
1132 break;
1133 case ITIMER_VIRTUAL:
1134 pt->pt_ev.sigev_signo = SIGVTALRM;
1135 break;
1136 case ITIMER_PROF:
1137 pt->pt_ev.sigev_signo = SIGPROF;
1138 break;
1139 }
1140 pts->pts_timers[which] = pt;
1141 }
1142
1143 TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1144 TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1145
1146 if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
1147 /* Convert to absolute time */
1148 /* XXX need to wrap in splclock for timecounters case? */
1149 getnanotime(&now);
1150 timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1151 }
1152 timer_settime(pt);
1153 mutex_spin_exit(&timer_lock);
1154 if (spare != NULL)
1155 pool_put(&ptimer_pool, spare);
1156
1157 return (0);
1158 }
1159
1160 /* Utility routines to manage the array of pointers to timers. */
1161 struct ptimers *
1162 timers_alloc(struct proc *p)
1163 {
1164 struct ptimers *pts;
1165 int i;
1166
1167 pts = pool_get(&ptimers_pool, PR_WAITOK);
1168 LIST_INIT(&pts->pts_virtual);
1169 LIST_INIT(&pts->pts_prof);
1170 for (i = 0; i < TIMER_MAX; i++)
1171 pts->pts_timers[i] = NULL;
1172 pts->pts_fired = 0;
1173 mutex_spin_enter(&timer_lock);
1174 if (p->p_timers == NULL) {
1175 p->p_timers = pts;
1176 mutex_spin_exit(&timer_lock);
1177 return pts;
1178 }
1179 mutex_spin_exit(&timer_lock);
1180 pool_put(&ptimers_pool, pts);
1181 return p->p_timers;
1182 }
1183
1184 /*
1185 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1186 * then clean up all timers and free all the data structures. If
1187 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1188 * by timer_create(), not the BSD setitimer() timers, and only free the
1189 * structure if none of those remain.
1190 */
1191 void
1192 timers_free(struct proc *p, int which)
1193 {
1194 struct ptimers *pts;
1195 struct ptimer *ptn;
1196 struct timespec ts;
1197 int i;
1198
1199 if (p->p_timers == NULL)
1200 return;
1201
1202 pts = p->p_timers;
1203 mutex_spin_enter(&timer_lock);
1204 if (which == TIMERS_ALL) {
1205 p->p_timers = NULL;
1206 i = 0;
1207 } else {
1208 timespecclear(&ts);
1209 for (ptn = LIST_FIRST(&pts->pts_virtual);
1210 ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1211 ptn = LIST_NEXT(ptn, pt_list)) {
1212 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1213 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1214 }
1215 LIST_FIRST(&pts->pts_virtual) = NULL;
1216 if (ptn) {
1217 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1218 timespecadd(&ts, &ptn->pt_time.it_value,
1219 &ptn->pt_time.it_value);
1220 LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1221 }
1222 timespecclear(&ts);
1223 for (ptn = LIST_FIRST(&pts->pts_prof);
1224 ptn && ptn != pts->pts_timers[ITIMER_PROF];
1225 ptn = LIST_NEXT(ptn, pt_list)) {
1226 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1227 timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1228 }
1229 LIST_FIRST(&pts->pts_prof) = NULL;
1230 if (ptn) {
1231 KASSERT(ptn->pt_type != CLOCK_REALTIME);
1232 timespecadd(&ts, &ptn->pt_time.it_value,
1233 &ptn->pt_time.it_value);
1234 LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1235 }
1236 i = 3;
1237 }
1238 for ( ; i < TIMER_MAX; i++) {
1239 if (pts->pts_timers[i] != NULL) {
1240 itimerfree(pts, i);
1241 mutex_spin_enter(&timer_lock);
1242 }
1243 }
1244 if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1245 pts->pts_timers[2] == NULL) {
1246 p->p_timers = NULL;
1247 mutex_spin_exit(&timer_lock);
1248 pool_put(&ptimers_pool, pts);
1249 } else
1250 mutex_spin_exit(&timer_lock);
1251 }
1252
1253 static void
1254 itimerfree(struct ptimers *pts, int index)
1255 {
1256 struct ptimer *pt;
1257
1258 KASSERT(mutex_owned(&timer_lock));
1259
1260 pt = pts->pts_timers[index];
1261 pts->pts_timers[index] = NULL;
1262 if (pt->pt_type == CLOCK_REALTIME)
1263 callout_halt(&pt->pt_ch, &timer_lock);
1264 else if (pt->pt_queued)
1265 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1266 mutex_spin_exit(&timer_lock);
1267 if (pt->pt_type == CLOCK_REALTIME)
1268 callout_destroy(&pt->pt_ch);
1269 pool_put(&ptimer_pool, pt);
1270 }
1271
1272 /*
1273 * Decrement an interval timer by a specified number
1274 * of nanoseconds, which must be less than a second,
1275 * i.e. < 1000000000. If the timer expires, then reload
1276 * it. In this case, carry over (nsec - old value) to
1277 * reduce the value reloaded into the timer so that
1278 * the timer does not drift. This routine assumes
1279 * that it is called in a context where the timers
1280 * on which it is operating cannot change in value.
1281 */
1282 static int
1283 itimerdecr(struct ptimer *pt, int nsec)
1284 {
1285 struct itimerspec *itp;
1286
1287 KASSERT(mutex_owned(&timer_lock));
1288
1289 itp = &pt->pt_time;
1290 if (itp->it_value.tv_nsec < nsec) {
1291 if (itp->it_value.tv_sec == 0) {
1292 /* expired, and already in next interval */
1293 nsec -= itp->it_value.tv_nsec;
1294 goto expire;
1295 }
1296 itp->it_value.tv_nsec += 1000000000;
1297 itp->it_value.tv_sec--;
1298 }
1299 itp->it_value.tv_nsec -= nsec;
1300 nsec = 0;
1301 if (timespecisset(&itp->it_value))
1302 return (1);
1303 /* expired, exactly at end of interval */
1304 expire:
1305 if (timespecisset(&itp->it_interval)) {
1306 itp->it_value = itp->it_interval;
1307 itp->it_value.tv_nsec -= nsec;
1308 if (itp->it_value.tv_nsec < 0) {
1309 itp->it_value.tv_nsec += 1000000000;
1310 itp->it_value.tv_sec--;
1311 }
1312 timer_settime(pt);
1313 } else
1314 itp->it_value.tv_nsec = 0; /* sec is already 0 */
1315 return (0);
1316 }
1317
1318 static void
1319 itimerfire(struct ptimer *pt)
1320 {
1321
1322 KASSERT(mutex_owned(&timer_lock));
1323
1324 /*
1325 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1326 * XXX Relying on the clock interrupt is stupid.
1327 */
1328 if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
1329 (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
1330 pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
1331 return;
1332 TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1333 pt->pt_queued = true;
1334 softint_schedule(timer_sih);
1335 }
1336
1337 void
1338 timer_tick(lwp_t *l, bool user)
1339 {
1340 struct ptimers *pts;
1341 struct ptimer *pt;
1342 proc_t *p;
1343
1344 p = l->l_proc;
1345 if (p->p_timers == NULL)
1346 return;
1347
1348 mutex_spin_enter(&timer_lock);
1349 if ((pts = l->l_proc->p_timers) != NULL) {
1350 /*
1351 * Run current process's virtual and profile time, as needed.
1352 */
1353 if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1354 if (itimerdecr(pt, tick * 1000) == 0)
1355 itimerfire(pt);
1356 if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1357 if (itimerdecr(pt, tick * 1000) == 0)
1358 itimerfire(pt);
1359 }
1360 mutex_spin_exit(&timer_lock);
1361 }
1362
1363 #ifdef KERN_SA
1364 /*
1365 * timer_sa_intr:
1366 *
1367 * SIGEV_SA handling for timer_intr(). We are called (and return)
1368 * with the timer lock held. We know that the process had SA enabled
1369 * when this timer was enqueued. As timer_intr() is a soft interrupt
1370 * handler, SA should still be enabled by the time we get here.
1371 */
1372 static void
1373 timer_sa_intr(struct ptimer *pt, proc_t *p)
1374 {
1375 unsigned int i;
1376 struct sadata *sa;
1377 struct sadata_vp *vp;
1378
1379 /* Cause the process to generate an upcall when it returns. */
1380 if (!p->p_timerpend) {
1381 /*
1382 * XXX stop signals can be processed inside tsleep,
1383 * which can be inside sa_yield's inner loop, which
1384 * makes testing for sa_idle alone insuffucent to
1385 * determine if we really should call setrunnable.
1386 */
1387 pt->pt_poverruns = pt->pt_overruns;
1388 pt->pt_overruns = 0;
1389 i = 1 << pt->pt_entry;
1390 p->p_timers->pts_fired = i;
1391 p->p_timerpend = 1;
1392
1393 sa = p->p_sa;
1394 mutex_enter(&sa->sa_mutex);
1395 SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
1396 struct lwp *vp_lwp = vp->savp_lwp;
1397 lwp_lock(vp_lwp);
1398 lwp_need_userret(vp_lwp);
1399 if (vp_lwp->l_flag & LW_SA_IDLE) {
1400 vp_lwp->l_flag &= ~LW_SA_IDLE;
1401 lwp_unsleep(vp_lwp, true);
1402 break;
1403 }
1404 lwp_unlock(vp_lwp);
1405 }
1406 mutex_exit(&sa->sa_mutex);
1407 } else {
1408 i = 1 << pt->pt_entry;
1409 if ((p->p_timers->pts_fired & i) == 0) {
1410 pt->pt_poverruns = pt->pt_overruns;
1411 pt->pt_overruns = 0;
1412 p->p_timers->pts_fired |= i;
1413 } else
1414 pt->pt_overruns++;
1415 }
1416 }
1417 #endif /* KERN_SA */
1418
1419 static void
1420 timer_intr(void *cookie)
1421 {
1422 ksiginfo_t ksi;
1423 struct ptimer *pt;
1424 proc_t *p;
1425
1426 mutex_enter(proc_lock);
1427 mutex_spin_enter(&timer_lock);
1428 while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1429 TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1430 KASSERT(pt->pt_queued);
1431 pt->pt_queued = false;
1432
1433 if (pt->pt_proc->p_timers == NULL) {
1434 /* Process is dying. */
1435 continue;
1436 }
1437 p = pt->pt_proc;
1438 #ifdef KERN_SA
1439 if (pt->pt_ev.sigev_notify == SIGEV_SA) {
1440 timer_sa_intr(pt, p);
1441 continue;
1442 }
1443 #endif /* KERN_SA */
1444 if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1445 continue;
1446 if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1447 pt->pt_overruns++;
1448 continue;
1449 }
1450
1451 KSI_INIT(&ksi);
1452 ksi.ksi_signo = pt->pt_ev.sigev_signo;
1453 ksi.ksi_code = SI_TIMER;
1454 ksi.ksi_value = pt->pt_ev.sigev_value;
1455 pt->pt_poverruns = pt->pt_overruns;
1456 pt->pt_overruns = 0;
1457 mutex_spin_exit(&timer_lock);
1458 kpsignal(p, &ksi, NULL);
1459 mutex_spin_enter(&timer_lock);
1460 }
1461 mutex_spin_exit(&timer_lock);
1462 mutex_exit(proc_lock);
1463 }
1464